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Abstract

Given an R
d -valued supercritical branching Wiener process, let ψ(A, T ) be the number

of particles in A ⊂ R
d at time T (T = 0, 1, 2, . . . ). We provide a complete asymptotic

expansion of ψ(A, T ) as T → ∞, generalizing the work of X. Chen.

Keywords: Branching Wiener process; distribution of particles

2000 Mathematics Subject Classification: Primary 60F15; 60J80

1. Introduction

Consider the following model in R
d (with d ≥ 1).

(i) A particle starts from the origin in R
d and executes a Wiener process W(t) ∈ R

d .

(ii) Upon arriving, at time t = 1, at the new location W(1), the particle dies.

(iii) At death it is replaced by Y offspring, where

P{Y = �} = p�, � = 0, 1, 2, . . . ,

and

1 <
∞∑
�=0

�p� = m < ∞, 0 <
∞∑
�=0

(�−m)2p� = σ 2 < ∞.

(iv) Each of the offspring executes a Wiener process starting from where its ancestor dies,
and repeats steps (ii) and (iii). This process continues indefinitely. All Wiener processes
and offspring numbers are assumed to be independent of each other.

Let

λ(x, t) =
{

1 if x ∈ R
d is occupied by a particle at time t,

0 otherwise.

We writeψ(A, t) = ∑
x∈A λ(x, t),which stands for the number of particles located atA ⊂ R

d

at time t . In particular, ψ(Rd , t) is the total number of particles alive at time t .
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1082 P. RÉVÉSZ ET AL.

Since the branching is supercritical, it is well known [1, p. 9] that

N0 := lim
T→∞

ψ(Rd , T )

mT
(1.1)

almost surely (a.s.) exists (and is finite), and that P{N0 > 0} > 0.
The limit properties of ψ(A, T ) as T → ∞ were studied by Chen [3], who proved the

following theorem.

Theorem 1.1. (Chen [3].) There exist random variables N1 and N2 (N1 being R
d -valued)

such that, for any Borel set A ⊂ R
d with

∫
A

‖x‖2 dx < ∞, we have

(2πT )d/2
ψ(A, T )

mT
= N0

∫
A

dx − 1

2T

∫
A

(N0‖x‖2 − 2N1 · x +N2) dx + o(T −1)

a.s. when T → ∞.

This result plays an important role in [6] in the study of the concentration of particles in the
branching process. For a related theorem, see [2].

The goal of this paper is to provide a complete asymptotic expansion for ψ(A, T )/mT as
T → ∞. Let us first introduce some notation.

For α = (α1, . . . , αd) ∈ Z
d+ and x = (x1, . . . , xd) ∈ R

d , we use the notation

|α| = α1 + · · · + αd, α! =
d∏
i=1

αi !, xα =
d∏
i=1

x
αi
i , Mα(A) =

∫
A

xα dx.

Furthermore, for β ∈ Z
d+ we will write β � α to mean that βi ≤ αi for all i, and if β � α we

set (
α

β

)
=

d∏
i=1

(
αi

βi

)
.

The following theorem is the main result of the paper.

Theorem 1.2. There exist random variables (Nα, α ∈ Z
d+) such that, for any k ≥ 1 and any

bounded Borel set A ⊂ R
d ,

(2πT )d/2
ψ(A, T )

mT

=
k∑
n=0

(−T )−n
2n

∑
|α|=n

1

α!
∑

β�2α

(
2α

β

)
(−1)|β|Mβ(A)N2α−β + o(T −k) a.s. (1.2)

when T → ∞.

Remark 1.1. The random variables (Nα, α ∈ Z
d+) are described in the proof of Theorem 1.2.

They are limits of explicit martingales related to the branching Wiener process.

Although the distributions of the random variables (Nα, α ∈ Z
d+) are not known, Theo-

rem 1.2 can nevertheless be used to make predictions to any degree of accuracy. To see this,
choose an integer k and disjoint sets (Aα ⊆ R

d , |α| ≤ k). Consider (1.2) for eachAα: we have
a linear system of equations with the unknowns N2α−β . We can solve this system of equations
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Large-time asymptotics 1083

if the corresponding determinant is not equal to 0. It is easy to see that we can choose the
sets Aα such that the determinant is not 0, for any T (T = 1, 2, . . . ). Observe the number
of particles of a branching Wiener process that are located in the given sets (Aα, |α| ≤ k) at
time T0. Using these observations, we can evaluate the actual values of the random variables
(Nα, |α| ≤ k), with an error term o(T −k

0 ). Then, with these values, we can use Theorem 1.2
to find the values of the process (2πT )d/2ψ(A, T )/mT for any A ⊆ R

d and T ≥ T0, with an
error term o(T −k

0 ).
The proof of Theorem 1.2 is presented in Section 2. In Section 3, we show that if the

offspring distribution Y has pmoments for some even integer p, then the martingales described
in Remark 1.1 converge to the random variables (Nα, α ∈ Z

d+) in Lp.

2. The proof

We start with a preliminary result concerning the transition kernel of the Wiener process.
Let

p
(d)
t (x) = 1

(2πt)d/2
exp

(
−‖x‖2

2t

)
.

Recall the definition of a Hermite polynomial,

Hn(x) = (−1)nex
2 dn

dxn
(e−x2

)

= n!
�n/2�∑
j=0

(−1)j

j ! (n− 2j)! (2x)
n−2j , x ∈ R,

and define

Hn(x, t) =
�n/2�∑
j=0

n!
j ! (n− 2j)!

(−t
2

)j
xn−2j ,

such that

Hn(x, t) =
(
t

2

)n/2
Hn

(
x√
2t

)
, x ∈ R, t > 0.

Here, �·� denotes the integer-part function.

Lemma 2.1. For any t, 0 < t < T , and any x ∈ R,

p
(1)
T−t (x) = 1

(2πT )1/2

∞∑
n=0

(−T )−n
2nn! H2n(x, t). (2.1)

Proof. We use the following identity (see, for example, [4, p. 75]): for any a > 0 and y ∈ R,

e−a2y2 =
∞∑
n=0

(−1)na2n

22nn! (1 + a2)n+1/2H2n(y).

Taking y = x/
√

2t ∈ R and a = √
t/(T − t) and multiplying both sides by (2π(T − t))−1/2,

we readily obtain (2.1).
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For α = (α1, . . . , αd) ∈ Z
d+ and x = (x1, . . . , xd) ∈ R

d , we use the notation

Hα(x, t) =
d∏
i=1

Hαi (xi, t).

Lemma 2.2. For any t, 0 < t < T , and any (x, y) ∈ R
d × R

d ,

p
(d)
T−t (x) = 1

(2πT )d/2

∞∑
n=0

(−T )−n
2n

∑
|α|=n

1

α!H2α(x, t) (2.2)

and

p
(d)
T−t (x − y) = 1

(2πT )d/2

∞∑
n=0

(−T )−n
2n

∑
|α|=n

1

α!
∑

β�2α

(
2α

β

)
(−x)βH2α−β(y, t). (2.3)

Proof. Since

p
(d)
t (x) =

d∏
i=1

p
(1)
t (xi),

for x = (x1, . . . , xd) ∈ R
d , (2.2) follows from (2.1). To obtain (2.3), we use the fact that

Hn(x + y, t) =
n∑
j=0

(
n

j

)
xn−jHj (y, t). (2.4)

To see this, we recall that [4, p. 60]

∞∑
n=0

sn

n!Hn(x) = e2sx−s2
, s ∈ R,

meaning that
∞∑
n=0

sn

n!Hn(x, t) = esx−ts2/2. (2.5)

Then

∞∑
n=0

sn

n!Hn(x + y, t) = es(x+y)−ts2/2 = esxesy−ts2/2 =
∞∑
k=0

skxk

k!
∞∑
j=0

sj

j !Hj(y, t),

and by comparing powers of sn we recover (2.4).

We now turn to the study of the branching Wiener process. Clearly, for any T ≥ 1 and
A ⊂ R

d ,

E(ψ(A, T ) | F (T − 1)) = m

∫
A

∑
y∈Rd

p
(d)
1 (y − x)λ(y, T − 1) dx,
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where, as usual, F (t) denotes the σ -algebra induced by the branching process up to time t .
A simple argument by induction yields that, for all t, 0 < t < T ,

E(ψ(A, T ) | F (t)) = mT−t
∫
A

∑
y∈Rd

p
(d)
T−t (y − x)λ(y, t) dx.

It turns out that ψ(A, T ) is quite close to its conditional expectation, as is confirmed by the
following results.

Assertion 2.1. (Révész [5, Equation (6.16)].) Fix γ ∈ (0, 1) and let t = �T γ �. Let A ⊂ R
d

be a bounded Borel set, and let ε > 0. We then have

ψ(A, T )

mT
− 1

mt

∫
A

∑
y

p
(d)
T−t (y − x)λ(y, t) dx = o(m−t/(2+ε))

almost surely for T → ∞.

Assertion 2.2. (Révész [5, Equation (6.11)].) There exists a constant C ≡ C(m, d) > 0 such
that, for all t, 1 ≤ t < T ,

E

( ∑
y∈Rd

{λ(y, T )− E(λ(y, T ) | F (t))}2
)

≤ C
m2T−t

(T − t)d/2
.

Lemma 2.3. Let ε > 0. Almost surely for all sufficiently large t , we have λ(y, t) = 0 whenever
‖y‖ > t1+ε.

Proof. This follows from the usual estimate for the tail of the Wiener process, the Borel–
Cantelli lemma, and (1.1).

Lemma 2.4. Let α ∈ Z
d+ and let

Vα(t) =
∑
y∈Rd

Hα(y, t)λ(y, t). (2.6)

Then ((1/mt)Vα(t), t ≥ 0) is a martingale and

Nα := lim
t→∞

Vα(t)

mt

exists and is finite almost surely.

Proof. We start by proving the martingale property. Recall thatψ(Rd , t) stands for the total
number of particles at time t . Thus, by numbering these particles and considering them as all
starting from time t = 0 (many of them share common paths, at least partially), we can write

∑
y

Hα(y, t)λ(y, t) =
ψ(Rd ,t)∑
i=1

Hα(W
(i)(t), t),
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where (W(i), i ≥ 1) is a sequence of R
d -valued Wiener processes (which are not independent).

Conditioning on F (t − 1) and on ψ(Rd , t), we have

E

(ψ(Rd ,t)∑
i=1

Hα(W
(i)(t), t)

∣∣∣∣ F (t − 1), ψ(Rd , t)

)

=
ψ(Rd ,t)∑
i=1

Hα(W
(i)(t − 1), t − 1)

=
ψ(Rd ,t−1)∑

i=1

Yi,t−1Hα(W
(i)(t − 1), t − 1),

the last identity following from the fact that many particles at time t come from the same
ancestor at time t−1, with Yi,t−1 denoting the number of offspring from the ith particle at time
t − 1.

Integrating on both sides gives

E

(ψ(Rd ,t)∑
i=1

Hα(W
(i)(t), t)

∣∣∣∣ F (t − 1)

)

=
ψ(Rd ,t−1)∑

i=1

E(Y )Hα(W
(i)(t − 1), t − 1)

= m

ψ(Rd ,t−1)∑
i=1

Hα(W
(i)(t − 1), t − 1),

proving that t �→ (1/mt)Vα(t) is a martingale.
We now show that ((1/mt)Vα(t), t ≥ 0) converges to a finite limit almost surely. With the

above notation, we first write

Vα(t) =
ψ(Rd ,t)∑
l=1

Hα(W
(l)(t), t) =

ψ(Rd ,t−1)∑
l=1

Yl,t−1∑
m=1

Hα(W
(l,m)(t), t), (2.7)

where W(l,m)(t) is the mth offspring of the lth particle that dies at time t − 1. Then we can
write

V 2
α (t) =

ψ(Rd ,t−1)∑
l=1

Yl, t−1∑
m=1

H 2
α (W

(l,m)(t), t)

+
ψ(Rd ,t−1)∑

l=1

Yl,t−1∑
m�=n,m,n=1

Hα(W
(l,m)(t), t)Hα(W

(l,n)(t), t)

+
ψ(Rd ,t−1)∑
i �=j, i,j=1

Yi,t−1∑
m=1

Yj,t−1∑
n=1

Hα(W
(i,m)(t), t)Hα(W

(j,n)(t), t).
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Therefore,

E(V 2
α (t) | F (t − 1), ψ(Rd , t))

=
ψ(Rd ,t−1)∑

i=1

Yi,t−1 E(H 2
α (W

(i,1)(t), t) | F (t − 1))

+
ψ(Rd ,t−1)∑

i=1

(Y 2
i,t−1 − Yi,t−1)H

2
α (W

(i)(t − 1), t − 1)

+
ψ(Rd ,t−1)∑
i �=j, i,j=1

Yi,t−1Yj,t−1Hα(W
(i)(t − 1), t − 1)Hα(W

(j)(t − 1), t − 1).

Thus,

E(V 2
α (t) | F (t − 1))

=
ψ(Rd ,t−1)∑

i=1

mE(H 2
α (W

(i)(t), t) | F (t − 1))

+
ψ(Rd ,t−1)∑

i=1

(σ 2 +m2 −m)H 2
α (W

(i)(t − 1), t − 1)

+
ψ(Rd ,t−1)∑
i �=j, i,j=1

m2Hα(W
(i)(t − 1), t − 1)Hα(W

(j)(t − 1), t − 1)

=
ψ(Rd ,t−1)∑

i=1

[mE(H 2
α (W

(i)(t), t) | F (t − 1))

+ (σ 2 −m)H 2
α (W

(i)(t − 1), t − 1)] +m2V 2
α (t − 1).

Recall that E(ψ(Rd , t − 1)) = mt−1 (see [1, p. 9]). It is clear from (2.5) that

E(H 2
α (W

(1)(t), t)) = α! t |α|.

Hence,

E(V 2
α (t)) = mt−1α! (mt |α| + (σ 2 −m)(t − 1)|α|)+m2 E(V 2

α (t − 1))

= mt−1α! (m(t |α| − (t − 1)|α|)+ σ 2(t − 1)|α|)+m2 E(V 2
α (t − 1)), (2.8)

whence

0 < E

(
V 2

α (t)

m2t − V 2
α (t − 1)

m2(t−1)

)
≤ c

t |α|

mt
,
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where c is a finite constant. Hence, using the fact that Vα(t)/m
t is a martingale, we have

E

( ∞∑
t=1

∣∣∣∣Vα(t)

mt
− Vα(t − 1)

mt−1

∣∣∣∣) ≤
∞∑
t=1

{
E

((
Vα(t)

mt
− Vα(t − 1)

mt−1

)2)}1/2

=
∞∑
t=1

{
E

(
V 2

α (t)

m2t − V 2
α (t − 1)

m2(t−1)

)}1/2

≤ c

∞∑
t=1

t |α|/2

mt/2

< ∞,

implying that
∞∑
t=1

∣∣∣∣Vα(t)

mt
− Vα(t − 1)

mt−1

∣∣∣∣ < ∞ a.s.

This shows that ((1/mt)Vα(t), t ≥ 0) converges to a finite limit almost surely.

Remark 2.1. Note that from (2.8), by induction on t , we have

E(V 2
α (t)) = mt−1α!

(
σ 2

t−1∑
j=1

mt−j j |α| +m

t∑
j=1

mt−j (j |α| − (j − 1)|α|)
)

and, therefore,

E(N2
α) = m−1α!

(
σ 2

∞∑
j=1

m−j j |α| +m

∞∑
j=1

m−j (j |α| − (j − 1)|α|)
)
.

Lemma 2.5. Let α ∈ Z
d+, and let Vα and Nα be as in Lemma 2.4. Then, for any ε > 0, we

have
Vα(t)

mt
= Nα + o(m−t/(2+ε))

almost surely as t → ∞.

Proof. We claim that

Vα(t
2)

mt
2 = E

(
Vα(t

2)

mt
2

∣∣∣∣ F (t)

)
+ o(m−t/(2+2ε)) a.s. (2.9)

To see this, we first observe that, by Assertion 2.2, Chebyshev’s inequality, and the Borel–
Cantelli lemma,

max
y∈Rd

|λ(y, t2)− E(λ(y, t2) | F (t))| = o(mt
2−t/(2+ε))

almost surely for t → ∞. Combining this estimate with (2.6), Lemma 2.3, and the fact that
sup‖y‖≤t2(1+ε) Hα(y, t

2) ≤ ct2(1+ε)|α|, we obtain (2.9).
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Since E(Vα(t
2)/mt

2 | F (t)) = Vα(t)/m
t (by Lemma 2.4), it follows from (2.9) that

Vα(t
2)

mt
2 − Vα(t)

mt
= o(m−t/(2+2ε)) a.s.

As a consequence,

Nα − Vα(t)

mt
=

∞∑
j=0

(
Vα(t

2j+1
)

mt
2j+1 − Vα(t

2j )

mt
2j

)
= o(m−t/(2+2ε)) a.s.

This completes the proof, since ε > 0 is arbitrary.

We have now all the ingredients to prove Theorem 1.2.

Proof of Theorem 1.2. Fix k ≥ 1, fix γ, 0 < γ < 1/2(k + 1), and let t = �T γ �. Let ε > 0
be such that (1 + ε)γ < 1/2(k + 1). We will show that

ψ(A, T )

mT
= 1

(2πT )d/2

k∑
n=0

(−T )−n
2n

∑
|α|=n

1

α!
∑

β�2α

(
2α

β

)
(−1)|β|Mβ(A)

V2α−β(t)

mt

+ o(T −(k+d/2))+O(m−t/(2+ε)) (2.10)

almost surely as T → ∞, where V2α−β is as defined in (2.6). Theorem 1.2 will then follow
from Lemma 2.5.

By Assertion 2.1, we have

ψ(A, T )

mT
= 1

mt

∫
A

∑
y∈Rd

p
(d)
T−t (y − x)λ(y, t) dx + o(m−t/(2+ε))

almost surely as T → ∞. On the other hand, we can write

(2πT )d/2p(d)T−t (y − x) = 1

(1 − t/T )d/2
exp

(
−‖y − x‖2

2(T − t)

)
= f (z, t, x, y),

where z = 1/T and

f (z, t, x, y) = 1

(1 − tz)d/2
exp

(
−‖y − x‖2z

2(1 − tz)

)
is aC∞ function of z near z = 0, for tz � 1. If we expand f (z, t, x, y) in a finite Taylor series
in z around z = 0, it is clear that we can bound the order-(k+ 1) remainder Rk+1(z, t, x, y) by
a polynomial in ‖y − x‖ of order at most 2(k + 1).

According to Lemma 2.3, λ(y, t) = 0 as long as ‖y‖ > T (1+ε)γ , almost surely for all
sufficiently large T . Together with (1.1), which implies that the number of points y with
λ(y, t) �= 0 is bounded by cmt , and the fact that A is bounded, this implies that

1

mt

∫
A

∑
y∈Rd

Rk+1(T
−1, t, x, y)λ(y, t) dx ≤ cT 2(1+ε)γ (k+1) = o(T ).

By inspection of Lemma 2.2, the first k terms in the Taylor series for f (z, t, x, y) give rise
to the first line of (2.10), completing the proofs of that formula and, hence, of Theorem 1.2.
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3. Lp-convergence

In this section, we show that if the offspring distribution Y has p moments for some even
integer p, then Vα(t)/m

t converges in Lp.
Introduce the notation ∑̃n

i1,...,ij=1
:=

n∑
i1,...,ij=1
il �=im ∀l �=m

for summation over unrepeated indices. Let Zt = ψ(Rd , t), Fα;i (t) = Hα(W
(i)(t), t), and

Uα(1),...,α(p) (t) =
∑̃Zt

i1,...,ip=1

p∏
h=1

Fα(h);ih (t),

for α(1), . . . ,α(p) ∈ Z
d+.

The following lemma will play an important role in showing that Vα(t)/m
t converges inLp.

Lemma 3.1. Let k be an integer such that E(|Y |k) < ∞. Then, for any α(1), . . . ,α(k), we can
find c, β < ∞ independent of t such that

| E(Uα(1),...,α(k) (t))| ≤ ctβmkt . (3.1)

Proof. We will prove this lemma by induction on k. The case k = 1 is trivial, so assume
that the lemma holds for all k ≤ p − 1.

We can write

Uα(1),...,α(p) (t) =
∑̃Zt

i1,...,ip=1

p∏
h=1

Fα(h); ih (t)

=
p∑
k=1

∑̃Zt−1

i1,...,ik=1

∑
A1∪···∪Ak=[1,p]

k∏
h=1

(∑̃Yih,t−1

js=1 ∀s∈Ah
∏
m∈Ah

Fα(m); ih,jm(t)
)
,

where the sum
∑
A1∪···∪Ak=[1,p] runs over all partitions of [1, p] = {1, . . . , p} into k nonempty

sets A1, . . . , Ak , and

Fα; l,m(t) = Hα(W
(l,m)(t), t).

Introducing the falling factorial notation (x)k = x(x − 1) · · · (x − k + 1), we have

E

( k∏
h=1

(∑̃Yih,t−1

js=1 ∀s∈Ah
∏
m∈Ah

Fα(m); ih,jm(t)
) ∣∣∣∣ F (t − 1)

)

=
k∏
h=1

E((Y )|Ah|)
∏
m∈Ah

Fα(m);ih (t − 1).
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Hence,

E(Uα(1),...,α(p) (t) | F (t − 1))

=
p∑
k=1

∑̃Zt−1

i1,...,ik=1

∑
A1∪···∪Ak=[1,p]

k∏
h=1

E((Y )|Ah|)
∏
m∈Ah

Fα(m);ih (t − 1)

= mpUα(1),...,α(p) (t − 1)

+
p−1∑
k=1

∑̃Zt−1

i1,...,ik=1

∑
A1∪···∪Ak=[1,p]

k∏
h=1

E((Y )|Ah|)
∏
m∈Ah

Fα(m);ih (t − 1).

Note that, by (2.5),

∞∑
n=0

rn

n!Hn(x, t)
∞∑
m=0

sm

m!Hm(x, t) = erx−tr2/2esx−ts2/2

= exp

(
(r + s)x − t (r + s)2

2

)
etrs

=
∞∑
j=0

(r + s)j

j ! Hj(x, t)

∞∑
k=0

(trs)k

k!

=
∞∑
j=0

j∑
i=0

risj−i

i! (j − i)!Hj(x, t)
∞∑
k=0

(trs)k

k! .

Equating coefficients of rnsm, we find that

Hn(x, t)Hm(x, t) = n!m!
m∧n∑
k=0

tk

k!
1

(n− k)! (m− k)!Hn+m−2k(x, t). (3.2)

Using this to reduce products of Hermite functions to sums, we find that

E(Uα(1),...,α(p) (t) | F (t − 1)) = mpUα(1),...,α(p) (t − 1)

+
p−1∑
j=1

∑
β(1),...,β(j)

c(α;p; β(1), . . . ,β(j); t)Uβ(1),...,β(j) (t − 1),

where
∑

β(1),...,β(j) is a finite sum over β(1), . . . ,β(j) such that
∑j
l=1 |β(l)| ≤ ∑p

l=1 |α(l)|, and
the c(α;p; β(1), . . . ,β(j); t) are polynomials in t . Hence, by our induction hypothesis,

E(Uα(1),...,α(p) (t)) = mp E(Uα(1),...,α(p) (t − 1))+ Rα(1),...,α(p) (t),

with |Rα(1),...,α(p) (t)| ≤ ctβm(p−1)(t−1) for some β, c < ∞ independent of t . Iterating this
completes the proof of our lemma for k = p and, hence, by induction, for all k.

Proposition 3.1. Let p be an even integer such that E(|Y |p) < ∞. Then Vα(t)/m
t converges

in Lp.
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Proof. Note that, because of the presence of the polynomial factor tβ in (3.1), we cannot
simply use Lemma 3.1 to show that Vα(t)/m

t is bounded uniformly in Lp. Rather, we will
show, for some c, β < ∞ independent of t , that

| E({Vα(t)−mVα(t − 1)}p)| ≤ ctβmt(p−1). (3.3)

Then ∣∣∣∣E({
Vα(t)

mt
− Vα(t − 1)

mt−1

}p)∣∣∣∣ ≤ ctβm−t

and, therefore (it is here that we require p to be even),

∞∑
t=1

∥∥∥∥Vα(t)

mt
− Vα(t − 1)

mt−1

∥∥∥∥
p

≤ c

∞∑
t=1

tβ/pm−t/p < ∞,

where ‖ · ‖p = (E(| · |p))1/p, which will complete the proof of the proposition.
The basic idea of the proof of (3.3) is that the subtraction eliminates the highest-order term

in the expectation, leaving only sums of terms of the form Uα(1),...,α(k) (t), k ≤ p − 1. In fact,
we have

E({Vα(t)−mVα(t − 1)}p)

=
p∑
k=0

(
p

k

)
(−1)kmk E(V p−k

α (t)V kα (t − 1))

=
p∑
k=0

(
p

k

)
(−1)kmk E(E(V p−k

α (t) | F (t − 1))V kα (t − 1)). (3.4)

By (2.7), we have

Vα(t) =
Zt−1∑
l=1

Yl,t−1∑
m=1

Fα;l,m(t).

Thus,

V nα (t) =
n∑
j=1

∑̃Zt−1

i1,...,ij=1

∑
l1+···+lj=n

(
n

l1, . . . , lj

) j∏
h=1

(Yih,t−1∑
r=1

Fα;ih,r (t)
)lh

=
∑̃Zt−1

i1,...,in=1

n∏
h=1

(Yih,t−1∑
r=1

Fα;ih,r (t)
)

+
n−1∑
j=1

∑̃Zt−1

i1,...,ij=1

∑
l1+···+lj=n

(
n

l1, . . . , lj

) j∏
h=1

(Yih,t−1∑
r=1

Fα;ih,r (t)
)lh

(3.5)

and

(Yih,t−1∑
r=1

Fα;ih,r (t)
)lh

=
lh∑
s=1

∑̃Yih,t−1

r1,...,rs=1

∑
q1+···+qs=lh

(
lh

q1, . . . , qs

) s∏
f=1

F
qf
α;ih,rf (t), (3.6)
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and we see that

E

((Yih,t−1∑
r=1

Fα;ih,r (t)
)lh ∣∣∣∣ F (t − 1)

)

=
lh∑
s=1

E((Y )s)
∑

q1+···+qs=lh

(
lh

q1, . . . , qs

) s∏
f=1

E(F
qf
α;ih (t) | F (t − 1)). (3.7)

Using (3.2) to reduce products of Hermite functions to sums, we find that, by (3.5)–(3.7),
we can write

E(V nα (t) | F (t − 1)) = mnUα(1),...,α(n) (t − 1)

+
n−1∑
j=1

∑
β(1),...,β(j)

c(α; n; β(1), . . . ,β(j); t)Uβ(1),...,β(j) (t − 1), (3.8)

with α(i) = α, i = 1, . . . , n, where, again, the c(α; n; β(1), . . . ,β(j); t) are polynomials in t
and

∑
β(1),...,β(j) is a finite sum.

We next observe that

V nα (t − 1) =
(Zt−1∑
l=1

Fα;l (t)
)n

=
n∑
j=1

∑̃Zt−1

i1,...,ij=1

∑
l1+···+lj=n

(
n

l1, . . . , lj

) j∏
h=1

F
lh
α;ih (t − 1)

= Uα(1),...,α(n) (t − 1)

+
n−1∑
j=1

∑̃Zt−1

i1,...,ij=1

∑
l1+···+lj=n

(
n

l1, . . . , lj

) j∏
h=1

F
lh
α;ih (t − 1)

= Uα(1),...,α(n) (t − 1)

+
n−1∑
j=1

∑
γ (1),...,γ (j)

d(α; n; γ (1), . . . , γ (j); t)Uγ (1),...,γ (j) (t − 1), (3.9)

where we have again used (3.2) to reduce products of Hermite functions to sums,
∑

γ (1),...,γ (j)

is a finite sum, and the d(α; n; γ (1), . . . , γ (j); t) are polynomials in t .
Similarly,

Uβ(1),...,β(j) (t − 1)Uγ (1),...,γ (k) (t − 1)

=
(∑̃Zt−1

i1,...,ij=1

j∏
h=1

Fβ(h);ih (t − 1)

)(∑̃Zt−1

j1,...,jk=1

k∏
l=1

Fγ (l);jl (t − 1)

)
= Uβ(1),...,β(j),γ (1),...,γ (k) (t − 1)

+
j+k−1∑
m=1

∑
ζ (1),...,ζ (m)

f (β, γ ; ζ (1), . . . , ζ (m); t)Uζ (1),...,ζ (m) (t − 1), (3.10)
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where we have written β = (β(1), . . . ,β(j)) and γ = (γ (1), . . . , γ (k)),
∑

ζ (1),...,ζ (m) is a finite
sum, and the f (β; γ ; ζ (1), . . . , ζ (m); t) are polynomials in t .

By combining (3.8)–(3.10) we have, for each k ≤ p,

mk E(V p−k
α (t) | F (t − 1))V kα (t − 1)

= mpUα(1),...,α(p) (t − 1)

+
p−1∑
j=1

∑
γ (1),...,γ (j)

h(α; n; γ (1), . . . , γ (j); t)Uγ (1),...,γ (j) (t − 1),

where the h(α; n; γ (1), . . . , γ (j); t) are polynomials in t and
∑

γ (1),...,γ (j) is a finite sum.
Substituting this into (3.4) and using the fact that

∑p
k=0

(
p
k

)
(−1)k = 0, we find that the factors

of mpUα(1),...,α(p) (t − 1) cancel, and we can write

E({Vα(t)−mVα(t − 1)}p)

=
p−1∑
j=1

∑
γ (1),...,γ (j)

g(α; n; γ (1), . . . , γ (j); t)E(Uγ (1),...,γ (j) (t − 1)),

where the g(α; n; γ (1), . . . , γ (j); t) are polynomials in t . The proofs of (3.3) and, hence, of
Proposition 3.1 then follow from (3.1).

Remark 3.1. Note that, by Proposition 3.1, ‖Vα(t)/m
t‖p is bounded uniformly in t , meaning

that
‖Vα(t)‖p ≤ cmt . (3.11)

Arguing as before, any Uα(1),...,α(p) (t) (where α(1), . . . ,α(k) are now arbitrary) can be written
as

Uα(1),...,α(p) (t) =
p∏
i=1

Vα(i) (t)+ terms of ‘lower order’.

Thus, using (3.11), Hölder’s inequality, and (3.1) for k ≤ p − 1, we can refine (3.1) and find
c, β < ∞ independent of t such that

| E(Uα(1),...,α(p) (t))| ≤ cmpt .

(Here we require that Y has r moments for some even r ≥ p.)
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