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We present a mathematical model to investigate heat transfer and mass transport dynamics
in the wave-driven free-surface boundary layer of the ocean under the influence of long-
crested progressive surface gravity waves. The continuity, momentum and convection–
diffusion equations for fluid temperature are solved within a Lagrangian framework. We
assume that eddy viscosity and thermometric conductivity are dependent on Lagrangian
coordinates, and derive a new form of the second-order Lagrangian mass transport
velocity, applicable across the entire finite water depth. We then analyse the convective
heat dynamics influenced by the free-surface boundary layer. Rectangular distributions
of free-surface temperature (i.e. a Dirichlet boundary condition) are considered, and
analytical solutions for thermal boundary layer temperature fields are provided to offer
insights into free-surface heat transfer mechanisms affected by ocean waves. Our results
suggest the need to improve existing models that neglect the effects of free-surface waves
and the free-surface boundary layer on ocean mass transport and heat transfer.

Key words: boundary layers, waves/free-surface flows, mass transport

1. Introduction
Heat and mass transport dynamics in the upper ocean, due to the presence of a boundary
layer, are of practical importance in a range of applications. Examples include the initial
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stages of an oil spill, the motion of ocean biofilms, the transport of microplastic particles,
and the movement of grease ice. These phenomena influence the properties of the free-
surface boundary layer and its hydrodynamic behaviour, with direct consequences for
wave-induced mass and heat transfer. Therefore, a better understanding of the complex
thermal structure of the surface boundary layer may provide valuable insights into
subsurface temperature patterns and their impact on the ocean environment.

It is well established that free-surface waves have important consequences for air–
sea heat exchange processes. Witting (1971) and O’Brien (1967) analysed the effects of
irrotational progressive oscillations and Gerstner waves, and demonstrated that air–ocean
heat flux is sensitive to wave steepness. Later, Szeri (2017) focused on mass and heat
exchanges across a turbulent liquid–gas interface, whereas Hetsroni et al. (1997) showed
that surface waves can have a significant effect on natural convection. Observations by
Veron et al. (2008) have shown that ocean waves could be very important in facilitating
heat transport. Recently, Michele et al. (2021, 2023) investigated the temperature field
generated by heat sources beneath propagating and standing waves, and demonstrated that
free-surface gravity waves play a crucial role in enhancing seabed heat transfer.

Thermal conduction in boundary layers is an established research field, with classical
theoretical results and practical applications described by Landau & Lifshitz (1989) and
White (1991). Additional properties of heat transfer in a laminar boundary layer are
thoroughly discussed by Lighthill (1950), whereas applications of heat and mass transfer
driven by oscillatory flows are described by Pedley (1972). However, to the authors’
knowledge, studies to date have been restricted to simplified irrotational or Gerstner wave
velocity profiles that do not replicate the wave dynamics in the free-surface viscous
boundary layer. Furthermore, these studies do not take into account the effect of the
free-surface boundary layer on air–sea heat transfer or do not consider additional effects
resulting from spatially dependent eddy viscosity, thermometric conductivity or heat
sources profiles.

In this paper, we develop a mathematical theory to analyse heat transfer through the
oceanic wave-driven free-surface boundary layer. Our weakly nonlinear model is based on
solving the convection–diffusion equation for the temperature field in an incompressible
fluid, where the velocity field is decoupled from temperature. We consider long-crested,
two-dimensional surface gravity waves of amplitude greater than or comparable to the
thickness of the boundary layer. Therefore, the Taylor series expansion of boundary
conditions at the free surface is consistent only when using curvilinear coordinates
(Longuet-Higgins 1953) or alternatively, Lagrangian coordinates (Pierson 1962; Ünlüata
& Mei 1970; Monin & Yaglom 1971; Piedra-Cueva 1995; Salmon 1998, 2020; Ng 2004;
Weber & Christensen 2019; Pizzo et al. 2023). Adopting a Lagrangian approach, we first
derive a new form of Lagrangian velocity that is valid across the entire water depth,
incorporating eddy viscosity profiles, and then use this to solve the convection–diffusion
equation for temperature within the free-surface thermal boundary layer.

2. Governing equations
Consider two-dimensional water waves of amplitude A and frequency ω propagating at
the top of a viscous fluid domain, where x is horizontal distance from a fixed origin, z is
distance vertically upwards from the undisturbed free surface, and t is time. The fluid has
constant depth h, and density ρ, whereas the eddy kinematic viscosity ν and thermometric
conductivity χ are assumed to be dependent on space and time. We further assume h to
be comparable with the wavelength λ and much larger than the turbulent boundary layer
thickness δ, so we expect the effects due to viscosity and turbulence to be localised in

1010 A7-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.308


Journal of Fluid Mechanics

regions close to the free surface and seabed, whereas in the core region, the fluid motion
is dominated by irrotational potential flow (Mei et al. 2005). Constant fluid properties
are reasonable solely for small variations in temperature T ∼ O(10) oC, and when the
initial fluid temperature Ti is far from freezing or boiling points. The resulting continuity
equation, momentum equations and equation for convection and diffusion of relative
temperature T = T − Ti in Eulerian form are (Landau & Lifshitz 1989; White 1991)

∂u

∂x
+ ∂w

∂z
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ

∂ P

∂x
+ ∂

∂x

(
2ν

∂u

∂x

)
+ ∂

∂z

[
ν

(
∂w

∂x
+ ∂u

∂z

)]
, (2.2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −g − 1

ρ

∂ P

∂z
+ ∂

∂z

(
2ν

∂w

∂z

)
+ ∂

∂x

[
ν

(
∂w

∂x
+ ∂u

∂z

)]
, (2.3)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= ∂

∂x

(
χ

∂T

∂x

)
+ ∂

∂z

(
χ

∂T

∂z

)
, (2.4)

where (u, w) are horizontal and vertical components of fluid velocity, g is the acceleration
due to gravity, and P is pressure. Given that free-surface oscillations are much larger than
δ, standard Taylor series expansions of the free-surface boundary conditions about the
horizontal plane z = 0 cannot be applied here. A convenient alternative approach is to
adopt curvilinear coordinates (Longuet-Higgins 1953) or Lagrangian coordinates, as in
the case of the mass transport phenomena analysed by Ünlüata & Mei (1970). Here, we
use a Lagrangian approach. Let a and b be the initial horizontal and vertical coordinates
of a fluid particle, where b = 0 denotes the free surface and b = −h the horizontal seabed.
The governing equations (2.1)–(2.4) expressed in Lagrangian form are given by (Monin &
Yaglom 1971)

[x, z] ≡

∣∣∣∣∣∣∣
∂x

∂a

∂x

∂b
∂z

∂a

∂z

∂b

∣∣∣∣∣∣∣= 1, (2.5)

∂2x

∂t2 = − 1
ρ

[P, z] + ν ∇2
(

∂x

∂t

)
+ 2 [ν, z]

[
∂x

∂t
, z

]
+ [x, ν]

([
∂z

∂t
, z

]
+
[

x,
∂x

∂t

])
,

(2.6)

∂2z

∂t2 + g = − 1
ρ

[x, P] + ν ∇2
(

∂z

∂t

)
+ 2 [x, ν]

[
x,

∂z

∂t

]
+ [ν, z]

([
∂z

∂t
, z

]
+
[

x,
∂x

∂t

])
,

(2.7)
∂T

∂t
= χ ∇2T + [χ, z] [T, z] + [x, χ ] [x, T ] , (2.8)

where (a, b) are fixed as the fluid particle moves from place to place (Salmon 1998, 2020),
and the Lagrangian operator ∇2 reads

∇2 f = [[
f, z
]
, z
]+ [

x,
[
x, f

]]
. (2.9)

We assign zero stress at the free surface b = 0, no motion at the horizontal seabed b = −h,
and a prescribed free-surface temperature Ts representing a heat source. We assume that
the water temperature at depths greater than the boundary layer thickness z/δ → −∞ is
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fixed at Ti for all time. The tangential and normal components of the stress tensor with
respect to a material curve (x(t), z(t)) are (Piedra-Cueva 1995)

Tt =

∂x

∂a

∂z

∂a
(τzz − τxx ) +

[(
∂x

∂a

)2

−
(

∂z

∂a

)2
]

τxz

|n|2 , (2.10)

Tn =

(
∂z

∂a

)2

τxx +
(

∂x

∂a

)2

τzz − 2
∂x

∂a

∂z

∂a
τxz −

[(
∂x

∂a

)2

+
(

∂z

∂a

)2
]

P

|n|2 , (2.11)

where the normal and tangential vectors to the curve are given by n = (−∂z/∂a, ∂x/∂a),
t = (∂x/∂a, ∂z/∂a), and the stress components in Lagrangian form read (Kinsman 1984)

τxx = 2νρ

[
∂x

∂t
, z

]
, τzz = 2νρ

[
x,

∂z

∂t

]
, τxz = νρ

([
∂z

∂t
, z

]
−
[
∂x

∂t
, x

])
. (2.12)

Incompressible fluid motion is decoupled from temperature, so we first focus on the
derivation of the oscillatory and wave-averaged mass transport velocity in Lagrangian
form, and then use these solutions to solve the temperature problem.

3. Lagrangian velocity field
We adopt the following perturbation expansion up to second order O(A2k2):

{x, z, P} = {a, b, P0} + {x1, z1, P1} + {x2, z2, P2} , (3.1)

where {x1, z1, P1} ∼ O(ε), {x2, z2, P2} ∼ O(ε2) are the first- and second-order
components, ε = Ak � 1 represents small wave steepness, and k is the wavenumber (see
Pierson 1962). Substituting the expansion (3.1) into the governing equations and boundary
conditions derived in the previous section, we obtain a sequence of linearised boundary
value problems up to order O(A2k2). We now focus on the analytical solution of the
velocity components and fluid pressure at each order.

3.1. Zeroth-order solution
The continuity equation (2.5) at zeroth order is identically satisfied, whereas the
momentum equations (2.6)–(2.7) yield

[P0, b] = ∂ P0

∂a
= 0, (3.2)

g + 1
ρ

[a, P0] = g + 1
ρ

∂ P0

∂b
= 0. (3.3)

Since we assumed zero stress at the free surface b = 0, the foregoing equations give the
straightforward hydrostatic solution in Lagrangian coordinates P0 = −ρgb.

3.2. First-order solution
Solutions at first order are known for constant kinematic viscosity (Ünlüata & Mei 1970),
whereas velocity components due to variable ν are not readily available. In what follows,
we use a procedure based on boundary layer theory to derive x1, z1.
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The continuity and momentum equations at first order O(Ak) read

∂x1

∂a
+ ∂z1

∂b
= 0, (3.4)

∂2x1

∂t2 = −g
∂z1

∂a
− 1

ρ

∂ P1

∂a
+ ν ∇2

L

(
∂x1

∂t

)
+ 2

∂ν

∂a

∂2x1

∂t ∂a
+ ∂ν

∂b

(
∂2z1

∂t ∂a
+ ∂2x1

∂t ∂b

)
, (3.5)

∂2z1

∂t2 = −g
∂z1

∂b
− 1

ρ

∂ P1

∂b
+ ν ∇2

L

(
∂z1

∂t

)
+ 2

∂ν

∂b

∂2z1

∂t ∂b
+ ∂ν

∂a

(
∂2z1

∂t ∂a
+ ∂2x1

∂t ∂b

)
, (3.6)

where the operator is ∇2
L = ∂2/∂a2 + ∂2/∂b2. The free-surface displacement due to

monochromatic regular waves of frequency ω and amplitude A is

η = Re
{

Aei(ka−ωt)
}

, (3.7)

where i denotes the imaginary unit. Let us assume the following decomposition of the
Lagrangian coordinates:

{x1, z1} = {
x p

1 + xr
1, z p

1 + zr
1
}

, (3.8)

where the superscript p denotes the irrotational (potential) component, and r denotes the
rotational part. Substitution of (3.8) into (3.4)–(3.6) gives (Mei et al. 2005)(

∂x p
1

∂t
,
∂z p

1
∂t

)
= ∇LΦ, ∇2

LΦ = 0, Φt = − P1

ρ
− gz1, (3.9)

∂xr
1

∂a
+ ∂zr

1
∂b

= 0, (3.10)

∂2xr
1

∂t2 = ν ∇2
L

(
∂xr

1
∂t

)
+ 2

∂ν

∂a

∂2xr
1

∂t ∂a
+ ∂ν

∂b

(
∂2zr

1
∂t ∂a

+ ∂2xr
1

∂t ∂b

)
, (3.11)

∂2zr
1

∂t2 = ν ∇2
L

(
∂zr

1
∂t

)
+ 2

∂ν

∂b

∂2zr
1

∂t ∂b
+ ∂ν

∂a

(
∂2zr

1
∂t ∂a

+ ∂2xr
1

∂t ∂b

)
, (3.12)

where Φ is the velocity potential for irrotational flow satisfying Laplace’s equation,
whereas the rotational components (xr

1, zr
1) are affected by fluid viscosity.

The thickness of the viscous boundary layer is much smaller than the water depth, so
the irrotational components x p

1 and z p
1 satisfy ∂Φ/∂b = 0 at b = −h, and ∂Φ/∂b = ∂η/∂t

at b = 0. Hence

x1 ∼ x p
1 = Re

{
iA cosh[k(h + b)]ei(ka−ωt)

sinh(kh)

}
, z1 ∼ z p

1 = Re

{
A sinh[k(h + b)]ei(ka−ωt)

sinh(kh)

}
,

(3.13)

which correspond to the inviscid solution of monochromatic waves propagating over
horizontal water depth h (Mei et al. 2005).

The velocity components in the seabed boundary layer satisfy x1 = 0 at b = −h, and
x1 → x p

1 as (b + h)/δ → ∞, which is now known. In this region the potential part and the
kinematic viscosity ν do not change significantly, and we obtain the well-known solution
(Longuet-Higgins 1953)
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x1 = Re

{
iA
(
1 − e(i−1)(b+h)/δ

)
ei(ka−ωt)

sinh(kh)

}
, z1 = Re

{
δk A

(
e(i−1)(b+h)/δ − 1

)
ei(ka−ωt)

(1 − i) sinh(kh)

}
.

(3.14)

Similarly, in the free-surface boundary layer, the potential part remains almost constant,
and the hydrodynamics is dominated by viscous and turbulent effects. By assuming the
boundary layer approximation, the x-momentum equation valid in the free-surface region
can be approximated by

∂2xr
1

∂t2 = ∂

∂b

(
ν

∂2xr
1

∂t ∂b

)
. (3.15)

The corresponding boundary and matching conditions needed for the solution of the above
diffusion-like equation can be derived from (2.10). Specifically, by applying zero shear
stress at b = 0, and matching with the outer flow (3.13) as b/δ → −∞, we obtain

∂2x1

∂t ∂b
= − ∂2z1

∂t ∂a
, b = 0, (3.16)

∂x1

∂t
= ∂x p

1
∂t

,
b

δ
→ −∞. (3.17)

By using (3.8) and recognising that ∂xr
1/∂b � ∂zr

1/∂a from the boundary layer
approximation, expressions (3.16)–(3.17) become

∂2xr
1u

∂t ∂b
= Re

{
−2ωk A ei(ka−ωt)

}
, b = 0, (3.18)

∂xr
1w

∂t
= 0,

b

δ
→ −∞. (3.19)

By applying the boundary conditions (3.18)–(3.19), the horizontal rotational velocity
component can, in principle, be determined by solving (3.15) once ν has been prescribed.

Many researchers have investigated the effects of depth-dependent eddy viscosity with
the aim of deriving closed-form expressions for practical applications. For instance, a
linear depth-increasing eddy viscosity profile was recently adopted by Constantin et al.
(2020) and Lewis & Belcher (2003), whereas Huang & Mei (2003) considered a quadratic
variation of ν throughout the entire water depth. Regarding numerical simulations,
McWilliams et al. (1997) applied a large-eddy simulations technique, and found that ν

had a convex profile, as did Sentchev et al. (2023) from the acoustic Doppler current
profiler. By contrast, Shen et al. (2000) studied turbulent diffusion characteristics beneath
a free surface, reporting a rapid increase in eddy viscosity with depth, followed by a
gradual decrease in the bulk region. For finite water depth, Svendsen (1984) assumed an
exponential decrease in prescribed eddy viscosity, whereas other authors assumed constant
values of eddy viscosity, largely due to uncertainties in available measurements and
numerical computations (Dutykh 2009; Tian et al. 2010; Higgins et al. 2020; Klein et al.
2022). With respect to Lagrangian coordinates, Weber & Melsom (1993) and Christensen
& Weber (2005) adopted an eddy viscosity profile that increased linearly with b in the
region close to the free surface. A similar approach was previously employed by Miles
(1993), who assumed that ν is constant along each streamline.

Although the foregoing models are relatively simplistic, they can approximate the
averaged motion without the need for complex numerical simulations. Consequently, since
we expect strong turbulence near the free surface, and based on these studies, we adopt the
following piecewise eddy viscosity profile:
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ν =
[
νs − b

l
(νm − νs)

]
H [b + l] + νm eβ(b+l) H [−b − l], (3.20)

where H denotes the Heaviside step function, νs is the eddy viscosity value at the free
surface, and νm � νs is the maximum eddy viscosity within the free-surface boundary
layer. The location where ν = νm is represented by b = −l, while β is a positive constant.
In other words, we assume that the eddy viscosity initially increases linearly with depth as
in Weber & Melsom (1993), and for b < −l, it begins to decrease exponentially at a rate
determined by the value of β because of decrease of turbulent effects. We point out that
profile (3.20) is similar to the one used in Christensen & Weber (2005).

Solution of (3.15) subject to (3.18)–(3.19) and (3.20) is finally given by

xr
1 = Re

{{
c1 I0

[
(1 − i)

√
lω [lνs + b (νs − νm)]√

2(νm − νs)

]

+ c2K0

[
(1 − i)

√
lω [lνs + b (νs − νm)]√

2(νm − νs)

]}
ei(ka−ωt)

}
, −l < b < 0, (3.21)

xr
1 = Re

{
c3 e−a(b+l)/2 K1

[
−2(−1)3/4 e−a(b+l)/2

a

√
ω

νm

]
ei(ka−ωt)

}
, b < −l, (3.22)

where c1, c2, c3 are long complex constants not reported here for brevity, and In, Kn are
the modified Bessel functions of the first and second kind and of order n (Gradshteyn
& Ryzhik 2007). The solution above can be simplified significantly if eddy viscosity
is constant, i.e. ν = νs = νm and β → 0. In this case, we recover the well-known result
(Ünlüata & Mei 1970)

xr
1 = Re

{
Ak(1 − i)δ e(1−i)b/δ ei(ka−ωt)}, (3.23)

where δ = √
2ν/ω is the viscous boundary layer thickness. The vertical velocity

component zr
1 can be found by applying the continuity equation (3.10). Using boundary

layer scales, we obtain

zr
1 ∼ O

(
Ak2δ2)m. (3.24)

In a typical ocean environment, A ∼ O(1) m, k ∼ O(10−1) m−1 and boundary layer
thickness is up to δ ∼ O(10−1) m. Therefore, zr

1 ∼ O(10−4) m, which is taken to be
negligible because of its very minor effect. The total first-order solution in the free-surface
boundary layer is finally given by

x1 = Re
{
iA coth(kh) ei(ka−ωt)}+ xr

1, z1 = Re
{

A ei(ka−ωt)}. (3.25)

We now evaluate the wavenumber k. The effect of a viscous layer on the free surface is
to produce spatial damping of water waves, so the wavenumber k should be complex in
principle (Weber 1987; Jenkins & Jacobs 1997). Using continuity of normal stress (2.11)
at b = 0 at O(Ak), we find

− P1 + 2ρν
∂2z1

∂t ∂b
= 0. (3.26)

Given that z1 remains almost constant in the boundary layer, use of P1 = −ρ(Φt + gz1)
gives ω2 = gk tanh(kh). In other words, we have recovered the standard linear dispersion
relation for free-surface water waves propagating over horizontal seabed h (Ünlüata & Mei
1970). Higher-order wave-attenuation effects can therefore be neglected, as by Ng (2004).
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3.3. Second-order solution
The horizontal and vertical momentum equations at second order for generalised eddy
viscosity read

∂2x2

∂t2 = −g
∂z2

∂a
− 1

ρ

∂ P2

∂a
+ ν ∇2

L

(
∂x2

∂t

)
+ ∂ν

∂a

∂2x2

∂t ∂a
+ ∂ν

∂b

(
∂2x2

∂t ∂b
+ ∂2z2

∂t ∂a

)
+ G,

(3.27)

∂2z2

∂t2 = −g
∂z2

∂b
− 1

ρ

∂ P2

∂b
+ ν ∇2

L

(
∂z2

∂t

)
+ ∂ν

∂b

∂2z2

∂t ∂b
+ ∂ν

∂a

(
∂2z2

∂t ∂a
+ ∂2x2

∂t ∂b

)
+H,

(3.28)

where the forcing terms G and H are given by quadratic products of first-order solutions,
i.e.

G = −∂2x1

∂t2
∂x1

∂a
− ∂2z1

∂t2
∂z1

∂a
+ ν

[
∂x1

∂a

∂

∂t

(
∂2x1

∂a2 + 3
∂2x1

∂b2

)
+ 2

∂3x1

∂t ∂a2
∂z1

∂b

+ ∂2x1

∂t ∂a

(
∂2z1

∂a ∂b
− ∂2x1

∂b2

)
− 2

∂3x1

∂t ∂a ∂b

(
∂x1

∂b
+ ∂z1

∂a

)

+ ∂2x1

∂t ∂b

(
∂2x1

∂a ∂b
− ∂2z1

∂a2

)
+ ∂z1

∂a

∂

∂t

(
∂2z1

∂a2 + ∂2z1

∂b2

)]

+ ∂ν

∂a

(
2
∂z1

∂b

∂2x1

∂t ∂a
− ∂z1

∂a

∂2x1

∂t ∂b
− ∂x1

∂b

∂2z1

∂t ∂a
− ∂x1

∂b

∂2x1

∂t ∂b
+ ∂z1

∂a

∂2z1

∂t ∂a

)

+ ∂ν

∂b

(
−3

∂z1

∂a

∂2x1

∂t ∂a
+ 3

∂x1

∂a

∂2x1

∂t ∂b
− ∂x1

∂b

∂2x1

∂t ∂a
+ ∂x1

∂a

∂2z1

∂t ∂a

)
, (3.29)

and

H= −∂2x1

∂t2
∂x1

∂b
− ∂2z1

∂t2
∂z1

∂b
+ ν

[
∂x1

∂b

∂

∂t

(
∂2x1

∂a2 + ∂2x1

∂b2

)
+ ∂z1

∂b

(
∂3z1

∂t ∂a2 − ∂2z1

∂b2

)

− ∂2z1

∂t ∂b

(
∂x1

∂b
+ ∂z1

∂a

)
− ∂2z1

∂t ∂a

(
∂2x1

∂a2 + ∂2x1

∂b2

)
− ∂2z1

∂t ∂b

(
∂2z1

∂a2 + ∂2z1

∂b2

)]

+ ∂ν

∂b

(
2
∂x1

∂a

∂2z1

∂t ∂b
− ∂x1

∂b

∂2z1

∂t ∂a
− ∂z1

∂a

∂2z1

∂t ∂a
− ∂z1

∂a

∂2x1

∂t ∂b
+ ∂x1

∂b

∂2x1

∂t ∂b

)

+ ∂ν

∂a

(
−3

∂x1

∂b

∂2z1

∂t ∂b
+ 3

∂z1

∂b

∂2z1

∂t ∂a
− ∂z1

∂a

∂2z1

∂t ∂b
+ ∂z1

∂b

∂2z1

∂t ∂b

)
. (3.30)

Pierson (1962) derived similar equations for constant ν, whereas the above include terms
multiplied by ∂ν/∂a and ∂ν/∂b.

The steady component UL = ∂x2/∂t at second order is the mass transport velocity and
is determined by time averaging over a wave period. Following a procedure similar to
that of Ng (2004), we first integrate the time-averaged vertical momentum (3.28) and
use the time-averaged inviscid condition at the free surface P2 = 0 to obtain (Ünlüata &
Mei 1970)

z2 + P2

ρg
− η2 = −

∫ 0

c
H=

∫ 0

c

ω2 Ak2 sinh[2k(b + h)]
2 sinh2(kh)

db, (3.31)

where the overline denotes an averaged value, and H is dominated by the inviscid terms.
In the latter equation, η2 denotes the wave set-up and the right-hand side depends only on
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b because quadratic products are independent of a. Assuming ν = ν(b) (as in (3.20)) and
zero vertical flux, and substituting (3.31) into (3.28), we obtain the following equation for
horizontal mass transport velocity:

∂

∂b

(
∂UL

∂b
ν

)
= −G

= −kω

2
Re

{
ν

[
k2
(
|x1|2 + |z1|2

)
− 4x∗

1
∂2x1

∂b2 − ik
∂(x∗

1 z1)

∂b

−3
∣∣∣∣∂x1

∂b

∣∣∣∣
2

− z∗
1
∂2z1

∂b2

]
− 4

∂ν

∂b

[
ix∗

1 z1 + x1
∂x∗

1
∂b

]}
, (3.32)

where a ∗ denotes the complex conjugate. The above is valid across the entire depth
and can be solved by deriving the asymptotic behaviour of the horizontal velocity in the
boundary layers. By assuming O(δ)� O(A), in the free-surface boundary layer region,
(3.32) can be approximated by

∂

∂b

(
∂UL

∂b
ν

)
= 2Aωk coth (kh)

[
Im
{

∂

∂b

(
ν
∂xr

1
∂b

)}
+ 2Ak

∂ν

∂b

]
, (3.33)

and integrated by applying a condition of zero stress at the free surface,

∂UL

∂b
= 0, b = 0. (3.34)

After algebraic manipulation, we get

∂UL

∂b
→ 4A2k2ω coth (kh),

b

δ
→ −∞, (3.35)

at the outer edge of the free-surface boundary layer, as also obtained by Ünlüata & Mei
(1970). Equation (3.35) is the first upper boundary condition for the mass transport velocity
in the inner core governed by (3.32). A second boundary condition can be inferred by
applying the well known behaviour of mass transport velocity at the seabed (Longuet-
Higgins 1953)

UL → 5A2kω

4 sinh2(kh)
,

b + h

δ
→ ∞. (3.36)

Having determined the boundary conditions for the inner core velocity, the governing
equation (3.32) admits the following inviscid solution (Ünlüata & Mei 1970; Ng 2004):

ULi = A2kω

4

{
3 + 2 cosh[2k(b + h)]

sinh2 (kh)
+ 8k

tanh(kh)
(h + b)

}
. (3.37)

Note that the Lagrangian mass transport outside the boundary layer is analogous to
the case when the kinematic viscosity is constant. Conversely, the velocity in the free-
surface boundary layer region is affected by ν(b), and can be found by solving the
approximated governing equation (3.33) jointly with (3.34) and the matching condition
for the outer inviscid flow velocity ULi . This yields the following velocity profile that is
valid throughout the water depth affected by the free-surface boundary layer:

UL = ULi + 2Akω coth(kh) Im
{

xr
1
}

. (3.38)
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The expression above is new and includes the effects of spatial variations of ν(b) into xr
1.

By comparing (3.38) against (3.37), we further note that UL is always smaller than its
inviscid approximation ULi . This is of crucial significance, especially in view of practical
applications devoted to free-surface ocean mass transport and heat transfer.

In the simple case of constant eddy viscosity, we can substitute (3.23) into (3.38) and
obtain the explicit solution

UL = A2kω

4

{
3 + 2 cosh[2k(b + h)]

sinh2 (kh)
+ 8k

tanh(kh)

{
h + b − δ eb/δ

[
cos
(

b

δ

)
+ sin

(
b

δ

)]}}
,

(3.39)

which is also new and shows the exponential decaying component due to the presence
of the free-surface boundary layer. We point out that taking the deep-water limit, (3.38)
becomes identical to expression (5.2) derived by Weber (1983). Having obtained UL , we
now turn to the convection–diffusion problem for fluid temperature advected by (3.38).

4. Free-surface temperature
Lagrangian coordinates (a, b) are now used to solve the Lagrangian temperature equation
(2.8). One of the advantages of using (2.8) with respect to its Eulerian counterpart is
the absence of convective terms. However, the diffusion term in Lagrangian form (2.9)
becomes more complicated than the standard Laplacian operator, and approximations
of (2.8) are necessary to find explicit analytical solutions of practical interest. Here,
we focus on the free-surface thermal boundary layer because convection and diffusion
effects are mainly concentrated in the upper ocean surface layer. By substituting x, z
into the governing equation (2.8), and assuming boundary layer scales, i.e. by non-
dimensionalising a, b as

b′ = b/δT , a′ = ak, a′ ∼ b′ ∼ O(1), (4.1)

we find that at leading order,

∂T

∂t
= ∂

∂b

(
χ

∂T

∂b

)
, (4.2)

where δT � λ denotes the thermal boundary layer thickness. Significant benefits accrue
from using the parabolic equation (4.2), which is considerably simpler than (2.8) and
enables us to obtain the analytical solutions reported later in this section.

We now define the boundary conditions for the temperature problem, and consider the
effects of prescribed free-surface temperature T = Ts(a, t). For simplicity, we assume the
Dirichlet boundary condition

Ts = T0 (H [a + U0t] − H [a + U0t − L]) , b = 0, (4.3)

where T0 is the temperature of the heat source on the free surface, whereas U0 is the
value of the Lagrangian mass transport (3.38) evaluated on b = 0. From (3.1), we observe
that (4.3) represents a heat source of finite Lagrangian width L , oscillating with the wave
field at frequency ω. This is further evidenced by performing the transformation from
Lagrangian to Eulerian coordinates, as detailed later in this section.

The Lagrangian mass transport velocity is an O(ε2) effect for the velocity field;
therefore, it is natural to question whether this effect is important for the temperature
problem. To this end, we first define the moving coordinate s = a + U0t . Expression (4.2)
then converts into the following governing equation of convection–diffusion type:
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∂T

∂t
+ U0

∂T

∂s
= ∂

∂b

(
χ

∂T

∂b

)
. (4.4)

Meanwhile, the boundary condition (4.3) becomes

Ts = T0 (H [s] − H [s − L]) , b = 0. (4.5)

Since U0 ∼ O(A2kω), and the thickness of the thermal boundary layer is δT ∼
3.64

√
χ L/U0 (Michele et al. 2023), we find that the convective and diffusion terms

in the expression above are O(TiU0k) and O(TiU0/3.642L), respectively, i.e. diffusion
effects are smaller than convection contributions because L ∼ O(k−1). Hence we find that
the Lagrangian mass transport velocity results in convective effects that dominate over
diffusion. This leads to the following steady-state boundary value problem:

∂

∂b

(
χ

∂T

∂b

)
− U0

∂T

∂s
= 0, b ∈ (−∞, 0], (4.6)

T = T0 (H [s] − H [s − L]) , b = 0, (4.7)
T → 0, b → −∞. (4.8)

Solution of (4.6)–(4.8) can be found by first applying the exponential Fourier transform
(Mei 1997):

T̃ (α, b) =
∫ ∞

−∞
e−iαs T ds, T (s, b) = 1

2π

∫ ∞

−∞
eiαs T̃ dα. (4.9)

Eddy viscosity and thermometric conductivity χ are assumed equal owing to the Reynolds
analogy; i.e. we assume Prandtl number Pr = 1 and that temperature is transported by
turbulent eddies (Landau & Lifshitz 1989). Substitution of (4.9) into (4.6)–(4.8) yields the
following solution of the transformed problem:

T̃ = T̃s

{
c4 I0

[
2

√
ilU0α

χm − χs

(
lχs

χm − χs
− b

)]
+ c5K0

[
2

√
ilU0α

χm − χs

(
lχs

χm − χs
− b

)]}
,

− l < b < 0, (4.10)

T̃ = T̃sc6 e−β(b+l)/2√α K1

[
2(−1)1/4 e−β(b+l)/2

β

√
U0α

χm

]
, b < −l, (4.11)

where c4, c5 and c6 are long complex constants, χs = νs , χm = νm , and T̃s is the Fourier
transform of the boundary condition at the free surface, i.e.

T̃s = T0

∫ L

0
e−iαs ds = iT0

α

(
e−iLα − 1

)
. (4.12)

Substitution of (4.10) and (4.11) into (4.9) allows us to find the solution of the temperature
field in integral form, then integration can be performed numerically as undertaken
previously for transient dispersive waves (Michele et al. 2022).

In evaluating the free-surface heat flux, we derive the normal derivative with respect to
a material curve expressed in Lagrangian form by first calculating partial derivatives with
respect to the Eulerian coordinates (Monin & Yaglom 1971; Piedra-Cueva 1995):

∂T

∂x
= ∂T

∂a

∂z

∂b
− ∂T

∂b

∂z

∂a
,

∂T

∂z
= ∂T

∂b

∂x

∂a
− ∂T

∂a

∂x

∂b
, (4.13)
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where we apply conservation of mass (2.5). The normal derivative of T with respect to the
normal vector n is consequently given by

∂T

∂n
=
(

∂T

∂x
,
∂T

∂z

)
· n
|n| =

∂T

∂z

∂x

∂a
− ∂T

∂x

∂z

∂a
|n| = ∂T

∂b
|n| − 1

|n|
∂T

∂a

(
∂x

∂a

∂x

∂b
+ ∂z

∂a

∂z

∂b

)
.

(4.14)
By assuming the usual boundary layer scales, the corresponding normal heat flux through
the free surface is

q = −κ
∂T

∂n
= −κ

∂T

∂b

√(
∂x

∂a

)2

+
(

∂z

∂a

)2

, b = 0, (4.15)

where κ = χρcp is the thermal conductivity, and cp is the specific heat at constant
pressure. Here, the square root represents the effects of the free-surface displacement on
the thermal boundary layer thickness. The total heat flux Q exchanged across the heat
source is given by

Q =
∫ x |s=L ,b=0

x |s=0,b=0

q[x(s, b = 0), t]
√

1 +
(

∂η[x(s), t]
∂x

)2

dx, (4.16)

where quantities are expressed in Eulerian coordinates, and the square root is related to the
definition of arc length. The integral above is evaluated by finding the relation s = s(x) on
the free surface b = 0. In the previous section, we derived x = x(a, b), z = z(a, b), i.e. the
particle trajectory dependent on the initial position; hence using an asymptotic approach
as suggested by Pizzo et al. (2023), we get

ks = kx + ε
sin(kx − ωt)

tanh(kh)
+ ε2 sin[2(kx − ωt)]

2 tanh(kh)2 + O(ε3), (4.17)

and the following expression for the free-surface elevation in Eulerian coordinates:

kη = ε cos(kx − ωt) − ε2 sin(kx − ωt)2

tanh(kh)
+ O(ε3). (4.18)

We observe that the definition of η in (3.7) introduces a second harmonic component
proportional to ε2 in the Eulerian framework. Substituting (4.15), (4.17) and (4.18) into
(4.16), and performing a Taylor expansion about ε → 0, we obtain

Q = −κ

∫ L

0

∂T

∂b

∣∣∣∣
b=0

{[
1 − ε

cos(ks − ωt)

tanh(kh)

]2

+ ε2 sin(ks − ωt)

}
ds. (4.19)

To better evaluate the effects of free-surface waves on heat transfer, we calculate the
averaged total heat flux per unit source length L as

Q = ω

2πL

∫ 2π/ω

0
Q dt = − κ

L

[
1 + ε2

2

(
1 + 1

tanh(kh)

)] ∫ L

0

∂T

∂b

∣∣∣∣
b=0

ds, (4.20)

where we assume T at steady state and independent of time. The term in brackets
represents the positive O(ε2) effect arising from wave steepness, indicating that water
waves enhance heat transfer. A similar result was derived previously by Witting (1971) (see
their expression (3.4)) for the case of deep water, where kh → ∞. This outcome holds even
if T is independent of Lagrangian coordinate s, which corresponds to scenarios involving
a large heat source with a constant surface temperature, such as daylight heating over
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extensive areas. This also suggests that capillary waves or breaking waves could further
increase the value of Q due to the greater arc length and consequent increase in surface
area (Fedorov & Melville 1998; Melville & Fedorov 2015).

The previous expressions simplify significantly if thermometric conductivity is constant
across water depth. In this case, the temperature problem (4.6)–(4.8) can be solved easily
by using a Fourier transform, as in Michele et al. (2023). We obtain the expressions for
temperature

T = T0

{
H [s] Erfc

[
b

√
U0

4χs

]
− H [s − L] Erfc

[
b

√
U0

4χ(s − L)

]}
(4.21)

and heat flux

q = −κT0

√
U0

πχ

{
H [s]√

s
− H [s − L]√

s − L

}√[
1 + ε

cos(ka − ωt)

tanh(kh)

]2

+ ε2 sin(ka − ωt)2.

(4.22)
We find that heat flux q is always negative and directed towards the fluid domain for
s ∈ [0, L], whereas q is positive for s > L . Note that q → ±∞ for s → 0− and
s → L + 0+, respectively, because of the discontinuous gradients in T at the edges of
the heat source. The total averaged heat flux per source length L becomes

Q = −2T0κ

[
1 + ε2

2

(
1 + 1

tanh(kh)

)]√
U0

Lχπ
. (4.23)

Since the above depends on the Lagrangian transport velocity (3.38), the effect of the free-
surface viscous boundary layer is to reduce the heat flux relative to the inviscid velocity
approximation (3.37), thereby enhancing the underwater temperature. Furthermore, we
observe that as ω increases, Q also increases. This occurs due to the corresponding
increases in ε and U0 with wave frequency. We point out that the opposite effect is
observed for heat flux at the seabed (Michele et al. 2023), where the corresponding mass
transport velocity decreases with ω (Longuet-Higgins 1953).

5. Results and discussion
In this section, we first represent the Lagrangian mass transport velocity for A = 0.5 m,
h = 5 m, and different values of viscosity. Then we focus on local temperature fields and
heat flux exchange at the free surface.

5.1. Lagrangian mass transport velocity
For waves of large amplitude, the laminar boundary layers at the seabed and at the free
surface become unstable, and turbulence may be generated (Brocchini & Peregrine 2001).
The effect of ocean turbulence can be included by considering simplified models based
on constant eddy viscosity with values much larger than the kinematic viscosity of water
(10−6 m2 s−1) – a well-established approach in physical oceanography (see e.g. Weber &
Christensen 2019). We point out that ν ∼ O(10−2)−O(10−3) m2 s−1 corresponds to eddy
viscosity values previously adopted in physical oceanography to model the turbulent free-
surface ocean boundary layer (Huang 1979; Dutykh 2009; Higgins et al. 2020). Similar
values have been used to represent breaking-waves effects (Tian et al. 2010), leading to
significant mass transport (Deike et al. 2017), which is not considered in this work.
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Figure 1. (a) Variation in near free-surface Lagrangian mass transport velocity UL with vertical coordinate b
for A = 0.5 m, h = 5 m, ω = 1.5 rad s−1 and (constant) viscosity νs = νm = 0, 10−4, 10−3, 10−2 m2 s−1. The
black line represents the inviscid approximation ULi . (b) Eddy viscosity profiles defined by (3.20) and listed
in table 1. (c) Plot of UL versus b for A = 0.5 m, h = 5 m, ω = 1.5 rad s−1 for the eddy viscosity profiles
in (b). (d) Behaviour of free-surface mass transport velocity U0 versus h, ω and fixed A = 0.5 m, νs = νm =
10−2 m2 s−1.

Figure 1(a) shows the behaviour of the Lagrangian velocity UL (3.38) with respect to the
Lagrangian coordinate b for ω = 1.5 rad s−1 and constant eddy viscosity values νs = νm =
10−4, 10−3, 10−2 m2 s−1. In the same figure, we also depict the inviscid approximation
ULi (3.37), represented by a black curve. We observe that the inviscid approximation is
characterised by the highest velocity at the free surface, whereas for b < δ, each profile
quickly approaches ULi . We now examine the impact of various eddy viscosity profiles
(3.20) on the behaviour of UL for ω = 1.5 rad s−1. Table 1 provides a summary of nine
profiles along with their respective parameters, where δm = √

2νm/ω. For clarity, these
nine eddy viscosity profiles are also depicted in figure 1(b). Profile 1 corresponds to the
case of constant eddy viscosity. Profiles 2–5 are characterised by an exponential decay
starting from b = −δm/2, whereas the decay of eddy viscosity in profiles 6–9 occurs at
a deeper value, b = −3δm . Profiles 3, 5, 7 and 9 are characterised by a linear increase
in eddy viscosity from the free surface (b = 0), whereas the remainder exhibit a constant
value before the decay begins, i.e. νs = νm in −l < b < 0. Finally, the different values
β = 4.88, 48.8 m−1 determine the slow or rapid exponential decay in b < −l, respectively.
Figure 1(c) illustrates the Lagrangian mass transport velocity UL for each of the profiles,
along with the inviscid approximation ULi . We immediately note that the constant profile
1 exhibits the smallest value of U0, whereas ULi has the greatest mass transport velocity
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Profile νs (m2 s−1) νm (m2 s−1) β (m−1) l/δm

1 10−2 10−2 0 ∞
2 10−2 10−2 4.88 0.5
3 10−3 10−2 4.88 0.5
4 10−2 10−2 48.8 0.5
5 10−3 10−2 48.8 0.5
6 10−2 10−2 4.88 3
7 10−3 10−2 4.88 3
8 10−2 10−2 48.8 3
9 10−3 10−2 48.8 3

Table 1. Parameters describing the eddy viscosity profiles defined by (3.20) and shown in figure 1(b). The
corresponding Lagrangian mass transport velocity behaviour is depicted in figure 1(c).

value at the free surface. Profile 2 features constant eddy viscosity up to b = −δm/2,
beyond which it decays exponentially. Here, the velocity profile resembles that of profile
1, though with a slightly higher value in the range −l < b < 0. For b � −l, the profile
mirrors the behaviour of ULi due to the exponential decay of ν. Profiles 3, 5, 7 and 9, all
characterised by the smallest νs , yield velocity profiles that closely align with the inviscid
approximation. This indicates that when the free-surface eddy viscosity νs is small, the
Lagrangian mass transport velocity can be approximated as UL ∼ ULi with good accuracy.
The main difference occurs in a region close to the free surface, where viscosity effects
are dominant. Specifically, profiles 7 and 9 allow greater mass transport velocity because
of slower increase in ν with depth. Also, we note that the exponential decay does not
have a significant effect. Profile 4 represents a profile that has constant eddy viscosity
in the range −δm/2 < b < 0, and a rapid (exponential) decrease in ν for b < −δm/2.
In particular, the corresponding mass transport velocity has a bump in the region close
to b = −l, then quickly approaches ULi due to a rapid exponential decay in ν. Curves
for profiles 6 and 8 are practically coincident with that for profile 1. This is due to the
constant value of ν in the range −3δm < b < 0, and the exponential decay of eddy viscosity
occurring outside the boundary layer thickness δm . We note that although the curves
for mass transport velocity are indistinguishable, the corresponding eddy viscosity and
thermometric conductivity profiles result in significant differences in the temperature field
and heat transfer, as analysed in the next subsection. Figure 1(d) shows the mass transport
velocity at the free surface U0 versus wave frequency and water depth for constant eddy
viscosity νs = νm = 10−2 m2 s−1. The velocity U0 increases with ω as also shown by
(3.39). Furthermore, U0 increases or decreases with water depth h, depending on whether
the value of wave frequency is greater or smaller than ω ∼ 1.5 rad s−1, underlining the
importance of the new finite-depth results that we have derived. We highlight that among
the important consequences, the greater U0, the greater the total heat flux Q, as also shown
in (4.23).

5.2. Temperature field and heat flux
We now investigate the behaviour of the steady-state temperature field (4.10)–(4.11) and
heat flux generated by a heat source of finite length L = 20 m for fixed water depth h = 5
m, wave amplitude A = 0.5 m, wave frequency ω = 1.5 rad s−1, wavenumber k = 0.264
m−1, and the eddy viscosity profiles adopted in the previous subsection. Figure 2 shows the
normalised temperature fields T/T0 in the plane (b/δT , x/L), where δT ∼ 3.64

√
χm L/U0

for each of the nine profiles listed in table 1. We observe that the thermal boundary layer
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Figure 2. Steady-state normalised temperature field T/T0 in the plane (a/L , b/δT ) for A = 0.5 m, h = 5 m
and ν = χ . (a–i) The results for profiles 1–9, respectively, listed in table 1.

thickness is approximately b ∼ δT at a ∼ L , and is larger than the viscous boundary layer
thickness δ. This can also be predicted by recalling that the order of magnitude of δT
is O(3.64

√
χ/(ε

√
ω)), i.e. δ ∼ εδT , which implies that δ is approximately an order of

magnitude smaller than δT (Michele et al. 2023). Furthermore, we note that in each case,
the growth of this thermal boundary layer is very rapid at a ∼ 0 and slows down as a
increases. Figure 2(a) shows that the case of constant thermometric conductivity (profile 1)
is characterised by the greatest normalised thermal boundary layer thickness because dif-
fusion properties remain constant with depth. Similar behaviour is displayed in figure 2(f )
representing profile 6. The temperature fields depicted in figures 2(b) and 2(c) represent the
results for profiles 2 and 3, and are similar to each other. However, the sudden increase in
ν for profile 3 causes greater rightward bending of T in figure 2(c) due to a greater UL . In
figures 2(d) and 2(e) we observe a smaller normalised thickness, primarily due to the rapid
exponential decay in χ for b < −l. The temperature is almost uniform in −l < b < 0, and
this will result in a small heat flux due to the gentle temperature gradient as b approaches
0. Figures 2(f ) and 2(g) depict the temperature fields corresponding to profiles 6 and 7. We
note that the boundary layer thickness is similar to what is shown in figure 2(a). However,
significant differences can be observed in figure 2(g) at small values of b, where χ in-
creases linearly. Figures 2(h) and 2(i) show the results for profiles 8 and 9. There are some
similarities with the temperature fields depicted in figures 2(f ) and 2(g), except that the
thermal boundary layer thickness is smaller. This is because the exponential decay of χ is
much more rapid, preventing the temperature from spreading into the region b < −l. Let us
now analyse the behaviour of the averaged steady-state heat flux ratio Q/Qc, where Qc is
the heat flux (4.23) evaluated in inviscid flow conditions, i.e. using (3.37) instead of (3.38),
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Figure 3. (a) Averaged heat flux ratio Q/Qc and (b) averaged heat flux Q versus wave frequency,
for A = 0.5 m, h = 5 m, and each eddy viscosity profile listed in table 1.

and constant thermometric conductivity throughout the water depth χ = χm . Figure 3(a)
illustrates the behaviour of Q/Qc with varying wave frequency for the eddy viscosity
profiles listed in table 1. We observe that the curves for profiles 1, 6 and 8 reach the
largest values. Specifically, the blue curve for profile 1 is approximately 0.9, representing
the effect of the decrease in Lagrangian mass transport velocity within the viscous layer
relative to the inviscid approximation ULi . Notably, the heat flux tends to increase with the
square root of U0, as also shown in (4.23). This highlights that neglecting the effect of the
free-surface viscous boundary layer leads to an overestimation of free-surface heat transfer.
Profiles 4 and 5 share a common feature: the rapid exponential decrease of thermometric
conductivity in b < −δm/2. This implies that the temperature gradient in b ∼ 0, and con-
sequently Q, is smaller than in the case of constant eddy viscosity. As a result, T remains
almost constant and confined to a region very close to b = 0 (see also figure 2d,e). This
explains why the green and purple curves in figure 3(a) attain values much smaller than
unity. Results for profiles 3, 7 and 9 are similar to one another, with curves ∼ 0.5. This is
associated with a decrease in χ towards the free surface, and a steep temperature gradient,
resulting in a significant heat transfer ratio despite νs � νm . The reason why this behaviour
is not observed for profile 5, which is also characterised by the linear decrease in χ , is that
χ rapidly reaches χ = χm at b = −δm/2 before decreasing rapidly at greater depths (large
β). This is also evident in figure 2(e), where it can be seen that T is almost constant
and entirely confined within the free-surface boundary layer. Profiles 2 and 3 give similar
results; this means that for small l and β, the impact of χs being smaller than χm is not
significant. We conclude by analysing Q for the same eddy viscosity profiles. Figure 3(b)
presents the behaviour of the averaged heat flux versus wave frequency, where each curve
corresponds to a different profile case. These curves can be broadly classified into three
groups based on the free-surface thermometric conductivity and l. Profiles with higher χs
and l (profiles 1, 6 and 8) are associated with greater free-surface heat flux. Variations
within the same group are attributed to differences in the shapes of the thermometric
conductivity and eddy viscosity profiles, as discussed previously. Note that Q reaches
values of O(−104)−O(−105) W m−2, which are significantly higher than the measured
latent heat fluxes in the ocean, typically of order O(102) W m−2 (Yu & Weller 2007).

6. Conclusions
This paper has described a mathematical model of free-surface heat transfer forced
by long-crested progressive waves in the presence of free-surface and seabed viscous
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boundary layers. The velocity field and steady-state convection–diffusion equation for
water temperature are solved by means of Lagrangian coordinates and Fourier transform.
We derived a new form of Lagrangian mass transport velocity that is valid throughout the
entire water depth, and obtained analytical solutions that account for spatial variations
in eddy viscosity. Our investigation into the effects of various eddy viscosity profiles
revealed that neglecting the free-surface viscous boundary layer leads to overestimation
of the Lagrangian mass transport velocity. This has a crucial impact, particularly for the
analysis of mass transport phenomena coupled with wave-induced hydrodynamics, such
as the spreading of microplastics or pollutants. We then analysed the effect of heat sources
of finite length localised at the free surface, and demonstrated that the total heat flux is
significantly influenced by the boundary layer structure and the behaviour of thermometric
conductivity within the free-surface thermal layer. Specifically, we found that when the
thermometric conductivity decays rapidly just beneath the free surface, there is a decrease
in free-surface heat transfer. Conversely, when the eddy viscosity increases slowly from
the free surface, the opposite occurs, resulting in greater heat flux values. In addition,
we derived an explicit expression for the temperature field that is valid for constant eddy
viscosity, and found that heat flux increases with the square root of the Lagrangian mass
transport velocity. This implies that neglecting the effects of the free-surface viscous
layer leads to overestimation of heat transfer. We also discovered that the free-surface
pattern positively enhances heat flux, yielding second-order effects proportional to the
square of wave steepness. This result is independent of the behaviour of eddy viscosity or
thermometric conductivity, and was previously identified for deep-water waves by other
authors. However, here the result is generalised and valid for finite water depth.

The present mathematical model is limited to two-dimensional viscous and thermal
boundary layers driven by simple heat source distributions, without accounting for
complex effects such as the coupling between momentum and thermodynamic equations.
It should be noted that our model can be extended to random waves by superposition
of monochromatic components. However, when the wave field varies spatially, as in
random waves, an Eulerian mean velocity forms, known as the return flow underneath
wave groups (Longuet-Higgins & Stewart 1962), and the velocity field becomes more
complex. This extension would facilitate a more detailed investigation of mass transfer
phenomena in real seas. Expanding the model to encompass more complex domains,
fluid properties and velocity fields could also provide valuable insights into additional
topics of considerable practical interest in fluid mechanics, such as free-surface boundary
layer instability influenced by temperature. Additional effects not considered here, such
as those due to capillary waves and breaking waves, are obviously important. We have
shown that the increase in surface area yields greater heat flux, and these phenomena
are potentially capable of making important contributions. In this work, we adopt
the simplistic assumption of prescribing the temperature on the free surface (i.e. a
Dirichlet boundary condition). Although this approach is suitable for laboratory-controlled
environments, in realistic oceanic environments, the heat flux should be prescribed instead
(i.e. a Neumann boundary condition), and additional effects such as evaporation and wind
should be considered to capture more accurately the complex heat transfer mechanisms on
the free surface. Analysis of these airside processes should be addressed in future work,
and we expect the results in the present paper to act as a starting point for such an analysis.
In addition, an accurate understanding of subsurface temperature distribution, particularly
in the presence of heterogeneous fluid layers, is advantageous in other research areas,
such as melting sea ice. Furthermore, the model could serve as a basis for extending
satellite measurements of ocean surface temperature to subsurface layers, enabling a
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more comprehensive understanding of boundary layer temperature profiles without relying
solely on in situ sensors.
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