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The "oversampling" of diffraction data from non-periodic objects allows phase information to be 
recovered [1] using the iterative Gerchberg-Saxton-Fienup algorithms [2]. These consist of two main 
parts: error reduction, and hybrid input-output (HIO). The method has been applied to experimental 
electron and X-ray diffraction data to solve the phase problem and obtain 2D images [3]. Here we 
use simulations to demonstrate the possibility of reconstructing atomic-resolution images of 3D 
nano-crystals from their diffraction patterns by diffractive imaging using HIO.   
Although the electron exit-face wavefunction ψ(r) is in general complex, the "real object" needed by 
HIO can be obtained in the weak phase object approximation, which we assume.   The potential for 
the crystal was calculated using φ(r)=ΣVgexp(-2πir·g); each pixel in real space has resolution 
0.08nm. Figure 1(a) shows φ(r) for a nano-crystal of MgO consisting of 3×3×3 unit cells. In order to 
oversample, a larger computational supercell with 6×6×6 unit cells was used, filled with zeros 
outside the boundary (support) of the MgO nano-crystal. The support S(r) is defined as the region 
outside of which the object transmission function is known to be zero. An approximate knowledge of 
the support (to be obtained from a low resolution TEM image) is needed for HIO. In our simulations, 
the support is a cube whose size ranges from 3×3×3 to 4×4×4 unit cells. The iterations start with the 
modulus of the Fourier transform of the potential (F(u)=FT{φ(r)}) ( fig.1(b) ) and random phases. 
We apply an additional "known sign" constraint to the potential in real space, so that a looser support 
is permitted. The progress of the iterations can be followed using a normalized root-mean-square 
(RMS) error, which shows the amount by which the image violates real-space 
constraints RMS = [ | ψ (r) |2
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reciprocal space error metric is also a useful, especially for the error-reduction algorithm: 
RF = [ |
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∑ ]1/ 2 . Here G(u) is the Fourier transform of current estimate of the 

exit-wave function. Figure 1(c) shows the reconstructed wave  ψ(r) after only 200 iterations, and its 
Fourier transform G(u) is shown in fig.1(d). Figure 2 shows the RMS and RF values as a function of 
iteration number.  

 
In conclusion, atomic resolution tomographic reconstruction of a typical electron microscope sample 
has been successfully demonstrated from simulated diffraction intensities. This provides the essential 
tool for the analysis of our experimental data. The preparation of an isolated object is the most 
challenging aspect of experimental work, which uses the Kohler mode for selected area diffraction 
from chains of MgO cubes spanning holes in carbon films.  ARO DAAD190010500 
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Figure 1. (a) Simulated MgO nano-crystal with 3×3×3 unit cells situated at the 
edge of a cubic of 6×6×6 unit cells. (b) Modulus of Fourier transform of the 
cubic in (a). (c) Reconstructed 3D exit-wave function by 200 times iteration. 
The support situated in the center of the large cubic. The origin is thus moved 
compared to (a). (d) Modulus of Fourier transform of the cubic in (c). 
 

Figure 2. Real space normalized 
root-mean-square (RMS) and 
reciprocal space error metric 
(RF) as a function of iteration 
number for reconstruction of 
fig. 1(c). Although both values 
were increased when applying 
the hybrid input-output 
algorithm comparing to the 
error-reduction algorithm, it is 
crucial in finding the global 
minimum.   Iteration Number 
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