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§ 1. Introductory. The formula to be proved is
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The integral converges if M(z)>0, R(£}> -1. The series on the right converge if | 1 - £21 < l .
I t will be assumed that £ is interior to the right-hand loop of the curve | £2 - 1 1 = 1 . When
{ = 1 this formula reduces to one given by Ragab (1). Formula (1) expresses the integral in
series of powers of z.

The formula (2)
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where i?(z)>0, will be required in the proof.
Other formulae required are
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Formula (1) will be established in section 2. The case when - 1 <R (£) <0 will be consid-
ered in section 3.

§ 3. Proof of the Formula. Expand the exponential function on the left of (1) in powers
of £A, and apply (2) to each term, so getting
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Now in the inner summation in the first two hnes of (A) the coefficient of (z2/16)r is
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Here apply formula (3), and the expression in the bracket becomes
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On applying (4) to the hypergeometric functions in the last two hnes it is seen that the
expressions in the second and fourth hnes cancel; while the expressions in the first and third
lines reduce to

I f fk+m+n \ (k-m+n \ . /k+m+n \ . /k-m+n \)
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From this, making use of formula (5), the first part of the right-hand side of (1) is obtained.
Again, in the inner summation in hnes 3 and 4 of (A) the coefficient of (z2/16)T is
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-r, -m-r ;
,-\n; r)

and, from (3), the hypergeometric function is equal to
f-r, -m-r; 1
\ \-m-2r

since 1/P( - r) =0. This gives the second part of the right-hand side of (1).
Finally, in the inner summation in lines (3) and (4) of (A) the coefficient of z(z2/16)r is

f-r, -m-r;
+ \n; r)(# + \k + \m-\n; r)

the hypergeometric function being equal to
r(-pr(|j-+m + 2r) f-r, -m-r; l

JT(-|+ r)r(-|+m+r) \ -\-m-2r
On applying (4) the final part of (1) is obtained.

§ 3. Evaluation of the Integral for other values of the Parameter. If 0<-R(£)<l, while £
lies within the right-hand loop of the curve | £2 - 1 | = 1, and assuming that i?(z)>0, it can be
seen, on replacing £ by - £ in the above proof, that ,

1 o
COS 7HTT

n, -n

> r)(l-$k-^m-$n; r){\ - \k + hn - \n;r)(^ - hk - \m - \n;r)(% - \k + %m- \n; r)
x F(ik + \m + \n - r, %k - \m + \n - r ; k + n + £ - 2r ; 1 - £2)

-±k-\n; r)

+ S
m, —m

x J, (i + frn; r)(l +\m; r)(\z*Y
r=or\(l+$k+tyn + ln; r)(l +\k + tyn-\n; r)(£; r)(\+m; r)(l+m; r)

xF(-r, -m-r; \-m-2r; l-£2)
E

; r)
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i\7ote. If in (6) £ = 1 and R{k ± w) < | , while i2(z)>0, the integral is convergent, and its value
is obtained by putting £ = 1 on the R.H.S. Then the second expression on the right vanishes
and the three hypergeometric functions reduce to unity.
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