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Abstract. Let X c PV be a variety (respectively an open subset of an analytic submanifold) and let
x € X be a point where all integer valued differential invariants are locally constant. We show that
if the projective second fundamental form ¥fat x is isomorphic to the second fundamental form
of a point of a Segr@®” x P", n,m > 2, a Grassmaniani (2, n + 2), n > 4, or the Cayley plane
QP2 thenX is the corresponding homogeneous variety (resp. an open subset of the corresponding
homogeneous variety). The case of the S&§re P2 had been conjectured by Griffiths and Harris in
[GH]. If the projective second fundamental form ¥fat x is isomorphic to the second fundamental
form of a point of a Veronese,(P"*) and the Fubini cubic form ok atx is zero, thenX = vo (P")
(resp. an open subset of(P")). All these results are valid in the real or complex analytic categories
and locally in theC® category if one assumes the hypotheses hold in a neighborhood of any point
x. As a byproduct, we show that the systems of quadi¢B™ 1 L P"~1) c s2Cm+n, [,PL x
P"~1) ¢ §2C2" andI»(S5) ¢ S2C18 are stable in the sense thatif ¢ S2T* is an analytic family
such that for £ 0, A; >~ A, thenAg =~ A.

We also make some observations related to the Fulton—Hansen connectedness theorem.

Mathematics Subject Classifications1991): 14-XX, 53-XX.

Key words: homogeneous spaces, deformations, dual varieties, secant varieties, moving frames,
projective differential geometry, second fundamental forms.

Introduction

The intrinsic rigidity of homogenous spaces has been studied extensively (see
[HM] and the references therein). In this paper we study the extrinsic and infin-
itesimal rigidity of homogeneous spaces.

Let G/P c PV be ann-dimensional homogenous space embedded homogen-
eously, but not necessarily in its canonical embedding Xett P"*¢ be a variety
and letx € X be a point where all integer valued differential invariants are locally
constant. (Such points are callgeneralpoints by algebraic geometers ageheric
points by differential geometers. Since a generic point has a different meaning in
algebraic geometry, we have avoided using either term.) This paper addresses the
guestion: To what extent do the projective differential invariantX @t x need to
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resemble those of a point 6f/ P c PV in order to be able to concludé = G/ P

as a projective variety? Let Iy .| C PS2T;X denote (the system of quadrics
induced by) the projective second fundamental formXo&t x. Our progress on

this question is as follows (an open subset means open with respect to the manifold

topology)

THEOREM 1.LetX"t™ c Prtrtm+z n m > 2, be an open subset of an analytic
manifold not contained in a hyperplane and te€ X be a point where all integer
valued differential invariants are locally constant. If the second fundamental form
|I1x | is isomorphic tolo(P"~1 1 P"~1), the quadrics vanishing on the disjoint
union of two projective spaces, then= 0 and X is an open subset of the Segre
P" x P c Prmtntm The same result holds locally in th&™ category if the
hypotheses hold in the neighborhood of any peint

The case: = m = 2 had been conjectured by Griffiths and Harris in [GH].

_ (n1>7l+z .
THEOREM 2.Let X20m=2 < P\ 2 ,m > 6, be an open subset of an analytic
manifold not contained in a hyperplane and te€ X be a point where all integer
valued differential invariants are locally constant. If the second fundamental form
|I1x .| is isomorphic tal,(P! x P*~1), the quadrics vanishing on the Segre variety,
thenz = 0 and X is an open subset of the Grassman@i(2, m). The same result
holds locally in theC> category if the hypotheses hold in the neighborhood of any
point x.

Note that the result is false far = 4.

THEOREM 3.Let X6 ¢ P?5*z be an open subset of an analytic manifold not
contained in a hyperplane and let € X be a point where all integer valued
differential invariants are locally constant. If the second fundamental fdin,, |

is isomorphic tol>(Ss), the quadrics vanishing on the spinor variety, thea- 0

and X is an open subset of the Cayley plane in its canonical embedding. The same
result holds locally in thec* category if the hypotheses hold in the neighborhood

of any pointx.

TheFubini cubic formof X atx, Fsx . is a relative differential invariant encod-
ing the geometric information in the third derivatives of the embedding. It was first
used by Fubini [F] to study hypersurfaces. See [L1] for a precise definition.

THEOREM 4.Let

(n%—Z)il
X" cpP\ 2 , n>1,
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be an open subset of an analytic manifold not contained in a hyperplane and let
X be a point where all integer valued differential invariants are locally constant. If
the third fundamental form at, /71y ., is zero andFsx , = 0, thenX is an open
subset of the Veronese(lP"). The same result holds locally in tli&° category if

the hypotheses hold in the neighborhood of any peint

THEOREM 5.The systems of quadrics,
A= 12(]P>m—1 Ll ]P)n—l) C SZ(cm+n, 12(]P>1 % ]P)n—l) C SZ@Zn

and I»(Ss) C S2C6 are stable in the sense thatdf ¢ S?T* is an analytic family
such that for # 0, A, ~ A, thenAy ~ A.

Note that in the analytic category, the results are also global, since an open
subset determines an entire variety. One must be careful in the case of the real
Cayley plane to insure that the normalization of the second fundamental form used
in computations is possible ovEr,

1. Previous Results

Monge showed that a curve ¢ is a conic if and only if a fifth order invariant

is zero (see [L1, 3.6]). In higher dimensions, Fubini showed that to determine if
a hypersurface is a quadric, all third order invariants must be zero [F]. In another
direction, it is known that the Segre variety cannot be deformed as a submanifold
of projective space (see, e.g. [HM] Section 3). Note that wiktle P is rigid as a
submanifold of projective space in the sense of [HM], it fails to satisfy the analog
of Theorem 1. In [L2] we showed that to determineXifis one of the four Severi
varieties (that isAP? in its canonical embedding, where is the complexifica-

tion of one of the four real division algebras, ie(P?) C P° SeqP? x P?) C

P8, G(2,6) C P¥ Eg/P, C P?), it is necessary to have agreement of second
fundamental forms and a partial vanishing of the cubic form. (The casg®Bf)

had been proven earlier by Griffiths and Harris [GH].) Theorems 1-3 strengthen
these results for the three Severi varieties with degenerate tangential varieties in the
sense that they show it is only necessary to have agreement of second fundamental
forms. This strengthening follows immediately from Proposition 6 below.

In the Euclidean geometry of submanifolds, if the Euclidean second funda-
mental form is surjective, then a submanifold is uniquely determined by second
order data (sometimes even first, e.g. hypersurfaces of large dimension). In pro-
jective geometry, the order of data needed to obtain a complete set of functionally
independent differential invariants is not known except in some special cases. For
curves inP? sixth order information is necessary and sufficient. For hypersurfaces
of dimension greater than two, Jensen and Musso proved third order information is
necessary and sufficient [JM].
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2. Intrinsic vs Extrinsic Geometry

The intrinsic and extrinsic geometries of homogeous spaces are closely related.
Given anyG/ P, the cone of minimal degree rational curves passing through each
point is an essentially intrinsic object. The projectivization of this cone is contained
in the base locus df I| in the standard embedding. (A line osculating to order two

at a point of a homogeneous spag¢pP is contained inG/ P since homogeneous
varieties are cut out by quadrics.)

The intrinsic rigidity results in [HM] resemble ours and have a similar method
of proof. Hwang and Mok prove Kahler rigidity of Hermitian symmetric spaces
of the compact type under Kahler deformations by studing deformations of the
cone of minimal degree rational curves. This cone naturally sits in a projective
space, thus their study at the infinitesimal level is similar to our extrinsic problem.
However, their results are different, which can most easily be seen by the fact that
the quadric hypersurface is not rigid to order two, but is Kahler rigid, and even
holomorphically rigid (see [H]). It would be desirable to rephrase the proofs here
in terms of a geometric property of the base locus of the second fundamental form
as in [HM] (see below).

3. Secant and Dual Varieties

Extremal degeneracies of auxilliary varieties often force homogeneity. Zak proved
that if X" c CP"*™ is a smooth variety not contained in a hyperplane, and

(n/2) + 2 then the secant variety(X) must be equal t&#"** and ifa = (n/2) + 2

ando (X) # P"*“, thenX must be a Severi variety (see [Z]). Zak also proved
that if X" c P"t* = PV is a smooth variety not contained in a hyperplane, then
dim X* > dim X, whereX* c PV* denotes the dual variety of. Ein showed

that if dim X* = dim X, anda > (n/2), thenX is either a hypersurface, S&} x

P™), the Grassmania@' (2, 5) or the ten dimensional spinor variedy (all in their
canonical embeddings), see [E].

If X" c P"* is a smooth variety with degenerate secant variety, theq

( " ! ) (see [Z], [L2)]). A special case of Zak’s Theorem on Scorza varieties states

that ifa = ( " ; ! ) ando (X) is degenerate, theki must be a Veronese (P").

4. The Refined Third Fundamental Form and Connectedness

Let X" C P"** be an open subset of a complex manifold. ket X be a point
where all integer valued differential invariants are locally constant, anddeT’, X
be a generic tangent vector. If the mappihky: 7. X — N, X, defined byw +—
11 (v, w), is not surjective, there is a well defined third order invariant, cathed
third fundamental form refined with respectutpl 11V (see [L2] for details). Given
a system of quadricd ¢ S°T* andv € T, let Ann(v) = {g € A | [v] € Gsing}
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and let Singlo€A) = {v € T | [v] € gsingVq € A}. Note that|/Ix ,|/Ann(v) is a
well defined system of quadrics on Singléan(v)). With these notations

111° € S3(SinglodAnn(v)))* @ N, X/11,(T).

A special case of the Fulton—Hansen connectedness theorem [FH] states that if
dimo(X) # 2n+ 1 ordimt(X) # 2n, theno(X) = 7(X) for any projective
variety X.

A consequence of the Fulton—Hansen theorem is th&tig a smooth variety
with degenerate secant variety, then the refined third fundamental form is zero
at points where all integer valued differential invariants are locally constant. In
fact, the refined third fundamental form being zero imphgx) = t(X) in the
caseX is smooth, see [L2]. In our original proof of Zak's theorem, we used the
consequence of the connectedness theorenY iHdt= 0 to prove the rigidity of
varieties that infinitesimally looked like Severi varieties.

If A C S$°T* is a system of quadrics, itsrolongation A® is defined by
AD = SB3T* N (AR T).

PROPOSITION 6Let X* c P"* be a variety. Letr € X be a point where

all integer valued differential invariants are locally constant, and dete 7, X

be a generic tangent vector. With the notations of the paragraphs above, con-
sider |/ Ix .|/Ann(v) as a system of quadrics amngloadAnn(v)). Then|I11"| C

(I Ix | /Ann(v)) .

Proposition 6 follows from the formula [L2, 13.1]. The first line of [L2, 13.1]
shows thati/11"| < (|11x.|/Ann(v)) ® T*, and the second line shows that it is
symmetric.

Zak’s Theorem on Scorza varieties indicates that perhaps Theorem 4 is not the
optimal result. A positive answer to the following question would provide a local
version of Zak's Theorem.

n+2
QUESTION 7.Let X" C ]P’( 2 ) ' be an open subset of a complex manifold
not contained in a hyperplane. Let € X be a point where all integer valued
differential invariants are locally constant, and lete 7, X be a generic tangent
vector. IfI11” = 0, mustX be an open subset of the VeroneséP")?

The difference between knowing that the cubic form is zero and knowing that
the refined third fundamental form with respect to all tangent directions is zero is
a difference of

("27) ("% men("3F) = (2) (5)-("27)
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equations. From the proof of Theorem 3, one sees how to construct the germ of a
negative answer, but there is no reason to believe any germ will extend to a smooth
variety.

Using Proposition 6, we obtain a stronger infinitesimal rigidity result than in
[L2] by observing that ifi/1] is the second fundamental form of a Severi variety
other tharw,(P?), then|71|® = 0 and thug71/Ann(v))® = 0. Theorems 1, 2, 3
in the case of Severi varieties follow from Proposition 4 and this observation. The
proofs given here of Theorems 1 and 2 are better than those in [L2] because here
the basis vectors used @t X are in the baselocus ¢f/|. In contrast, in [L2] a
basis consisting of essentially generic vectors (although not a generic basis) was
used. One could write out a corresponding better proof fofthé case as well.

QUESTION 8.Let X" c P"*“ be a smooth variety with degenerate tangential
variety. Letx € X be a point where all integer valued differential invariants are
locally constant, and leb € T7.X be a generic tangent vector. With the nota-
tion of the paragraphs above considgilx |/Ann(v) as a system of quadrics on

singlogAnn(v)). Must (|1 Ix . |/Ann(v))® = 0?

An affirmative answer to Question 8 would provide a new proof of the Fulton—
Hansen Theorem relating the dimensionss@¥) and t(X) that is differential-
geometric and elementary in nature in the c&ses smooth. (In particular, one
would not need Deligne’s Bertini Theorem.)

A variant of Question 8 is as follows: Let C S2C" be a system of quadrics
with a tangential defect (i.e. the quadricsdrsatisfy a polynomial relation). What
additional conditions can one impose dnto imply that if A = |IIx,| where
x € X is apoint where all integer valued differential invariants are locally constant,
then any tensor corresponding|td 7y .| must be zero?

5. ldeas Towards More Geometric Proofs

While the proofs here are rather short, it would be desirable to have more geo-
metric arguments. The rigidity statements in [HM] are proven by exploiting that
A?T. X is generated by elements of the fonmn v’ where[v] € BaselI| and

v' € Tj,)Basel|. In [LM] we show that if X is homogeneous, if (Basgl/|) =

PT. X, then|II1|'Y = 0, so in particular/ /I' = 0. Thus, part of the results here
follow from geometric arguments, but it is not in general true that all third-order
information can be recovered frofv I”. Accordingly, some further geometric
properties of Bagé | are needed.

6. Other Open Problems

The program of LeBrun and Salamon to classify the quaternionic-K&hler mani-
folds with positive scalar curvature (see [Le], [LS]) has reduced (via the twistor
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transform) the classification problem to classifying the contact Fano manifolds. (It
is generally conjectured that the only quaternionic-Kahler manifolds with postive
scalar curvature are homogenous.) The only known contact Fano manifolds are
the adjoint varieties. Given a contact Fano manifold projectively embedded via
its contact line bundle, the base locus of its second fundamental form must be a
Legendrian variety. So it is of particular interest to determine the extent a variety
must resemble a homogeneous Legendrian variety (resp. adjoint variety) before one
can conclude that it is a homogeneous Legendrian variety (resp. adjoint variety).
Another problem is to determine rigidity for the case®bfx P" andG (2, 5),
which are not covered by the theorems above. By Ein’s results on dual varieties,
one might conjecture that these varieties are rigid to second order as well.

PROOFS

We will use formulas for projective differential invariants derived in [L1].

The idea of the proofs is as follows: given any vari&y- PV, one has the first
order adapted frame bundte % — X. The elementy’ € F* = #} are bases
of V that respect the flag c 7, X C V, wherez is the line inV corresponding to
x and7, X is the cone over the embedded tangent space. In particularfeach?
determines a splitting of the flag which we denéte- T + N. Although it is not
in general a Lie groupF* c GL(V).

Write the pullback of the Maurer—Cartan form of(@l) to ! as

a)8 a)g a)S

Q=1 wg w%‘a)

=R

0 a)g wk

with index ranges K «, 8 < dimX,dmX +1 < i, v < dimPV.
If X = G/P, one can reduc& ! until it is isomorphic toG (with fiber iso-
morphic to P). In that case one obtains the Maurer—Cartan form symbolically

as
0 0
g wg 0
Q= | 0§ of=prh) of =A2wp) |,

0 wy=A10f) o) =pn(h)

whereH is the semi-simple partaP, T = 7, X, N = N, X are H-modules, and

A1, A, are H-equivariant maps. The zero in the upper right hand block indicates
that any infinitesimal change in the splitting satisfies the ‘transversality’ condition
that dvV C {T + N}. The dependence of the block on the formswg indicates
that if one changes the choice Bf there is a corresponding change in choic&vof
mandated.
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If X is a variety with the same second fundamental forr& A8, by restricting
bases irT, X and N, X to be we can reducgy to a bundleF;? where the pullback
of the the Maurer—Cartan form looks like

a)g a)g o’
Q= of of=pr®)+w o

0 of =410} o =py({) +ws

wherew,, w, are linear combinations of the other forms appearing in the Maurer—

Cartan form. The proofs proceed by showing that there are reductidfg tf G
by restricting the admissible splittings that reduc&e.

In practice, we prove this by showing the invariafitse 7*(S*T*X ® N X) that
contain the geometric information of thkéh derivative of the embedding — PV,
are zero fork > 2. In frames one write#}, = r" _ wg'... w5 @ e, wherea)g

aq...0k
is a basis of the semi-basic forms angdis a basis oV, X (1), and ther}, , are
functions defined o 1. F;, measures the infinitesimal motion Bfaway from its
embedded tangent space(to— 1)-st order.

We recall the following formulae from [L1]

aﬂywo = dqaﬂ qaﬁwo Claﬂw +qa5wﬂ +Qﬂ5wa’ (L12.15)
aﬂySwO - draﬂy zraﬂy aﬂy v y T+ 60[/3)’ aﬁBw -

- 60!/3}’61556];;/6‘)3 + 6aﬂyQ5ﬁw37 (Ll 2.17)
rgﬂyéewg draﬁyS 3raﬂy8w0 aﬂyéw{j—i_

+ GaﬁVs(raﬂyewﬁ + zraﬂy

— apeys  Tapy Do) @) — Qs @))- (L12.20)

The functionsy, . vary in the fiber as follows: Under a motion
ey — ey + ggeo,
ey > ey + gpeu + ggeo,

the corresponding changes in the coefficient&pfr, are as follows

Arl = Gup, 804k, + Gup, 830254,
by Voetby yoviaptys (L12.24)

Argﬂyé = 6aﬁyég2rgy5 + GaﬁVSgi(r;ﬁyqéls + qovzﬁr;%s) + ggqgﬂq;(s-
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Proof of Theoreni. z = 0 because the prolongation |dfl | is zero. LetV have
baSIS{eo,e,,eS,eS,} 1<i,j,k,l<n,n+1<s,t,u,v <n+madapted such
thatx = [eo], T, X = {eo, ei, e5} and I Iy , = whwy ® e;s (see, e.g., [GH] or [L1]).

Note that the formso’j w; are all independent and independent of the semi-basic
forms because they represent infinitesimal motions that preserve our normalization
of I'1.

To showX is an open subset of the Segre, we will show all higher differential

invariants are zero. We see immediately that

rig=0VB and r,u#s,
rg =08 and j k#i,

(these equations include the equations for the refined third fundamental form being
zero). The nonzero coefficients 6% satisfy the following equations. (Here and in
what follows, we use the convention that if an index appears more than twice it is
notto be summed over. E.g. there is no sum ovér (s1).) From now on, if latin
indicies are distinct, we assume they are not equal.

Iyt @y + i@ + 1wy = @), (s1)
rusa)o + rf,’,a)o + rma)o = a), (s2)
ssﬂa)o - 2a) (83)
uﬁwO = 20;. (s4)

Since the right-hand side of (s1), resp. (s2), is independentes$p., we conclude
(assuming:, m > 2) r’l =0, r’. =0 and

Sts >

Sl ui
Fsik = Turk> (s5)
Pt =ik (s6)
ijt kjt*
Now
si 0 si __ 8
Arg; =8up»  Arij = &(in

j 0 j s 0
Arg; = 8uiy T & » Arisjls = gEjs) +8;-

Fixing a particular(, s), usegfj, 8 g, gj, to normalize all these terms to zero.
By (s5,s6) the normalizations send the terms to zero far allNow (s1,s2) imply
o, =0, ! = 0foralli,t so (s3,s4) imply;; = 0, rj}; = 0.

We have now reduced to frames whetg = 0. (At this point one has a pro-
jective connection o’ X isomorphic to that on the Segre.) The coefficientdnf
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aﬁya are zero unless, amonggBy§, two are in thes, ¢, u range, two are in the

i, j, k range, at least one is equalstoand one is equal th We useAr!’ . = g%
to normalizers’, = 0O for all s,i. This uses up all the freedom to normalize
differential invariants. (Thg? terms were useless as they always appeared with
a corresponding;, term.)
The remaining coefficients &, that are potentially nonzero ar§;;, rii. ., i,
We now examine the coefficients &t. Fortunately, most of these are imme-
diately seen to be zere, ;. is zero if four or all of the lower indices are all in
the same range. Moreover, there must be at least two indicies that arel ither
Consider
w0+rs 61)6 rsu/ta)k+rsukt

Su/ks ujki

tmksa)O + rtuzkza)O - rsuzkw + rstzka)u’

rswkle rsu]zwk + rsukl

tmksa)O + rtmkt a)O - rsmkw + rsttka)u

In all equations the forms on the right hand side are all independent and independ-
ent of the forms on the left-hand side (which are independent as well). Thus all
coefficients appearing are zero, in particular, all coefficients,oére zero. Now
consider;;;;wy + 1)y, @4 = ;-

Since the right- hand sideis mdependenzt,of we conclude both sides are zero.
Using thatw;; = O for all 7, j, the equations;’,, wh = 200 imply Fs = 0. We
easily see the coefficients 6§ are all zero and thus all higher differential invariants
are zero. 0

Proof of Theoren?. Againz = 0 becaus¢//|Y = 0.

Let V have basigeo, 1, ez,, ejix}, where 3< j, k, I <n+2,{a} = {1j, 2j}.
Normalize such thatI = (wg’ 0% — w¥wZ’) ® ejr, j < k. Note that the forms
w1, 03, 01, 05, 3, o3 are all independent and independent of the semi-basic
forms because they represent infinitesimal motions that preserve our normalization
of I1. We have

3 = OV, j, k.  distinct andvs, (1)
3 g = OV, j, k.  distinct andvg, ©2)

(these equations include that the refined third fundamental form is zero). From now
on, assume all indices are distinct. Using (gl), (92), we have

@ij) @ij) @) 2]
Fhanan@ + 1 (1:)(1k)(1j)w0 + i an@ @ 1 <1z>(1k>(2;>“)0 + I ) @) @0

= wil). (93)
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The right-hand side of (g3) is independentipo comparing with the same ex-
pression usingn instead ofi, (here we use that > 4) we obtain

rth o = 0. (94)
rih o) = o (95)
r fif;(lkxzt) =r (ffn;(lkxzz)’ (96)
r fif;(lkxz/) =T gz;(lk)(zn’ (97)
rW o = T @) (98)
Now
Ar ((if:;<1k><21> =8 ((130)’

(@) @) | 0
Ardiyan e = 8G T 8wy

Using these equations and the corresponding equations with the role of 1 and 2
reversed, we reduce to frames where

70 o) 7 70
ranao@) =9 raiwoe)) = 0 ren@ow =9 ren@oa) =9
In these frame&gzj, wl, 0, hence
()] _ 2j
0= ”(11)(11),90)0:3 = —2w}; (99)

and similarly with the role of 1 and 2 reversed. Thus the only nonzero terms left in
(if) (i) RPN ()) B _ o,.()) 1k :

Fsarer iy jya Taie)en- CONSIARY 1)1 100 = 2 (1iya @y - BOth sides

of (g10) must be zero because the forais are all independent and independent

of the semi-basic forms. The analogous equation holds with 2’s. Hence we see

F3=0.

To have a nonzero coefficient &, r s, in the lower indicies there must be
two 1's and two 2's, and at least two of thendices must be or j. Consider

('j) 2j 2j
rahanene)®o = @i - (911)

(ij) 2j
(11)(1,)(21)(2,)‘00 = 2wy . (912)

Since the right-hand side of (g11) is independent afe conclude (after switching
the roles of and;) thatr(ll)(lk)(z)(zj) is independent of, j (with neitherk, [ equal

toi or j, butk = [ is possible). Us'n®r(1,)(1k)(zz>(z,) = g2, we normalize all these
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terms to zero. This implies;/ = 0 and thus{}) ;) a1 ;, = 0 for alli, j. I distinct

as well, and similarly with the role of 1 and 2 reversed. Thus the remaining nonzero
- (i) (i) :

terms inFy arer ;)i iy @)y i)z Consider
rliD wi + rih wi! 4+ 7! Wi+

F1) @)W @) an@o (1z>(21>(1k>(21><11> o (1z>(21><lk><21>(21> 0

@) 2j 0
T rahehanene)Po = ~ D (913)

Since the right-hand side of (g13) is independent gf we conclude»?, = 0 and,
hence, the left-hand side is zero as well. Now it is easy to see the rest of the terms
in F5 are zero and all higher forms are zero. a

Remark While the last step usedt > 4 a second time, there is an alternate
argument that avoids it here. One first observesdifieare semi-basic and then

uses the equation fofi}) ;. 5 25

Proof of Theoremd. 111 = 0 andX not contained in a hyperplane implies
that|71] = PS?T*. Take a basigeq, ¢;, ¢;;) of V, 1 < i, j,k < n such that
11 = wlw) ® e;;. With this normalization the forms’, are all independent and
independent of the semi-basic forms. We cannot usg ;j)eg to make normaliz-

ations because we assumgégl= 0. The coefficients of;, rklmp, must be zero if
three or four of the lower coefficients are different frany. Regarding the other

coefficients
ijoi ijoog_
Tikii®o T Tik1j@o = Wiy (V1)
]] j _ J
Fikj®@o = 20y, (v2)

and one has the corresponding equations with /. Combining (v1) and (v2) we
concluder!/,., ri/.. = 0, (here we use > 3, see [GH] or [L2] for a proof when
n = 2) and ifn > 4 we also have, since the right-hand side of (v1) is independent
of i, rll,’d] = I+ The Varlablll'[yArlkl] = g2, A”:ik, = g2 allows us to normalize

ij l] — i __ H
r,kl,, ,kk, 0 which Imp|IESa)kl,a)kk = O in turn |mpIy|ngrlk,l, riy; = 0. Since

ij l] ij l]
wlk’a) = Owe haverlzkﬁa)o - 0’ rzlkﬂwo - o Sorzklz’ llkj’rllll’ iiij — = 0. The
B
only potentially nonzero terms ifiy arer;/,;, r/j;. ConS|derr, g0 = w?, which
|mpI|eSa)k1 is semi-basic. Usmgwkﬁa)g = rj{”a)k + wf, we concludalw =0,

sincew] is independent of the semi-basic forms. Using the corresponding equation
with i replacingj we seeF, = 0. Now it is easy to see thdf; and all higher
invariants are zero. O
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