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Abstract

Let X be a countable discrete abelian group with automorphism group Aut(X). Let ξ1 and ξ2 be
independent X -valued random variables with distributions µ1 and µ2, respectively. Suppose that
α1, α2, β1, β2 ∈ Aut(X) and β1α

−1
1 ± β2α

−1
2 ∈ Aut(X). Assuming that the conditional distribution of

the linear form L2 given L1 is symmetric, where L2 = β1ξ1 + β2ξ2 and L1 = α1ξ1 + α2ξ2, we describe
all possibilities for the µ j . This is a group-theoretic analogue of Heyde’s characterization of Gaussian
distributions on the real line.
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1. Introduction

Many studies have been devoted to characterizing Gaussian distributions on the real
line. Specifically, in 1970 Heyde proved the following theorem, which characterizes
a Gaussian distribution by the symmetry of the conditional distribution of one linear
form given another.

THEOREM 1.1 (Heyde [10]; see also [11, Section 13.4.1]). Suppose that n ≥ 2,
ξ1, ξ2, . . . , ξn , are independent random variables, and let α j and β j be nonzero con-
stants, where j = 1, 2, . . . , n, such that βiα

−1
i ± β jα

−1
j 6= 0 whenever i 6= j . If the

conditional distribution of L2 given L1 is symmetric, where L2 = β1ξ1 + · · · + βnξn
and L1 = α1ξ1 + · · · + αnξn , then all the random variables ξ j are Gaussian.

The articles [3–5, 12] (see also [6, Ch. VI]) were devoted to finding group-theoretic
analogues of Heyde’s theorem. The present article continues this research.

This paper was written with partial support from the French–Ukrainian research programme ‘PICS’,
2009–2011.
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94 M. Myronyuk [2]

ASSUMPTIONS 1.2. Suppose that Aut(X) is the set of topological automorphisms of a
second countable locally compact abelian group X . Suppose also that n ≥ 2 and ξ j are
independent X -valued random variables with distributions µ j , where j = 1, 2, . . . , n,
and that α j , β j ∈ Aut(X) are such that βiα

−1
i ± β jα

−1
j ∈ Aut(X) whenever i 6= j .

Here, whenever we make a statement involving the ± symbol, we mean that both
cases hold. Define the linear forms L1 and L2 by L1 = α1ξ1 + · · · + αnξn and
L2 = β1ξ1 + · · · + βnξn .

We formulate the following problem.

PROBLEM 1.3. Describe groups X for which the symmetry of the conditional
distribution of L2 given L1 implies that all of the µ j either are Gaussian distributions
or belong to a class of distributions which can be considered as a natural analogue of
the class of Gaussian distributions.

Problem 1.3 has been studied in different important subclasses of the class of locally
compact abelian groups, but has not yet been solved in general. In [3], Problem 1.3
was completely solved for the class of finite abelian groups, and in [5] it was solved for
the class of countable discrete abelian groups. For these classes of groups, the class of
idempotent distributions can be regarded as a natural analogue of the class of Gaussian
distributions. In both cases, a corresponding class of groups can easily be described;
it consists of groups that contain no elements of order two.

We now formulate the following general problem.

PROBLEM 1.4. Let X be a second countable locally compact abelian group. Assume
that the conditional distribution of L2 given L1 is symmetric. Describe the possible
distributions µ j .

Problem 1.4 was solved within the class of finite abelian groups in [12]. In this
article, we solve Problem 1.4 for the class of countable discrete abelian groups.
We note that the solution of Problem 1.4 in [12] was based on the finiteness of the
automorphism group of a finite group; however, for a general discrete abelian group,
the automorphism group may be infinite. Therefore, our solution of Problem 1.4 in the
class of countable discrete abelian groups requires new and different reasoning.

We shall use various well-known facts from abstract harmonic analysis, the
structure theory of locally compact abelian groups [9], and the theory of infinite abelian
groups [7, 8].

First, let us fix some notation. Let X be a second countable locally compact
abelian group. We denote by Y the character group X∗ of X . Let 〈x, y〉 be the value
of a character y ∈ Y at an element x ∈ X . For α ∈ Aut(X), we define the adjoint
automorphism α̃ ∈ Aut(Y ) via the formula

〈x, α̃y〉 = 〈αx, y〉 ∀x ∈ X, ∀y ∈ Y.

We denote by I the identity automorphism of a group. A subgroup G of the group X is
said to be characteristic if G is invariant under all topological automorphisms of X .
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Given a subgroup H of Y , we denote its annihilator {x ∈ X | ∀y ∈ H, 〈x, y〉 = 1}
by A(X, H). We denote by bX the subgroup of all compact elements of X . Given
subsets A and B of X , we denote the sum set {x ∈ X | x = a + b with a ∈ A, b ∈ B}
by A + B.

For any integer n, we put X (n) = {x ∈ X | ∃x ′ ∈ X such that x = nx ′} and X(n) =
{x ∈ X | nx = 0}. A group X is said to be bounded if the orders of the elements of X
are bounded, that is, if there exists n such that X = X(n). For a discrete abelian group
X and a prime number p, let X p be the p-component of X , that is, the subgroup of X
consisting of elements whose orders are powers of p.

Given a distribution µ, we define its characteristic function µ̂ by

µ̂(y)=
∫

X
〈x, y〉 dµ(x)

and denote its support by σ(µ). We recall that if H is a closed subgroup of Y
and µ̂(y)= 1 for all y ∈ H , then µ̂(y + h)= µ̂(y) for all y ∈ Y and h ∈ H , and
σ(µ)⊆ A(X, H). We define a distribution µ by the formula µ(B)= µ(−B) for all
Borel sets B ⊆ X . Let I (X) be the set of idempotent distributions on X , that is, the set
of translates of the Haar distributions mK of compact subgroups K of X . We note that
the characteristic function of the Haar distribution mK is of the form

m̂K (y)=

{
1 if y ∈ A(Y, K ),

0 if y /∈ A(Y, K ).

We denote by Ex the degenerate distribution concentrated at a point x ∈ X .

2. Main results

The main result of this article is the following theorem.

THEOREM 2.1. Suppose that Assumptions 1.2 hold; moreover, assume that X is
countable and discrete and that n = 2. If the conditional distribution of L2 given
L1 is symmetric, then µ j = ρ j ∗ π j , where σ(ρ j )⊆ X2 and π j ∈ I (X), for j = 1, 2.

To prove Theorem 2.1, we need some auxiliary results.
The next theorem, which solves Problem 1.3 for the class of countable discrete

abelian groups, was proved in [5]. For convenience, we formulate this theorem in the
following form.

LEMMA 2.2 [5]. Let X be a countable discrete abelian group with no elements of
order two. Let ξ1 and ξ2 be independent X-valued random variables with distributions
µ1 and µ2, respectively. Suppose that δ, I ± δ ∈ Aut(X). If the conditional
distribution of L2 given L1 is symmetric, where L2 = ξ1 + δξ2 and L1 = ξ1 + ξ2, then
µ j = Ek j ∗ m F , where k j ∈ X and F is a finite subgroup of X such that δ(F)= F.
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Let Y be an arbitrary abelian group, let f be a function on Y , and let h ∈ Y . We
denote by 1h the finite difference operator

1h f (y)= f (y + h)− f (y) ∀y ∈ Y.

A function f on Y is called a polynomial if

1n+1
h f (y)= 0

for some natural number n and for all y, h ∈ Y .

LEMMA 2.3 [1]. Let Y be a locally compact abelian group and f a continuous
polynomial on Y . Then f is constant on bY .

LEMMA 2.4 [4]. Suppose that Assumptions 1.2 hold. The conditional distribution of
L2 given L1 is symmetric if and only if the characteristic functions of the distributions
µ j satisfy the functional equation

n∏
j=1

µ̂ j (α̃ j u + β̃ jv)=

n∏
j=1

µ̂ j (α̃ j u − β̃ jv) ∀u, v ∈ Y. (2.1)

Lemma 2.4 reduces the solution of Problems 1.3 and 1.4 to the study of solutions
to equation (2.1) in the class of characteristic functions.

It is well known that any locally compact abelian group X is topologically
isomorphic to a group of the form Rm

× G, where m ≥ 0 and G contains a compact
open subgroup (see [9, Section 24.30]).

PROPOSITION 2.5 [5]. Suppose that Assumptions 1.2 hold and, moreover, that
X = Rm

× G, where m ≥ 0 and G contains a compact open subgroup. Assume that
the conditional distribution of L2 given L1 is symmetric. Then each of the random
variables ξ j can be replaced by a translate ξ ′j in such a way that σ(µ′j )⊆ Rm

× bG

for all j and the conditional distribution of L ′2 given L ′1 is symmetric, where L ′2 =
β1ξ
′

1 + · · · + βnξ
′
n and L ′1 = α1ξ

′

1 + · · · + αnξ
′
n .

For the class of countable discrete abelian groups, Proposition 2.5 may be
strengthened. The following statement is the crucial point in the proof of Theorem 2.1
and is of interest in its own right.

PROPOSITION 2.6. Suppose that Assumptions 1.2 hold and, moreover, that X is a
countable discrete abelian group. Then each of the random variables ξ j can be
replaced by a translate ξ ′j in such a way that, for some k ≥ 2, σ(µ′j )⊆ X(k) for
all j and the conditional distribution of L ′2 given L ′1 is symmetric, where L ′2 =
β1ξ
′

1 + · · · + βnξ
′
n and L ′1 = α1ξ

′

1 + · · · + αnξ
′
n .

PROOF. Taking into account Proposition 2.5, we may assume from the beginning that
X is a torsion group. We will prove that in this case there exists k ≥ 2 such that
σ(µ j )⊆ X(k) for all j . Since X(k) is a characteristic subgroup, we can pass to the new
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[5] Heyde’s characterization theorem 97

random variables α jξ j and reduce the proof of Proposition 2.6 to consideration of the
case where L1 = ξ1 + · · · + ξn and L2 = δ1ξ1 + · · · + δnξn , for some δ j ∈ Aut(X).
The condition βiα

−1
i ± β jα

−1
j ∈ Aut(X) for all i 6= j is transformed into the condition

δi ± δ j ∈ Aut(X) for all i 6= j . By Lemma 2.4, the symmetry of the conditional
distribution of L2 given L1 implies that the characteristic functions µ̂ j satisfy (2.1),
which takes the form

n∏
j=1

µ̂ j
(
u + δ̃ jv

)
=

n∏
j=1

µ̂ j
(
u − δ̃ jv

)
∀u, v ∈ Y. (2.2)

Set ν j = µ j ∗ µ j . Then ν̂ j (y)= |µ̂ j (y)|2 ≥ 0 for all y ∈ Y . Obviously, the
characteristic functions ν̂ j also satisfy (2.2). Let U be a neighborhood of zero in the
group Y such that ν̂ j (y) > 0 for all y ∈U . Set ϕ j (y)=−log ν̂ j (y) for all y ∈U . We
restrict ourselves to the case where n = 2; the case of arbitrary n is dealt with similarly.
Rewriting (2.2) for n = 2, we obtain

µ̂1
(
u + δ̃1v

)
µ̂2
(
u + δ̃2v

)
= µ̂1

(
u − δ̃1v

)
µ̂2
(
u − δ̃2v

)
∀u, v ∈ Y. (2.3)

Let V be a symmetric neighborhood of zero in the group Y such that for any choice of
automorphisms λ j ∈ {I, δ̃1, δ̃2}, with j = 1, . . . , 8, the following inclusion holds:

8∑
j=1

λ j (V )⊆U.

Since X is a discrete torsion group, its character group Y is compact and totally
disconnected. Hence there exists an open subgroup W of Y such that W ⊆ V .

We conclude from (2.3) that the functions ϕ j satisfy the equation

ϕ1
(
u + δ̃1v

)
+ ϕ2

(
u + δ̃2v

)
− ϕ1

(
u − δ̃1v

)
− ϕ2

(
u − δ̃2v

)
= 0 ∀u, v ∈W. (2.4)

We use the finite difference method to solve (2.4). Take an arbitrary element k1 of
W . Substitute u + δ̃2k1 for u and v + k1 for v in (2.4); then subtract (2.4) from the
resulting equation. This gives

1l11ϕ1
(
u + δ̃1v

)
+1l12ϕ2

(
u + δ̃2v

)
−1l13ϕ1

(
u − δ̃1v

)
= 0 ∀u, v ∈W, (2.5)

where l11 = (̃δ1 + δ̃2)k1, l12 = 2̃δ2k1 and l13 = (̃δ2 − δ̃1)k1. Take an arbitrary element
k2 of W , and substitute u + k2 for u and v + k2 for v in (2.5). Subtracting (2.5) from
the resulting equation, we get

1l211l11ϕ1
(
u + δ̃1v

)
+1l221l12ϕ2

(
u + δ̃2v

)
= 0 ∀u, v ∈W, (2.6)

where l21 = 2̃δ1k2 and l22 = (̃δ1 + δ̃2)k2. Take an arbitrary element k3 of W .
Substitute u − δ̃2k3 for u and v + k3 for v in (2.6). Subtracting (2.6) from the resulting
equation yields

1l311l211l11ϕ1
(
u + δ̃1v

)
= 0 ∀u, v ∈W, (2.7)
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where l31 = (̃δ1 − δ̃2)k3. Putting v = 0 in (2.7), we find that

1l311l211l11ϕ1(u)= 0 ∀u ∈W. (2.8)

Note that the k j are arbitrary elements of W and that δ1 ± δ2 ∈ Aut(X). Taking into
account (2.8) and the representations for l11, l21 and l31, it is not difficult to prove that
there exists an open subgroup P of W such that on the subgroup H = P ∩ Y (2), the
function ϕ1 satisfies the equation

13
hϕ1(y)= 0 ∀h, y ∈ H, (2.9)

that is, the function ϕ1 is a continuous polynomial on the subgroup H . Using similar
reasoning, we can show that the function ϕ2 satisfies (2.9) as well.

Since Y is a compact group, the subgroup Y (2) is compact too. Since the
subgroup P is open, it is closed and hence compact. Therefore the subgroup H
is compact. Taking into account Lemma 2.3 and the condition µ̂ j (0)= 1, this
implies that ϕ j = 0 in H . Hence ν̂ j = 1 in H , and so σ(ν j )⊆ A(X, H). Set
G = A(X, H). Note that A(X, Y (2))= X(2). Since H = P ∩ Y (2), the subgroup G
is the subgroup generated by the subgroups X(2) and A(X, P). Note that (Y/P)∗ ≈
A(X, P). Since the quotient Y/P is finite, the annihilator A(X, P) is also finite. Thus
the subgroup G is generated by the subgroup X(2) and some finite group. Hence the
subgroup G is bounded. On the other hand, it is well known that if a distribution
is concentrated on a Borel-measurable subgroup, then each of its divisors must be
concentrated on a coset of this subgroup (see, for instance, [2, Proposition 2.5]). Thus,
since σ(ν j )⊆ G, the distribution µ j is concentrated on a coset x j + G, where x j ∈ X .
Since X is a torsion group, x j is an element of finite order. Hence the subgroup
generated by G and x j is bounded, that is, there exists k such that all supports σ(µ j )

are subsets of X(k). Proposition 2.6 is therefore proved. 2

REMARK 2.7. In light of Proposition 2.5, the study of Problems 1.3 and 1.4 for
countable discrete abelian groups reduces to that for countable discrete abelian
torsion groups. Note that a countable discrete torsion abelian group can have quite
complicated structure (see, for instance, [7]). At the same time, Proposition 2.6
reduces the study of Problems 1.3 and 1.4 from the class of countable discrete torsion
abelian groups to the class of bounded countable discrete abelian groups. The structure
of a bounded countable discrete abelian group is very simple. In particular, by the
Baer–Prüfer theorem, each such group is a weak direct product of cyclic groups (see
[7, Section 17.2]).

Suppose that the conditions of Proposition 2.6 are valid. As is evident from
the proof of Proposition 2.6, the distributions µ j are concentrated on a subgroup
generated by X(2) and a finite subgroup. We will check that this statement cannot
be strengthened.
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PROPOSITION 2.8. Let X be a countable discrete abelian group generated by X(2)
and a finite subgroup. Suppose that δ, I ± δ ∈ Aut(X). Then there exist independent
identically distributed X-valued random variables ξ1 and ξ2 with distribution µ such
that the conditional distribution of L2 given L1 is symmetric, where L2 = ξ1 + δξ2
and L1 = ξ1 + ξ2; furthermore, the support σ(µ) of µ is equal to X.

PROOF. It is obvious that X is a bounded group. Therefore, by the Baer–Prüfer
theorem (see [7, Section 17.2]), the group X can be decomposed into a weak direct
product of cyclic groups. It follows that X can be represented in the form B × C ,
where B = B(2) and C is a finite group.

Let ξ1 and ξ2 be independent identically distributed X -valued random variables
whose distribution µ is equal to ρ ∗ mC , where ρ is a distribution on the subgroup
X(2) such that σ(ρ)= X(2). It is clear that σ(µ)= X . We verify that the conditional
distribution of L2 given L1 is symmetric. By Lemma 2.4, it suffices to verify that the
characteristic function of the distribution µ satisfies (2.1), which in this case takes the
form

µ̂(u + v)µ̂(u + εv)= µ̂(u − v)µ̂(u − εv) ∀u, v ∈ Y, (2.10)

where ε = δ̃. Since µ̂= ρ̂ m̂C , it suffices to show that both ρ̂ and m̂C satisfy (2.10).
We verify that the characteristic function ρ̂ satisfies (2.10). Note that A(Y, X(2))=

Y (2). Since σ(ρ)= X(2), we have ρ̂(y + h)= ρ̂(y) for all y ∈ Y and h ∈ Y (2). Hence,
ρ̂(u + v)= ρ̂(u − v) and ρ̂(u + εv)= ρ̂(u − εv) for all u, v ∈ Y . Thus, the function
ρ̂ satisfies (2.10).

We verify now that the characteristic function m̂C also satisfies (2.10). From [5],
it suffices to verify that γ (C)= C , where γ = (I + δ)−1(I − δ). This is equivalent
to showing that γ̃ (A(Y, C))= A(Y, C). It is obvious that A(Y, C)≈ B∗. Since B =
B(2), the equality B∗ = B∗(2) holds. Hence, the automorphism γ̃ acts on the subgroup
A(Y, C) as the identity. Therefore γ̃ (A(Y, C))= A(Y, C), and so γ (C)= C . 2

PROOF OF THEOREM 2.1. It is obvious that we may assume without loss of generality
that L1 = ξ1 + ξ2 and L2 = δ1ξ1 + δ2ξ2, where δ1, δ2, δ1 ± δ2 ∈ Aut(X). It is also
obvious that we may suppose that δ1 = I . Set δ2 = δ. By Lemma 2.4, the symmetry
of the conditional distribution of L2 given L1 implies that the characteristic functions
µ̂ j satisfy (2.1), which takes the form

µ̂1(u + v)µ̂2(u + εv)= µ̂1(u − v)µ̂2(u − εv) ∀u, v ∈ Y, (2.11)

where ε = δ̃.
Taking into account Proposition 2.6, we can assume that X is a bounded group, that

is, there exists k ≥ 2 such that X = X(k).
Since X is a bounded group, all but finitely many p-components of X are trivial.

Decompose the group X into a finite direct product of its p-components:

X = P
p∈P

X p,

where P is a finite set of prime numbers.
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Set G = X2 and K = Pp>2 X p, so that X = G × K . If G = {0}, then the assertion
of the theorem follows from Lemma 2.2. Assume that G 6= {0}. Then Y = H × L ,
where H ≈ G∗ and L ≈ K ∗. Write the element y of the group Y as (h, l), where
h ∈ H and l ∈ L . Since the subgroups G and K are characteristic, so are the
subgroups H and L . Hence, any automorphism ε ∈ Aut(Y ) can be written in the form
ε(h, l)= (εH h, εL l), where (h, l) ∈ Y .

Put u = (h, l), v = (h′, l ′), µ̂1 = f and µ̂2 = g, and rewrite (2.11) in the form

f (h + h′, l + l ′)g(h + εH h′, l + εL l ′)= f (h − h′, l − l ′)g(h − εH h′, l − εL l ′)
(2.12)

for all (h, l), (h′, l ′) ∈ Y . Substituting h = h′ = 0 into (2.12), we get

f (0, l + l ′)g(0, l + εL l ′)= f (0, l − l ′)g(0, l − εL l ′) ∀l, l ′ ∈ L . (2.13)

By Lemma 2.2, any solution of (2.13) has the form

f (0, l)= 〈k1, l〉m̂ F (l), g(0, l)= 〈k2, l〉m̂ F (l) ∀l ∈ L , (2.14)

where F is a finite subgroup of the group K and k1, k2 ∈ K .
Substituting (2.14) into (2.13) gives 2(k1 + δk2) ∈ F . Since K(2) = {0}, we have

k1 + δk2 ∈ F . Set k = k1 + δk2. It is clear that the representation (2.14) does not
change if we substitute k

′

1 = k1 − k for k1. But then k
′

1 + δk2 = 0. It is easy to see
that in this case the characteristic functions f̃ (0, l)= 〈−k

′

1, l〉 and g̃(0, l)= 〈−k2, l〉
satisfy (2.13). Replace the distributions µ j by their translates µ

′

1 = µ1 ∗ E
−k
′

1
and

µ
′

2 = µ2 ∗ E−k2 , and denote by f ′ and g′ the characteristic functions of the
distributions µ

′

j . It is clear that

f ′(0, l)= g′(0, l)=

{
1 if l ∈ B,

0 if l /∈ B,
(2.15)

where B = A(L , F). Hence, σ(µ′j )⊆ G × F . Since the subgroup G is characteristic
and δ(F)= F by Lemma 2.2, we have δ(G × F)= G × F . Thus, we can assume that
the group X is of the form X = G × K , where G is a 2-prime group and K is a finite
group with no elements of order two. Moreover, we have

f ′(0, l)= g′(0, l)=

{
1 if l = 0,

0 if l 6= 0.
(2.16)

Putting h′ = h and l ′ = l into (2.12), we get

f (2(h, l))g((I + ε)(h, l))= g((I − ε)(h, l)) ∀(h, l) ∈ Y. (2.17)

We will prove by induction on m, where 2m is the order of the element h, that
f (h, l)= g(h, l)= 0 for l 6= 0. Set Ym = H(2m) × L for m ≥ 1, and let Y0 = L . Note
that Ym , with m ≥ 0, is a characteristic subgroup.
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It follows from (2.16) that f ′(h, l)= g′(h, l)= 0 for (h, l) ∈ Y0 when l 6= 0.
Assume that when l 6= 0, f ′(h, l)= g′(h, l)= 0 for (h, l) ∈ Ym . Consider the
restriction of (2.17) to Ym+1. Then 2(h, l) ∈ Ym . Hence, f ′(2(h, l))= 0 if l 6= 0.
It then follows from (2.17) that g′((I − ε)(h, l))= 0 if (h, l) ∈ Ym+1 and l 6= 0. Since
I − ε ∈ Aut(Y ), we deduce that g′(h, l)= 0 if (h, l) ∈ Ym+1 and l 6= 0. Arguing
similarly, we see that f ′(h, l)= 0 if (h, l) ∈ Ym+1 and l 6= 0. Since G is a bounded
subgroup, there exists k such that G(2k)

= {0}. Hence, H(2k) = H and Yk = Y . Thus

f ′(h, l)=

{
f0(h) if l = 0,

0 if l 6= 0,
g′(h, l)=

{
g0(h) if l = 0,

0 if l 6= 0,

where f0(h)= f ′(h, 0) and g0(h)= g′(h, 0). Hence, f ′(h, l)= f0(h) f1(l) and
g′(h, l)= g0(h)g1(l), where f1(l)= f ′(0, l) and g1(l)= g′(0, l). The functions f0
and g0 on Y are the characteristic functions of distributions ρ1 and ρ2 such that
σ(ρ j )⊆ G. The functions f1 and g1 are the characteristic functions of the distribution
mK . Thus µ j = ρ j ∗ mK when j = 1, 2. Returning to the original distributions, we
obtain the required result. 2

REMARK 2.9. The proof of Theorem 2.1 implies the following statement. Assume
that the conditions of Theorem 2.1 hold and that L1 and L2 are of the form L1 =

ξ1 + ξ2 and L2 = ξ1 + δξ2. Then µ j = ρ j ∗ m F ∗ Ex j , where σ(ρ j )⊆ X2, F is a
finite subgroup containing no elements of order two, and x j ∈ X .

REMARK 2.10. Applying Propositions 2.5 and 2.6 and reasoning as in [12, Proof of
Theorem 3], we deduce the following assertion.

Suppose that Assumptions 1.2 hold; moreover, assume that X = R× D, where D
is a countable discrete abelian group, and that n = 2. If the conditional distribution
of L2 given L1 is symmetric, then µ j = γ j ∗ ρ j ∗ π j , where the γ j are Gaussian
distributions on R, σ(ρ j )⊆ D2, and π1, π2 ∈ I (X).
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