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We revisit Brenner’s seminal work on the Stokes resistance of a slightly deformed sphere
(Chem. Engng Sci., vol. 19, 1964, p. 519), evaluate its range of validity and extend
its applicability to higher deformations for axisymmetric particles, using hydrodynamic
radius as the measure of Stokes resistance. Brenner’s method solves the flow around a
slightly deformed sphere through two mapping steps: the first mapping translates the
surface velocity on the deformed sphere to that over a reference sphere of arbitrary
radius using an asymptotic expansion of the flow field in terms of deformation amplitude
and a Taylor expansion of the velocity field around the surface of the reference sphere.
Subsequently, the second mapping extrapolates the velocity field from the surface of
the reference sphere to any point in the fluid using Lamb’s general solution for Stokes
flow. While the original work addresses slightly deformed spheres to a linear order
in deformation amplitude, we demonstrate that the first mapping, in combination with
axisymmetric spectral modes (J. Fluid Mech., vol. 936, 2022, R1), can accommodate
significant deformations to arbitrary orders of perturbation, and thus is not limited to
slightly deformed spheres. Also, while first-order analysis is suitable for nearly spherical
particles, second-order terms can provide a reasonable range for significantly higher
deformations.

Key words: low-Reynolds-number flows, microscale transport, colloids

1. Introduction

Howard Brenner has made numerous seminal contributions to the field of fluid dynamics.
His early publications on low Reynolds number hydrodynamics were transformative,
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converting what was once regarded as a mainly academic and dull topic into the vibrant
field of microfluidics (Acrivos 2014). Understanding particle behaviour in the regime
of low Reynolds numbers, where viscous forces dominate, is fundamentally important
in various domains involving single particle dynamics, such as microswimmers, and in
studies of particle suspensions and rheology. The geometry of a particle significantly
affects its dynamics, making the development of theoretical techniques to study arbitrary
and irregular geometries in Stokes flow a necessity.

Brenner has developed analytical approaches to address arbitrary geometries (Brenner
1963, 1964b,c,d, 1966). In one of his works (Brenner 1964a), which is the focus of our
paper, he used an asymptotic expansion of the velocity field to address the problems
of slightly deformed spheres within a perturbative framework. The literature citing this
seminal work reveals that its significance, particularly in the field of microswimmers,
has not yet been fully recognized. Most analytical and semi-analytical studies within
this domain focus on spheres, spheroids, slender bodies or nearly spherical particles with
slight deformations. Revisiting his formalism to evaluate its validity range and extend its
application to more significantly deformed spheres would enable researchers to distinctly
observe the effects of various orders of perturbation on particle motion, thus opening
up the exploration of a broader class of microswimmer geometries with insights into
microswimmer dynamics.

Brenner’s method (Brenner 1964a) defines the surface of a deformed sphere S as a radial
deformation of the surface S0 of a hypothetical reference sphere, using a deformation shape
function ξ and a deformation amplitude δ. The process of solving the flow field around the
slightly deformed sphere consists of two mapping steps: the first mapping, u(rS) �→ u(r0),
translates the velocity field from the surface of the deformed sphere, S, to that of the
reference sphere, S0. Then, using the second mapping, u(r0) �→ u(r), it extends from S0
to any point in the fluid, r, using Lamb’s general solution of the Stokes equation (Lamb
1932).

The first mapping u(rS) �→ u(r0) is achieved for different orders of deformation
amplitude δ through the coupling of the asymptotic expansion of the velocity field in terms
of δ with the Taylor expansion of the velocity field over the deformed sphere about the
surface of the reference sphere. The complexity in the calculations stems from the need
to calculate progressively higher-order radial derivatives due to the Taylor expansion in
the first mapping and to successively apply the second mapping and gradient operations
in Lamb’s general solution for Stokes flow around the reference sphere for each order
of perturbation. Therefore, while his elegant framework is mathematically rigorous and
can, in principle, handle higher orders of perturbations, the analytical calculations become
rapidly more complicated as one goes beyond the first order, making it practically difficult
to obtain higher-order terms.

In this paper, we assess the range of validity of Brenner’s first mapping, specifically
using the hydrodynamic radius as the measure of Stokes resistance, and demonstrate its
applicability to highly deformed spheres. By leveraging spectral modes (Nabil et al. 2022),
we transform Brenner’s first mapping from its differential form into simple matrix-based
expressions by adopting a spectral expansion method instead of using Lamb’s general
solution for the second mapping. This resulting matrix-based framework streamlines the
computational process for each perturbation order. We can apply the first mapping up
to the desired perturbation order and use the resulting asymptotic sum of the expansion
coefficients collectively for the second mapping. This approach eliminates the need to
apply the second mapping independently for each perturbation order. Moreover, the
hydrodynamic radius is proportional to one of the expansion coefficients, allowing for
straightforward computation to track the convergence and the validity range of the first
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mapping. Our findings demonstrate that Brenner’s first mapping can accommodate highly
deformed geometries, extending beyond the linear term for slightly deformed spheres in
the asymptotic expansion.

2. Basis and development of the method

This section develops the matrix-based framework for studying the range of the validity of
Brenner’s first mapping for obtaining the Stokes resistance of an axisymmetric deformed
sphere in an axisymmetric flow. We begin by reviewing the mathematical formalism of
his method that we discussed in the introduction. Afterwards, we will combine the first
mapping in differential formal with spectral formalism for axisymmetric Stokes flow
to reformulate the mapping in terms of matrix algebra and obtain an expression for
hydrodynamic radius of the deformed sphere in terms of spectral expansion coefficients.

2.1. Problem formulation
The axisymmetric particle’s geometry results from the radial deformation of a reference
sphere S0 of radius r0 centred at the origin. In spherical coordinates the surface S of the
axisymmetric particle is given by

rS(θ) = r0[1 + δξ(θ)], (2.1)

where ξ represents the shape function, and δ denotes the amplitude of the deformation.
The particle moves along its symmetry axis through an incompressible Newtonian fluid
with viscosity μ, under conditions of low Reynolds number hydrodynamics. The far-field
vanishing velocity field is governed by the Stokes and continuity equations

μ∇2u = ∇p, ∇ · u = 0. (2.2a,b)

We will construct a formal expansion of the velocity field around the particle in powers of
the deformation amplitude δ, as

u(r) F=
∑
k=0

δku(k)(r). (2.3)

The ‘F’ atop the equals sign is a reminder that this is a formal expansion and there is
no a priori reason to assume that it converges. Indeed, our calculations strongly suggest
that it does not. Practical computations must be cut off at some maximum order, kmax, of
perturbation theory, anyway, and the question remains of how good results can be obtained
as δ and kmax vary. In the following, we adhere to the following conventions: k and q
are reserved for denoting orders of perturbation, kmax is our maximum computational
cutoff and other formal expansions like (2.3) will be written with an ordinary equals
sign. Typically, the convergence of the asymptotic δ-expansion (2.3) remains ambiguous,
as noted in Brenner (1964a). However, the more pertinent question is whether a limited
number of terms can provide a physically valid response.

2.2. Brenner’s mapping steps
This section reviews the differential form expression for Brenner’s first mapping (Brenner
1964a). Utilizing the representation (2.1) for the surface S of the radially deformed sphere
in terms of the surface S0 of the reference sphere, the Taylor expansion of the velocity
field about the reference sphere S0 yields u(rS) = u(r0) + ∑∞

q=1 δq(q!)−1(r0ξ)q∂
q
r u|r=r0 .
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Combining the asymptotic expansion (2.3) with the Taylor expansion and upon
rearranging, we obtain the velocity field over the surface of the reference sphere for each
order of perturbation, and thus Brenner’s mapping

u(rS) �→ u(r0) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(0)(r0) = u(0)(rS),

u(k)(r0) = u(k)(rS) −
k∑

q=1

(r0ξ)q

q!
∂qu(k−q)

∂rq

∣∣∣∣∣
r=r0

for k � 1.

(2.4a)

(2.4b)

The leading-order terms for the surface velocity field over the surfaces of the reference
and the deformed spheres are equal. Assuming we have a framework to apply the second
mapping, u(r0) �→ u(r), and we can solve for the velocity field around a sphere with an
arbitrary surface velocity distribution, we can determine the leading-order velocity field
u(0)(r) using (2.4a). This term will then be used in the radial derivative in (2.4b), along
with the first-order term from the boundary condition u(1)(rS) on the deformed sphere, to
obtain the first-order boundary condition u(1)(r0) on the reference sphere. From this, we
solve to obtain u(1)(r). This process continues iteratively to obtain higher orders.

Thus, for each increment in the order of perturbation in (2.4b), we have to solve for the
flow fields by applying the second mapping to all the lower orders. Therefore, one of our
goals will be to computationally decouple the first mapping from the second mapping,
eliminating the need to apply the second mapping independently for each perturbation
order. This ensures that the framework of the first mapping is self-sufficient, which will
aid in examining its range of its validity.

2.3. Spectral method applied to Brenner’s mapping
In this section, we combine Brenner’s mapping (2.4) with the spectral method (Nabil
et al. 2022) for axisymmetric flow to develop a matrix-based framework for the first
mapping. Within the spectral method, the velocity field is expanded in terms of
axisymmetric spectral modes u[α]

� (r): the biharmonic mode (∇2∇2u[1]
� = 0, ∇2u[1]

� /= 0)
and the pressure-free harmonic mode (∇2u[2]

� = 0), both of which satisfy the Stokes and
continuity equations (2.2a,b). Using the inner product 〈 f |g〉 = ∫ π

0 f · g sin θ dθ between
two axisymmetric vectorial functions defined over the sphere surface, the Stokes velocity
field around a sphere is

u(r) =
2∑

α=1

�max∑
�=1

〈
D[α]

�

∣∣∣u(r0)
〉

u[α]
� (r), (2.5)

where the boundary condition u(r0) represents the arbitrary velocity field over the sphere’s
surface. Dual fields D[α]

� defined over the sphere’s surface satisfy the orthogonality relation
〈D[α1]

�1
|u[α2]

�2
(r0)〉 = δ�1�2δα1α2 .

The summation over � theoretically has no upper bound; however, for calculations, we
need to set a cutoff value �max. The explicit expressions for the axisymmetric spectral
modes and their corresponding dual vectors are presented in (3.1) in § 3, where we discuss
the implementation of the method. The modes are homogeneous in the radial coordinate

u[α]
� ∝ r−n[α]

� , n[α]
� = �δ1,α + (� + 2)δ2,α. (2.6a,b)

The linearity and simplicity of the spectral expansion (2.5) provide us with a basis to
reformulate the first mapping (2.4) into a set of matrix-based calculations that can be easily
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implemented numerically, as we elaborate below. Taking the inner product of both sides
of the equations in the mapping (2.4) with D[α]

� for each perturbation order k generates the
terms

A[α](k)
� =

〈
D[α]

�

∣∣∣u(k)(r0)
〉
, S [α](k)

� =
〈
D[α]

�

∣∣∣u(k)(rS)
〉
, (2.7a,b)

where S[α](k)
� encodes the boundary condition over the surface of the deformed sphere.

We are interested in obtaining asymptotic expansion coefficients A[α](k)
� which provide us

with the coefficients for the spectral expansion of the velocity field (2.5), that is,

〈
D[α]

�

∣∣∣u(r0)
〉
=

∞∑
k=0

δkA[α](k)
� . (2.8)

Therefore, we are left with developing a framework to obtain the coefficients A[α](k)
� in

terms of the boundary condition coefficient S[α](k)
� using Brenner’s first mapping (2.4).

Taking inner products with a dual vector D[α]
� in the mapping expression (2.4), and using

(−r0)
q∂q

r u[α′]
�′ |r=r0 = (q + n[α′]

�′ − 1)!

(n[α′]
�′ − 1)!

u[α′]
�′ (r0), (2.9)

along with the notations (2.7a,b) yields the reformulation of Brenner’s first mapping
within a matrix-based framework

u(rS) �→ u(r0) :

⎧⎪⎨
⎪⎩
A[α](0)

� = S [α](0)
� ,

A[α](k)
� = S [α](k)

� −
k∑

q=1
Ξ

[α,α′](q)

�,�′ A[α′](k−q)

�′ for k � 1,
(2.10)

where the geometrical coefficients

Ξ
[α,α′](q)

�,�′ = (−1)q (q + n[α′]
�′ − 1)!

q!(n[α′]
�′ − 1)!

〈
D[α]

�

∣∣∣ξqu[α′]
�′ (r0)

〉
, (2.11)

depend on the deformation function ξ , and thus, are known. The exponents n[α′]
�′ are

defined in (2.6a,b). The only unknowns in matrix-based mapping (2.10) are the coefficients
A[α](k)

� that we aim to calculate in order. Hence, the knowledge of the boundary condition
over the deformed sphere through the terms S[α](k)

� , as described in the mapping (2.10),
provides a self-sufficient set of equations for obtaining the coefficients A[α](k)

� without
the need to apply the second mapping as we increment the perturbation order. Effectively,
after obtaining the spectral expansion coefficients (2.8) we automatically also obtain the
velocity field (2.5) around an axisymmetric radially deformed sphere.

To find the Stokes resistance of the deformed sphere, consider the force exerted on
the fluid by the particle moving along its symmetry axis êz ≡ 8

3 D[1]
1 . It is given by

Fz = 6πμr0êz · u(r0) = 8πμr0〈D[1]
1 | u(r0)〉, where u(r0) is the average over the

reference sphere. The Stokes resistance of the particle is characterized by the
hydrodynamic radius rH = Fz/(6πμ), defined as the radius of a sphere with the same drag
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coefficient as the deformed spheres moving with velocity u(rS) ≡ êz along its symmetry
axis. The ratio of the hydrodynamic radius to the radius of the reference sphere is

rH

r0
= 4

3
〈D[1]

1 | u(r0)〉 = 4
3

kmax∑
k=1

δkA[1](k)
1 . (2.12)

We will determine the range of validity of Brenner’s first mapping from a deformed sphere
to a reference sphere in the matrix form (2.10) by calculating the hydrodynamic resistance
and comparing the results with those of the direct spectral method calculations (Nabil et al.
2022).

3. Computational implementation

This section provides details on the implementation of the mapping (2.10) within a simple
matrix-based framework. We use the following axisymmetric spectral modes and their
corresponding dual vectors (Nabil et al. 2022):

� � 1 : u[1]
� (r) =

(r0

r

)� [
�(� + 1)P[1]

� (cos θ) − (� − 2)P[2]
� (cos θ)

]
, (3.1a)

D[1]
� (cos θ) = 2� + 1

4�(� + 1)

[
�P[1]

� (cos θ) + P[2]
� (cos θ)

]
, (3.1b)

� � 1 : u[2]
� (r) =

(r0

r

)�+2 [
−(� + 1)P[1]

� (cos θ) + P[2]
� (cos θ)

]
, (3.1c)

D[2]
� (cos θ) = 2� + 1

4(� + 1)

[
(� − 2)P[1]

� (cos θ) + P[2]
� (cos θ)

]
. (3.1d)

The orthogonal basis functions P[1]
� = P�(cos θ)êr and P[2]

� = P1
�(cos θ)êθ obey

the orthogonality relation 〈P[α1]
�1

|P[α2]
�2

〉 = 2/(2�1 + 1)[δ1,α1 + �1(�1 + 1)δ2,α1]δα1α2δ�1�2 ,
where Pm

� is the associated Legendre polynomial of degree � and order m, and êr and êθ

are unit vectors in the r and θ directions, respectively.
By setting a finite value �max for the upper bound of � in the spectral expansion (2.5), we

can treat the pair (α, �) as a compound index, which turns the spectral mapping expression
(2.10) into matrix-based calculations

A(k) = S(k) −
k∑

q=1

Ξ (q)A(k−q), (3.2)

where the explicit forms with 1 � �, �′ � �max are

Ξ (q) =

⎛
⎜⎜⎝

(−1)q(q + �′ − 1)!
q!(�′ − 1)!

〈
D[1]

�

∣∣∣ξ qu[1]
�′ (r0)

〉 ∣∣∣∣ (−1)q(q + �′ + 1)!
q!(�′ + 1)!

〈
D[1]

�

∣∣∣ξ qu[2]
�′ (r0)

〉

(−1)q(q + �′ − 1)!
q!(�′ − 1)!

〈
D[2]

�

∣∣∣ξ qu[1]
�′ (r0)

〉 ∣∣∣∣ (−1)q(q + �′ + 1)!
q!(�′ + 1)!

〈
D[2]

�

∣∣∣ξ qu[2]
�′ (r0)

〉
⎞
⎟⎟⎠ ,

A(k) =
⎛
⎝

〈
D[1]

�

∣∣∣u(k)(r0)
〉

〈
D[2]

�

∣∣∣u(k)(r0)
〉
⎞
⎠ , S(k) =

⎛
⎝

〈
D[1]

�

∣∣∣u(k)
s

〉
〈
D[2]

�

∣∣∣u(k)
s

〉
⎞
⎠ . (3.3)
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The elements can be evaluated by integrating over the polar angle θ . To the leading order,
A(0) = S(0), and we calculate A(k) for higher orders k in terms of S(k), A(q) and the
geometrical matrices Ξ (q) for q < k.

For our analysis, we studied a family of geometries parametrized by (n, δ), where n is
the degree of the Chebyshev polynomials of the first kind that defines the axisymmetric
deformation function in (2.1)

ξ(θ) = Tn(cos θ) = cos nθ, (3.4)

whose powers can be expanded in terms of the Legendre polynomials of the first
kind, ξq(θ) = ∑qn

�=0 C�(n, q) P�(cos θ), with rational coefficients C�(n, q) ∈ Q. Instead

of direct integration, using this expansion turns the calculation of the 〈D[α]
� | ξqu[α′]

�′ (r0)〉
into exact arithmetic by algebraic summations over the weighted sum of the terms

〈
P[1]

�

∣∣∣P�′′P[1]
�′

〉
= 2

(
� �′′ �′
0 0 0

)2

, (3.5a)

〈
P[2]

�

∣∣∣P�′′P[2]
�′

〉
= −2

√
�(� + 1) �′(�′ + 1)

(
� �′′ �′
0 0 0

) (
� �′′ �′

−1 0 1

)
, (3.5b)

where ( � �′′ �′
m m′′ m′ ) is the Wigner 3j-symbol. The particle moves with velocity u(rS) ≡ êz for

which S [1](0)
1 = 3

4 , S [2](0)
1 = 1

4 and otherwise S[α](k)
� = 0.

4. Numerical results and comparison with direct spectral method

We explored a suite of axisymmetric radially deformed spheres with parameters
n = 2, 3, . . . , 9 for the deformation function (3.4). We studied the convergence of the
hydrodynamic radius based on the cutoff value �max for the spectral expansion of the
velocity (2.5) that appears in calculations (3.2) and (3.3). The convergence is monitored by
tracking the value of the first element of A(k), that is, A[1](k)

1 , for each perturbation order
k, which is proportional to the corresponding hydrodynamic radius (2.12) for that order,
and thus is of primary interest. In practice, we found that, for each order of perturbation,
the term A[1](k)

1 typically begins to converge for �max in the range of approximately 10 to
20.

In terms of the asymptotic expansion, we are interested in the first few terms that yield
physically reasonable values for rH/r0 and the domain of validity of the calculations in
terms of the deformation amplitude δ. Therefore, we calculated up to a perturbation order
of kmax = 10, which is well beyond the number of terms usually used in an asymptotic
expansion analysis. To study the range of validity of δ, we compared the asymptotic
expansion calculations (2.12) with that of a direct non-asymptotic method, explained in
Nabil et al. (2022).

Figure 1 compares the results of rH/r0 calculations based on asymptotic (blue dots) and
direct (red crosses) methods for deformations of a unit sphere, r0 = 1. Each row represents
a deformation function parametrized by n, and each column represents the cutoff value
kmax for the calculation of hydrodynamic radius (2.12). To the linear order, the analytical
expression for the hydrodynamic radius is

rH

r0
= 1 + 9(1 + cos nπ)

2(n2 − 1)(n2 − 9) + δn3
δ + O(δ2), (4.1)

where the added Kronecker delta δn3 is to avoid the indeterminate 0/0 for n = 3. The
expression shows that, for odd values of n, the linear order contribution is zero and, for
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δ
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1.00

0.90
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1.05

1.00

1.15

1.10

1.05

1.00

1.15

1.10

1.05

1.00

1.15

1.10
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1.00

1.15

1.20

1.10

1.05

1.00
–0.2 0 0.2 –0.2 0 0.2–0.2 0 0.2–0.2 0 0.2 –0.2 0 0.2 –0.2 0 0.2–0.2 0 0.2 –0.2 0 0.2–0.2 0 0.2–0.2 0 0.2

Figure 1. The ratio of hydrodynamic radius to the radius of the unit reference sphere, r0 = 1, based on
asymptotic (blue dots) and direct (red crosses) methods for different geometries, parameterized by the pair
(n, δ). The rows correspond to different shape functions parametrized by n, and the columns represent the
cutoff value kmax in (2.12).

even values of n, the coefficient of δ approaches zero with increase in n. The behaviour is
also shown in the first column of curves in figure 1. Therefore, the results of the asymptotic
method for kmax = 1 deviate from the results of the direct method for small values of
δ, necessitating going beyond the first order to get reasonable results from asymptotic
expansions.

To determine the range of validity of δ for each n and kmax, we define δ1 % as
the maximum value of the deformation amplitude at which the difference between the
asymptotic and direct methods is 1 % of the direct method value. Figures 2(a) and 2(b)
show the value of δ1 % for different geometry parameters n and perturbation cutoff kmax for
positive and negative values of δ, respectively. The value of |δ1 %| monotonically increases
up to kmax = 3, after which, for small values of n = 2, 3 and 4, we observe fluctuations.
With an increase in n, the value of |δ1 %| almost plateaus afterward, and for n = 7, 8 and 9,
the first two terms, kmax = 2, provide a physically reasonable value for the hydrodynamic
radius within the range |δ| � |δ1 %|. Our observation indicates that, with an increase in n,
both the value of |δ1 %| and the number of terms kmax required for the calculation of the
hydrodynamic radius (2.12) in the asymptotic expansion decrease.
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5
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0.16
0.13 0.11 0.10

–0.10–0.11–0.13
–0.16

–0.20

–0.26

–0.35

δ1 %  = 0.48
10th

δ1 %  = –0.5
10th

δ1 %  = –23
2nd

δ1 %  = 0.22
2nd

–0.21
–0.17 –0.13 –0.11 –0.09 –0.08 –0.07

0.070.080.090.110.130.15
0.21

|δ1 % | ∼ 0.33e–0.18n2nd

|δ1 % | ∼ 0.075 + 0.9e–0.4n10th

δ1 % δ–δ1 %

(a) (b) (c)

Figure 2. The maximum absolute deformation amplitude |δ1 %| vs perturbation cutoff kmax for different
geometric parameters n for (a) positive and (b) negative values of δ. (c) The range of δ as a function of
the geometric parameter n for the asymptotic expansion cutoff kmax = 2 and kmax = 10 with corresponding
maximum deformation amplitudes δ2nd

1 % and δ10th
1 % for positive and negative values of δ. The depicted geometries

showcase the maximum deformation of unit sphere r0 = 1, identified by δ10th
1 % , that can be accommodated within

Brenner’s first mapping combined with the spectral method according to rS(θ) = 1 + δ10th
1 % cos nθ .

Figure 2(c) shows the range of |δ| ∈ [0, |δ1 %|] for the asymptotic expansion cutoff
values kmax = 2 and kmax = 10 for the geometries studied. The geometries depicted in
the figure correspond to the maximum deformation amplitude δ10th

1 % that can be addressed
within the asymptotic method for kmax = 10. The geometries differ significantly from
a sphere, especially for small values of n. Within the domain of our study, the upper
limits of δ for kmax = 2 and kmax = 10 fit reasonably well to an exponential functions
δ2nd

1 % = 0.33e−0.18n and δ10th
1 % = 0.075 + 0.9e−0.4n, respectively, as represented by the

dashed lines in figure 2(c).

5. Conclusion

In his seminal work (Brenner 1964a), Brenner developed a method to study the Stokes
resistance of a slightly deformed sphere by using an asymptotic expansion of the flow
field in terms of the deformation amplitude. His method involved two steps: first, mapping
the surface velocity field over the radially deformed sphere to the surface of a reference
sphere of arbitrary radius for each order of perturbation. In the second step, he used Lamb’s
general solution to map the velocity field over the reference sphere to any point in the fluid.
Brenner’s study focused on slightly deformed spheres to the linear order in the deformation
amplitude. While his mapping machinery, in principle, could handle up to any order of
perturbation, going beyond the first order makes the calculations tedious and cumbersome.

Building upon Brenner’s first mapping, we utilized the spectral method for
axisymmetric Stokes flow (Nabil et al. 2022) to reformulate his mapping within a
matrix-based framework that can easily handle perturbations up to any order. We
demonstrated the utility of this spectral perturbative method for highly aspherical
geometries by studying the Stokes resistance of deformed spheres using the hydrodynamic
radius. A family of geometries parameterized by the amplitude of the deformation δ and
n in cos nθ as the deformation function was explored. We observed that the domain of
δ within which we obtain accurate results for the hydrodynamic radius depends on the
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deformation function. Within the acceptable range of δ, the first five perturbation terms
provide a reasonable estimate for the hydrodynamic radius and for a high value of n, up to
order two is sufficient.

Axisymmetric geometries form the foundation for analysing the rectilinear translational
motion of microswimmers (Brady 2011; Yariv 2011; Sabass & Seifert 2012; Nourhani,
Crespi & Lammert 2015). The efficacy of the axisymmetric spectral method in
elucidating the dynamics of microswimmers has already been showcased using the
direct non-asymptotic method (Nabil et al. 2022). This paper’s perturbative approach
can be similarly employed. It allows for pinpointing which perturbation orders have a
substantial impact on the observed physical phenomena. This approach offers significant
insights into how deviations from sphericity (Shklyaev, Brady & Córdova-Figueroa 2014;
Lammert, Crespi & Nourhani 2016; Nourhani & Lammert 2016) affect the microswimmer
dynamics, furthering our understanding of the optimum geometrical configurations
for microswimmers, ranging from slightly (Daddi-Moussa-Ider et al. 2021) to highly
deformed structures. The focus of this paper was on determining the domain of validity of
Brenner’s first mapping, which addresses axisymmetric solid particles, a topic frequently
studied in the field of microswimmers. The natural next step is to extend this formalism
to non-axisymmetric, three-dimensional solid particles, and to incorporate additional
spectral modes to address deformations in drops and similar mappings (Vlahovska,
Loewenberg & Blawzdziewicz 2005; Vlahovska, Bławzdziewicz & Loewenberg 2009).
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