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The dynamics of thin, non-circular droplets evaporating in the diffusion-limited regime is
examined. The challenging non-rectilinear mixed boundary problem this poses is solved
using a novel asymptotic approach and an asymptotic expansion for the evaporative flux
from the free surface of the droplet is found. While theoretically valid only for droplets
that are close to circular, it is demonstrated that the methodology can successfully be
applied to droplets with a wide variety of footprint shapes, including polygons and highly
non-convex domains. As our solution for the flux fundamentally represents a novel result
in potential theory, the applications are numerous, as the mixed boundary value problem
arises in fields as diverse as electrostatics and contact mechanics. Here, we demonstrate
the practicality of our result by considering the analytically tractable case of deposition of
solute from large droplets in detail, including a matched asymptotic analysis to resolve the
pressure, streamlines and deposition up to second order.
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1. Introduction

Evaporation of droplets is ubiquitous in the world around us. However, despite the apparent
simplicity of the geometry, the dynamics involved is typically very complex. Gaining a
theoretical understanding of the process is thus of particular importance due to the key role
droplet evaporation plays in everything from inkjet printing, to the spreading of pesticides
on leaves, to diagnostic applications of blood drying (Brutin & Starov 2018; Mampallil &
Eral 2018). As a result, determining the evaporative flux of liquid from the free surface
into the surrounding gas has become a key goal of modellers, as this will drive the internal
fluid motion, and consequential dynamics of the droplet.

However, even within well-established regimes such as diffusion-limited evaporation,
finding analytical expressions for the evaporative flux is difficult, while numerical
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simulations can be expensive and challenging. In diffusion-limited evaporation, vapour
diffuses away from the free surface of the droplet sufficiently quickly that the process may
be taken to a reasonable approximation to be steady, so that the concentration of vapour
satisfies a mixed boundary value problem for Laplace’s equation. Mathematically, this is
a notoriously challenging problem, with singularities induced at the contact line of the
droplet. Perhaps unsurprisingly, the solution — and hence, the flux — depends strongly on
the geometry of the droplet. Exact solutions are scarce: some examples of known solutions
for the evaporative flux of droplets in isolation include the flat disk (Weber 1873; Copson
1947), flat ellipse (Boersma & Danicki 1993), spherical cap (Popov 2005) and ellipsoidal
cap (Kellogg 1929) but few others.

For more complicated geometries where techniques such as separation of variables and
transform methods fail, we can make progress when the droplet profile is such that it
may reasonably be treated as thin. For many situations, once a droplet has been deposited
onto the substrate, its contact line becomes pinned on surface roughnesses so that the thin
assumption is equivalent to assuming that a typical contact radius, say R, is much larger
than the initial thickness of the droplet, say H, so that H/R < 1. Pinning persists for the
majority of the evaporation (Hu & Larson 2002) and, indeed, may be further enhanced in
solute-laden droplets when solute particles accumulate at the edge of the droplet (see, for
example, Orejon, Sefiane & Shanahan 2011; Weon & Je 2013), so that the thin assumption
continues to hold.

When a droplet is thin, the Laplace problem may be linearised into a half-space problem,
so that the most sensible starting point for finding the evaporative flux is to use a Green’s
function formulation to relate the evaporative flux on the droplet to the known vapour
saturation concentration through an integral equation. Various different approaches for
expanding the Green’s function kernel may then be used to invert the integral. For simpler
geometries, the solution may be found exactly, such as a disk (Sneddon 1966) or — for
suitable saturation concentrations — for an ellipse (Kellogg 1929; Galin, Moss & Sneddon
1961). However, for more complicated geometries, we must again turn to numerical and
approximate solutions (see, for example, Borodachev & Galin 1974; Okon & Harrington
1979).

This is particularly problematic due to the numerous uses of these evaporative models,
such as in the explanation of the famous ‘coffee ring’ effect (Deegan et al. 1997,
2000; Han & Lin 2012; Thiele 2014): in many practical situations, the liquid contains a
non-volatile component and the pertinent quantity of interest is the final distribution of
this component once the liquid has fully evaporated. Common examples of applications
include colloidal patterning and the fabrication of microscale electronics (see, for example,
Harris et al. 2007; Choi et al. 2010); fabrication techniques using inkjet printing (Layani
et al. 2009) including printing organic light-emitting diode (OLED) screens (Eales et al.
2015); optical mapping of DNA (Jing et al. 1998); pesticide application (Basi, Hunsche
& Noga 2013) and blood analysis (see Smith & Brutin (2018) and the references therein).
These models typically couple the flow of liquid, and hence the solute, inside the droplet
to the evaporative flux (Deegan et al. 1997; Dey, Doumenc & Guerrier 2016; Moore,
Vella & Oliver 2021; Wray et al. 2021), which is determined by the dominant evaporative
process (Murisic & Kondic 2011), which in turn depends on material and thermodynamic
properties of the liquid, the surface the droplet lies on, and the surrounding atmosphere.
While we focus on diffusion-limited evaporation here, other models may be suitable for
different rate-limiting processes (Murisic & Kondic 2011; Wilson & D’ Ambrosio 2022).
This has resulted in a rapidly moving field examining numerous extensions to this problem,
including residues from droplets on inclines (Du & Deegan 2015), multiple droplets in

961 Al1-2


https://doi.org/10.1017/jfm.2023.229

https://doi.org/10.1017/jfm.2023.229 Published online by Cambridge University Press

Evaporation of non-circular droplets

proximity (Wray, Duffy & Wilson 2020; Wray et al. 2021), diffusive effects (Moore
et al. 2021; Moore, Vella & Oliver 2022), jamming effects (Popov 2005) and numerous
attempts at control (Mampallil & Eral 2018). However, a critical avenue is the behaviour
of non-circular droplets, with the only existing studies being numerical (Freed-Brown
2015; Séenz et al. 2017) or considering the early stages of deposit formation (Moore
et al. 2022). This is particularly surprising given the ubiquity of square/rectangular (Mai
& Richerzhagen 2007) and hexagonal (Huo et al. 2020) droplets in contexts such as the
printing of active matrix organic light-emitting diode (AMOLED) screens.

Here, we build upon the approach of Fabrikant (1986), which presents an approximate
solution for an arbitrary droplet geometry. In Fabrikant (1986), the form of the evaporative
flux is prescribed and related to an expansion of the surface concentration. However, for
many problems in evaporation, we actually require the opposite — the surface concentration
is the input and we seek a pointwise representation of the evaporative flux, which can
then be used in analysis of the internal flow dynamics and (when applicable) the solute
transport.

In this paper, we address this deficiency. We begin by formulating a problem for nearly
circular droplets in § 2, before presenting and analysing the Green’s function formulation
in § 3. We find an asymptotic solution for the evaporative flux valid up to second order in
terms of the perturbation parameter, which we show to be in excellent agreement to full
numerical simulations of the diffusion problem. In § 4, we utilise our results for the specific
application of determining the flow dynamics and final residue for large, nearly circular
solute-laden droplets, finding predictions of the effect of geometry on the ‘coffee ring’
effect that are in agreement with previous studies (such as Freed-Brown 2015; Sdenz et al.
2017; Moore et al. 2022). Finally, given potential applications in, for example, printing
OLEDs, we extend our analysis to consider regular polygonal droplets in § 5.1, and more
complex shapes in § 5.2, presenting results for the evaporative flux for general droplets, as
well as the internal flow and transport dynamics for large droplets. The results are again
shown to be in excellent agreement with numerical simulations.

We finish by noting that the results given herein are, to our knowledge, fundamentally
new results in potential theory. As a result, while we present them in the context of
evaporating droplets, we anticipate that they will be of interest to researchers in areas such
as nanobubbles and nanodroplets (Lohse et al. 2015), electrical contact resistance (Holm
2013), thermostatics (Lee & Chien 1994), flow through a porous membrane (Fabrikant
1985) and electrodynamics (Jackson 1999), among many others. These include famous
open problems, such as the capacitance of a square electrode at uniform voltage (Douglas,
Zhou & Hubbard 1994; Wintle 2004), the magnetic polarisability of rhomboid apertures
(De Meulenaere & Van Bladel 1977), the impressions of rectangular stamps (Borodachev
& Galin 1974) and the thermal conductance and electrical contact resistance of square
patches (Argatov 2011).

2. Problem formulation

Consider a droplet of liquid of constant density p and surface tension y lying on a flat
substrate. We work in cylindrical polar coordinates (r, 6, z) with the substrate lying in
the plane z = 0. The contact line of the droplet is located at r = apa(6), where ag is
the mean radius. The surface of the droplet is denoted by S. The configuration is shown
schematically in figure 1.

We assume that the droplet is thin so that, to leading order in the droplet aspect ratio § =
ho/ao, where hg is the maximum initial thickness of the droplet, it appears to be flat (Dunn
et al. 2008). We shall also assume that evaporation is taking place in the diffusion-limited
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(a) (b)

Figure 1. A schematic showing (a) a top-down and (b) a side-on view of a thin, nearly circular droplet
evaporating into the surrounding atmosphere. The droplet lies on a substrate in the plane z = 0 and its pinned
contact line is given by r = apa(6) = ag(1 + € cosnf) where 0 < € < 1. We seek the evaporative flux of
liquid vapour, J, from the droplet free surface, S.

regime (Sultan, Boudaoud & Amar 2005), so that the local mass flux from the droplet
J may be calculated from the vapour concentration ¢ (Popov 2005). In the far field, ¢
approaches the constant value ¢, while on the surface of the droplet it takes the constant
saturation value cgy;.

The system is non-dimensionalised according to

. D(c —cj o
c=%+@m—wM,J=J£%—@ﬂ (r,2) = ao(#, 2), (2.1a—c)
0

where D denotes the diffusion coefficient of vapour in the atmosphere and carets

denote dimensionless quantities. Immediately dropping the caret notation, the vapour
concentration satisfies Laplace’s equation

V2e=0inz > 0, (2.2)

subject to appropriate boundary conditions on z = 0, namely
dc .
c=1onS,; a—:OoutmdeS, 2.3)
Z

where S, is the projection of S onto the plane z = 0 (justified by the fact that § « 1) and
the far-field condition

c— 0asvVr2+ 72 — oc. (2.4)
Once ¢ has been determined, the flux J(r, 8) is given by

J=— % (2.5)
9z z=0
for (r,0) € Sp.
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3. Evaporative flux
This problem may be posed in a Green’s function formulation as

1
c(r,0,z) = 7= // G(,0',0;r,0,2)JF, 60 dr do’, 3.1
T Sp

where the standard Green’s function for Laplace’s equation with a Neumann condition on
) .
7 =0is

PRI 1 1 1
G(r,0,7;r,0,2) = —— + , (3.2)
47

|r — 7| [F—7|

where r = (rcos, rsin6,z), ¥ = (¥ cosd’, r' sin6’, 7’) and 7 is the image point of r in
the plane 7 = 0. Hence, by evaluating (3.1) and (3.2) on the droplet free surface, we find
from (2.3) that

1 I, 0
1= — // r.9) Fdr' do’. (3.3)
27 JJs, /12 4+ 12 — 2rr cos(6 — 6')

We examine the evaporation of a nearly circular droplet with a monochromatic contact line
of the form

a(@) =1+ ecosnb, 3.4)

where n € Nx». Note that n = 1 corresponds to a translation of the interface and so, even
for the non-monochromatic shapes discussed in § 5.1, this mode can be ignored without
loss of generality by appropriate selection of the centre of the droplet. Following Fabrikant
(1986) and Fabrikant (1991) we make use of the identity

1 2 min(r,r") dx x2
:—/ L(—,0—9/>,
V2 +r2 =2 cos(@—0) T Jo N2 =22 —x2 \rr
3.5)
where
1

[—fev 1 (3.6)

1
Lk, ¥) = T +

as first derived by Copson (1947). This allows the Green’s function to be written as a
composition of Abel-type operators and L-functions, which are easier to treat analytically,
allowing (3.3) to be re-written as

1 7 dx Zn a®) qy
= =l v A=
o 2N . / o
x 1+2};(E> cos (0 —0') | J(, ") 3.7)

on S,,. Note that this is formally only valid in a circle inscribed inside r = a(6), but we
shall see that the resulting solution does an excellent job of capturing the evaporative flux
even outside of this circle (as is seen, for example, in the numerical validation in §§ 3.1

961 All-5


https://doi.org/10.1017/jfm.2023.229

https://doi.org/10.1017/jfm.2023.229 Published online by Cambridge University Press

A.W. Wray and M.R. Moore

and 5.1). This has solution

J(r,0) = %ﬁ{l + €f 1 (r; n) cos nf + €[ fao(r; n) + fo2(r; n) cos 2n61},  (3.8)
fitm =P (3.9)
rin) =r 1— r2 s .
22 =) = (n—2)(1 — r?)
Jao(r;n) = )2 ; (3.10)
24 (1 — ") +2(1 1— ) =372 (1 = r"
foarimy = 2 )2 ;L(T)_( rz)zr L 3.11)

valid up to O(e?), as may be verified via direct substitution into (3.7). This result
constitutes the main contribution of the present paper. It shall be shown that this allows
for a wide range of newly (asymptotically) accessible shapes of droplets to be treated
analytically.

The leading coefficient 2a/m+/a* — r2 in (3.8) is the ansatz used by Fabrikant (1986).
While formally only asymptotically accurate at leading order (and thus equivalent to
1/+/1 —r2 away from the contact line), this form exhibits the correct square root
singularity exactly at the contact line (Jackson 1999). The numerator, and the exact
form of the denominator, result in the evaporative flux being smooth at r = 0 (if the
prescribed contact line is smooth). Certain quantities, such as the integral flux, can be
reasonably approximated by this leading-order solution (Fabrikant 1986, 1991). However,
high accuracy spatial resolution of the flux requires the higher-order corrections given in
(3.8)—(3.11). Note that, for example, under the Fabrikant ansatz the contours of constant
evaporative flux given by a/~/a? — r? = c are r = a~/1 — ¢ =2, so that all evaporative flux
contours are exactly scaled copies of the contact line, which is generally in stark contrast
to the solutions given by direct numerical simulations, as we see for various droplet
geometries in figures 2, 5 and 8.

It is well known that the late-time dynamics of solute transport in the coffee ring effect
is governed by the evaporative flux about the stagnation point in the droplet interior (here,
at its centre) (Witten 2009). Therefore, for reference, we note that the evaporative flux
given by (3.8) satisfies

2
J = 2 [1 — E—(n — 2)} +0(?) asr — 0. (3.12)
T 4

Notably, the effect of small azimuthal variations in the droplet contact set are significantly
weaker for n = 2 than for other modes. Moreover, a key factor in determining properties
of the developing coffee ring in the diffusion-limited evaporative regime is the behaviour
of the flux J local to the contact line (Moore et al. 2021, 2022; Saenz et al. 2017). For
reference, this asymptotic behaviour of J close to the contact line is given explicitly in
§4.2.2. For moderate values of € and/or n, this expansion quantitatively demonstrates that
the flux is enhanced close to regions of high curvature of the contact line and inhibited
at regions of lower curvature. However, we note briefly that J can diverge (unphysically)
towards negative infinity if € and/or n are chosen to be too large.

A feature of the model not seen in circular contexts is that the contact angle is
non-uniform. In the non-thin case, this would result in a varying strength of singularity
in the flux at the contact line. However, in this context it is sufficient to assume that the
contact angle is zero, so long as § <« €. In fact, this is a weaker assumption than another
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Figure 2. For caption see next page.

we have implicitly made: when linearising the mixed boundary value problem (2.2)—(2.4)
onto z = 0, errors are O(§), so that these are negligible up to second order in our expansion
for the evaporative flux provided that § < €2. To proceed to even higher orders in J(r, 0)
would necessarily introduce a more stringent restriction on the droplet aspect ratio.

The total flux of liquid into the surrounding air, F, is given by

F = /f JdS =4+ e2n+ 0(e™). (3.13)
S

We note that this result can be determined more rapidly via the reciprocal theorem
(Fabrikant 1987).

3.1. Validation

In order to validate these results, we compare against direct numerical simulations (DNS)
of the full system (2.2)—(2.5) computed using COMSOL Multiphysics (see Appendix A for
further details). Results are displayed for € = 0.1 and different values of n in figure 2. In
figure 2(a,c,e,g), we show contour plots comparing the second-order asymptotic prediction
given by (3.8) (dashed curves) and the numerical solution (solid curves). It is clear that,
even for a relatively large value of €, the agreement is very good, which can be further seen
when viewing the evaporative flux along rays of constant 6, as shown in figure 2(b,d, f,h).
This agreement holds even close to the contact line, where the flux diverges and we may
expect the asymptotic approach to break down due to the caveats surrounding Fabrikant’s
decomposition.
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Figure 2. Validation of (3.8) with € = 0.1 and, from top to bottom, for n = 3,4, 5, 6. (a,c,e,g) Contour plots
of the evaporative flux, J, where the dashed (black) curve is (3.8) and the solid (grey) curve is according to the
results of COMSOL. The solid red curve represents the pinned edge of the droplet. (b,d, f,h) Plots of J between
r = 0 and the nearest/furthest points on the contact line according to COMSOL (solid curve), leading-order
solution (dash-dotted curve), first-order solution (dotted curve) and second-order solution (dashed curve) for J.

We can probe the accuracy of (3.8) in further detail by considering the error metric

1 0.994-€ cos(nd) Jasy — Joum

e(@;n) = dr, (3.14)

0.99 + e cos(nb) J,—o

Jnum

where J5, and Jy,, are the evaporative fluxes according to asymptotic solutions and direct
numerical calculations, respectively. Essentially, e(6, n) represents an average relative
error in the flux prediction along a radial ray. Note that the ray is truncated just inside
the contact line — although past the circle at which the Fabrikant decomposition should
break down — due to the sensitivities associated with the evaporative flux singularity in
the COMSOL simulations. Using this metric, we find that, for two specific examples with
e =0.1,

e(0;3) =1.62 x 1073,  e(/3;3) =1.93 x 1073; (3.15a,b)
e(0;4) =3.02 x 1073,  e(m/4:4) =2.72 x 1073, (3.16a,b)
where the values of 6 have been chosen since these represent the points furthest and closest

to the centre of the droplet, respectively. Clearly, this is further support to the veracity of
the asymptotic prediction (3.8). Similar levels of agreement persist for other values of n.
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4. Application to gravity-dominated droplets

Up to this juncture, all of our analysis holds for any thin droplet — i.e. where the contact
radius is much larger than the initial maximum thickness of the droplet. However, to
explore the findings of the previous sections in an application, we now turn our focus
to large droplets where surface tension is dominated by gravity. Such droplets are often
called ‘pancake’ (or ‘puddle’) droplets, since the free surface is approximately flat over
the bulk of the contact set (Rienstra 1990), aside from a thin boundary region near the
contact line where surface tension is relevant; throughout this analysis we shall assume
that surface tension is sufficiently small that this boundary region plays a lower-order role
in the analysis so that we may neglect it. We shall periodically revisit the consequences of
this assumption in the sequel.

4.1. Internal flow dynamics

We begin by considering the evaporation-driven flow within the droplet. The analysis of
this section holds for pure liquids but also, as we discuss shortly, for droplets containing a
solute, provided that it is sufficiently dilute.

As described in § 2, the droplet is thin, with aspect ratio § = hg/ap < 1; as result,
to leading order, the droplet free surface h(r, 0, ), the depth-averaged liquid velocity
u(r,0,t) =u(r,0,e.+v(r,0,teg and the liquid pressure p(r, @,z t) satisfy the
thin-film equations, which, as discussed by, for example, Hocking (1983), Oliver et al.
(2015), are given in dimensional form by

oh J h? 5
—+V-lw)=—— u=--—-Vp, p=pum+pgh—2)—yV-h (41
ot P 3u
where V = e,0/0r + eg(1/r)0/00 is the two-dimensional gradient operator, u is the
liquid viscosity, pgs, is the ambient pressure of the surrounding gas and g is the magnitude
of acceleration due to gravity. Note that the second term in the pressure equation is the
hydrostatic pressure, while the final term comes from the curvature of the droplet.
The system (4.1) is non-dimensionalised using the scalings

r=apf, z=268a0z, I=tlyl, h= Saoh, 4.2)
U = Upfll, P — Dam = PEAOSP; (4.3a,b)

where 7. and u, are reference time and velocity scales, given by

Sa? D —
ref = #’ Uref = a _ M (4.4a.,b)
D(csat — c0) Lref pdagp
Hence, dropping the caret notation immediately, we find that
O oV .y = —J ol h L o2, (4.5)
—_— . u) — — . Uu———— s = —_ _—— s .
o1 a3 P " Bo
where
2
a
o="5% and coa=EET (4.6a.b)
83y
are the Bond and capillary numbers, respectively.
961 A11-9
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Assuming the droplet is sufficiently large that Bo >> 1 — and, for the sake of rigour, that
Bo > Ca, although for many typical configurations, the capillary number will be small,
(see for example, Moore et al. (2021), for a discussion) — we seek an expansion of the form

p=hy—z+Bo 'py+0Bo%), h=hy+ 0B,

u=uy+ OBo~") asBo— 0. 4.7

To leading order, clearly we must have V (hy — z) = 0 so that hy = ho(¢). Proceeding to
the next order, we see that the velocity is given by

2

Uy = —32-Vpo, (4.8)

where the pressure perturbation pg(r, 0, ) is related to the free surface evolution and the
evaporative flux via the thin-film equation

dh h
dto 38 Vzp()——./ forO<r<1+4+ecosnd, 0 <6 <2m. 4.9)

We require a suitable boundary condition to solve this: a physically reasonable one is to
impose no flux of liquid through the pinned contact line

3

—n- Vpo_Oonr_1+ecosn9 0<6 <2m, (4.10)
3Ca

where n is the outward-pointing unit normal to the contact line.

Hence, given the evaporative flux (3.8), the leading-order flow dynamics reduces to
solving (4.9) and (4.10), which we shall now pursue. In so doing, we drop the subscript
notation on the leading-order variables for brevity.

4.1.1. Free surface profile and droplet lifetime

To determine h(7), we consider the usual liquid mass conservation equation dV/df = —F,
which yields
14€ cos(nd) 21 1+€ cosnf
h(t) / rdrdé | = —/ / rJ(r,0)drdo = —(4 + €n),
r= 0 0
(4.11)

by (3.13). Hence, evaluating the integral on the left-hand side of (4.11), we find

(1+£>%+0< H =@+ + 0
T ) dr €)= €n €

— h=1-— é(4—|—62(n—2))+0(63). 4.12)

We therefore find that the droplet lifetime — that is, the time at which all the liquid has
fully evaporated — is given up to second order in € by

T 62
z=tf=z(1—z(n—2)). (4.13)

Notably, as for the expansion of the evaporative flux in the vicinity of the internal
stagnation point of the droplet (3.12), the perturbations to the free surface evolution and
the droplet lifetime are significantly smaller for the n = 2 case than for n > 2. We also
note that the conservation condition (4.11) guarantees the existence of a solution to the
Neumann problem (4.9)—(4.10).
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4.2. Liquid pressure

The liquid pressure may now be calculated from (4.9)—(4.10). To simplify the algebra, we
write

3Calh, 2 , oW
=——|-F+= Vi =2J. 4.14
P=3 [4r +RQ} = V0= (4.14)

4.2.1. Outer region
In the bulk of the droplet where 1 — r = O(1), the expression (3.8) for evaporative flux
may be expanded as J(r, 0) = Jo(r) + €J1(r, 0) + €2 (r,0) + - -+ ase — 0, where

2

Jo(r) = ——, 415
o) = —— (4.15)

2 2 . 2
N0 = (A =Pz m) = 1) cosnd, (4.16)

1
20 = [20 = 72 (f20(r; n) + foa(r; m) cos 2n6)
2

- %(1 +cos2n0)(3 — 2f1 (r; n)(1 — rz))] , (4.17)

where f1, f>0 and f>, are given by (3.9)—(3.11). This suggests seeking a solution for Q of
the form

O(r, 0) = Qo(r) + €(Coro + Q1(r) cos nb) + €2(Qa0(r) + 01(r) cos 2nd) + - - - (4.18)
as € — 0. We find that

00(r) = Coo — v/1 — 2 + tanh ' (/1 — r2) + logr, (4.19)

01(r 1) = Conr™ + ~r™ 21 (n) o Fy (E n41in+2; r2> ST 420
9 4 27 9y 9 2nm’
1 1
O20(r;n) = Copo + — (ﬂlO WV1=-rr+1hH+ —) , (4.21)
4 "8 N
2n 2
L wm T (2n — Drc — 2n)
021(r;n) = Conir 16n(1 — 12)372
2 2N\ —2, 3 3
L PO (@n = DBp@n+2, =) — 200+ DBaCn+1,-3) w

32n

where By (a, B) = fg =11 = P~1dris the incomplete beta function and ) (a, b; c; d)
=,F1(a, b; c;d)/I'(c) is the regularised hypergeometric function. The constants Copy,
Co10 and Cpyo are arbitrary undetermined functions of time (recall that the pressure is
determined by solving a Neumann problem). On the other hand, the coefficients Cp1; and
Co21 must be determined by matching to an inner region in the vicinity of the contact line
where our naive expansions for J and Q break down.
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4.2.2. Inner region
We introduce the local variable

r=1—er. (4.23)
Let us write J = J@(7,6) and Q = Q¥ (7, 0) in the inner region. Upon substituting the
scaling (4.23) into the evaporative flux (3.8) and expanding as € — 0, we find that the
local expansion of the evaporative flux is given by

. 1 . . .
JOF,0) = ﬁugk;, 0) +eJ\" (7, 0) + €21y (7, 0) + - ), (4.24)
where
0) V2
J () = —m 4.25
0 (6) ma/cos(nf) + r ( )
; 2n—1 0)+r
J%’)(?, 6) — (2n )cos(nf) + r’ (4.26)
227/cos(nf) + 1
J(i)(‘ 9) —4(2n(2n—>5)+3)7 cos(nd)+(3—4n(3n+1)) cos(2nd) —4(n—1)n+6r*+3
r,0) = .
2 32¢/2m/cos(nd) + 7
4.27)
Then, upon substituting this and the scaling (4.23) into the Poisson equation (4.9), we find
that
1 9? 1 9 1 92 N
B T R e (O (O 4.28
(62 a2 1 —6?8?+ (1 —er)? 892)Q 2 ( )

forr > —cosnf, 0 < 6 < 2m, while the no-flux condition (4.10) is given by

1900 9200 2
—1—€cosnf — — Q_ + € 0 + €2 n:Oon?:—cosn9,059<2n.
€ or 962 4
(4.29)

Together, these suggest that we seek an inner expansion of the form
Q¥ (F,0) = Coo + €(Q) (7,0) + €20\, (7. 0) + Q' (F. ) +--+)  (4.30)

as € — 0. Proceeding order by order in the standard way, we find the first five inner
solutions are given by

OV (7, 6) = Cro(0) — 7, (4.31)
: 22
0\, 0) = C12(0) + *Tf@os(ne) +1'2, (432)
. =2
0\ (7,6) = C11(8) — 27 cos(nf) — % (4.33)
@ - g ((10n — 1) cos(nB) + 97)(cos(nf) 4 7)>/2
Q3),(r.0) = C132(0) + 573 , (4.34)
05 (7,0) = Cpa(6) — L7(6.cos(nf)(Cj(6) + F) — 6nsin(nd) Cjo(6)
+ 3 cos(2n8) + 37C}y () + 27 + 3). (4.35)

It remains to determine the constants Cp11, Cpz; from the outer region (4.19) and the
functions Cy;(0) from the inner. This may be done by using a standard matching procedure
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(using, for example, an intermediate variable), and we find that

2 Sl )
Con=-—-—"-7o, 4.36
on =" D) (4.36)
1[2 AT+ 1) T'Qn+1)
Con = |~ - -8, 437
. 8["+ﬁ<F(n+%> F(Zn-l—%)) } &7
Cnp0) =Cpp@) =0, (4.38)
Cro(0) = Coro + (% - @) cos(nf), (4.39)
(n+3)

cos(2nf) | 1 2nI" (n) rn+1)
Cn@® =C kel - . (440
n(®) = Con+— [n +ﬁ<1“(n+%) F(2n+%)):| (340

The remaining unknown function Cj;(6) may be determined by proceeding to higher order
in the outer region, but since it is not needed in the present analysis, we shall forgo this.

4.3. Final residue

Having determined the flow dynamics, we may now investigate the transport of an inert,
dilute solute within the droplet whose concentration is given by ¢ = d)refq;, where @,.f
is the initial (uniform) solute concentration. We shall, once again, drop the caret on the
dimensionless variable going forward.

Under the dilute assumption, the flow and solute transport completely decouple and
the distribution of the solute may be analysed in detail by considering an appropriate
advection-diffusion equation for the solute concentration within the droplet (see, for
example, Wray et al. 2014; Saenz et al. 2017; Moore et al. 2021, 2022). However, in the
present analysis, we shall focus on the final residue at the contact line — the ‘coffee ring’ —
which simplifies the mathematics.

Previous studies (Freed-Brown 2015; Saenz et al. 2017; Moore et al. 2022) have
demonstrated that asymmetry in the contact line geometry leads to heterogeneities in the
coffee ring profile. This holds for both surface tension-dominated and gravity-dominated
droplets. In particular, the coffee ring effect is enhanced (respectively, inhibited) in regions
where the curvature of the contact line is larger (smaller). This effect can be shown to
arise purely due to the geometry of the droplet by considering a uniform evaporative
flux (Freed-Brown 2015; Moore et al. 2022), but is further exacerbated in regimes where
evaporation is diffusion-dominated, due to the enhanced flux in these high-curvature
regions (see, for example, Sdenz et al. (2017), but also note the plots in figure 2).

Here, we investigate this phenomenon quantitatively for a range of different droplet
geometries. As stated above, we shall concentrate on the variation of the final residue at
the contact line as a function of position. In our analysis, we shall neglect the effects of
any solute jamming or coupling between the flow and transport problems — this is very
likely to be important at later stages of the evaporative process for a real world scenario,
see, for instance, Popov (2005), Kaplan & Mahadevan (2015) and Guazzelli & Pouliquen
(2018) for a discussion of different models for finite particle size effects, and Moore et al.
(2021, 2022) for a discussion of the limits of the dilute regime — so that, by the time the
droplet fully evaporates, all of the solute has been transported to the contact line (Deegan
et al. 1997). We may exploit this fact to greatly simplify our calculations.
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Figure 3. Illustration of the geometrical methodology used to determine the final deposit D as a function of
position around the contact line. The deposit accumulated at the contact line between 6, and 6y, is precisely
the mass located in the region B.

In the thin-droplet limit, vertical diffusion of solute is sufficiently strong that the
distribution of solute is independent of z to leading order and, as shown by, for example,
Wray et al. (2021), the solute concentration is advected along particle paths, viz.

W _Hat_, ¥_2 (4.41)
dr h dt e r

Moreover, since pathlines coincide with streamlines due to the separable nature of time in
the flow, we can actually simplify things even further. Consider the situation in figure 3,
where two streamlines 6 = /(r; 6;) start at the source at the centre of the droplet and, by
dryout, reach the contact line at & = 6; where i = a, b, respectively. Then, the total mass
accumulated at the contact line between 6, and 6}, is exactly the total initial mass in region
B. As aresult, the density of the final mass accumulated at the contact line, D, is given by

_dM 1AM
~ds  ds/do do

1 M 1 M
= — = . (442)

o=t 1 @ o VE +a @ 6=

Thus, we have reduced the problem to determining dM /d6 at the contact line. Let <7 (6,)
be the area bounded by 6 = 0, the contact line, and the streamline 8 = ¥ (r; 6,), so that in
figure 3, <7 (6,) corresponds to region A. Then

I+ecos(nfy) pr(r;0,+86)

1+€ cos(nb,) aw
/

dM
dé,

—dr. 4.43
S a0, <" (445)

Thus, we now need to write v as a function of 6, (and r), which we pursue using the
differential equation

dy v _ pe

=—=3 for0 < r < 1 + €cosnb,, (4.44)
dr ru r<py

subject to ¥ (1 4 € cosnby; 6,) = 0,. Given that the pressure solution found in §4.2
is given in two distinct regions, we find a similar asymptotic structure holds for the
streamlines.
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4.3.1. Outer region
Since, for a nearly circular droplet, the streamlines will be small perturbations to a radial
ray, we seek an asymptotic solution of the form

V=0 tevi+eynto-, (4.45)

so that (4.44) gives

d(ey + €2y2) _ 6an sin(nf,)
dr r2(r—Qp)
g |:an1 cos(nf,) - 2nQ» sin(2nb,) n anQ/1 sin(2n9a)]
2(r— Qp) 2(r— Qp) 22— 02 |’
where Qp, Q1 and Q7 are given by (4.19), (4.20) and (4.22), respectively.
Unfortunately, analytic solutions for 11 and v, are not available for general n — although

for a specific n, asymptotic solutions and numerical solutions are relatively straightforward
to find. Here, for illustrative purposes, we examine the particular case n = 2. We find

Yi(r) = sin329a [Pm + lz(\/ 1 — 2+ P(tanh~ (V1 = r2) + 2log(r)) — 1)] , (4.47)
I

(4.46)

where Pp must be determined by matching. Similarly, at 0(62), we find

sin46, 4 312 41 +70Po;
P — — 4+
630 [ A 72

+3510g>(/1 = 2 + 1) = 5(14Po — 33) log(v/1 — 12 + 1)
L7072 Dlog(WT—r2+1)

Ya(r) =

2
r
N 701log r(v/1 — r2 + r2log(W/1 —r2 +1) — 1)
r2
4 43 + 70P¢1 210
-2 (= —273
+ ’ (74 + r2 + 1—r2 )
+351log>(r) + 35(1 4 2Pg;) log r], (4.48)

where Py again must be determined by matching.

As expected, this asymptotic solution becomes disordered close to the contact line, so
we turn to a boundary layer to determine the local streamlines and find the constants Pp1
and P 02.

4.3.2. Inner region _
Again utilising the scaling (4.23) and the expansion (4.30) for Q”), we seek an asymptotic
solution of (4.44) of the form

¥ =00+ + Pyl 4+, (4.49)
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as € — 0. The streamline equation (4.44) becomes

3/2., () (@)
LAY ) | 000)/06
€ dr Qﬁ’}z/ar

. -2 .
) 3Q§l/)z/39 ) aQ(z) Q(l) <8Q§1) - ;)

0 = (4.50)
3Q1/2/37’ a0 ar ar

for r > — cosn6,, where Q(l) Q(’)2 and Q(li) are given by (4.31), (4.32) and (4.33),
respectively. This must be solved subject to the boundary conditions

1// ( cosnb,) = 1//1/2( cosnb,) = 0. (4.51)

The inner problem is tractable for general n: solving successively yields

(ﬁr(n +1)—2r <n + %))

v =2 J/cos(nb,) + 7 sinnéy, (4.52)

r (n + %)
wl%(;) _ <_ ‘/;;(—j‘rt)l) ) (cos(nb,) + 1) sinnb,,. (4.53)

In the particular case n = 2, the first two inner solutions are thus given by

(’)( ) = zf\/msm%a, (4.54)

Y (F) = —3(F + cos(26,)) sin 20,. (4.55)
These can be matched against (4.47)—(4.48) in a similar manner to the pressure, yielding
Por=1, Py =-%. (4.56)

Hence, for n = 2, we may construct a additive composite solution for the streamlines by
combining (4.47)—(4.48) and (4.54)—(4.55), which takes the form

i 1— i 1 -
V() =6+ edi(n) + e wz<r>+e3/2w“< )+ ‘/’1(/)2( - r)

22 20, (1 ysin26, + 2S04 4 e,
—r Sln — €— —r Sln E COS
3 32V =1 m
(457

where the terms in the second line represent the overlap contributions between the outer
and inner solution, which have been determined using Van Dyke’s matching rule (Van
Dyke 1964).
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4.3.3. Mass determination
Finally, we wish to compute

dm
do

14+€ cosnf, 9
=/ r Ld dr, (4.58)
0 L

0=0,

and hence the density D given by (4.42). Since we only have a complete analytical
solution for n = 2, we shall present the residue calculation in detail for this example. It is
straightforward to extend the analysis to a particular n, although we are unable to present
a closed form solution for general n.

Given that we have inner and outer solutions for ¥, we can divide (4.58) into two
integrals by choosing 0 < € <« § <« 1, and then splitting the interval of integration into
(0,1 —6) and (1 — 6, 1 4+ € cos26,), where we use the outer solution for i in the first
interval, and the inner solution in the second. Thus, the density is given by

1 /H—e cos nb, 81ﬁ q (4 59)
= r—dr .
V(1 4 €cos26,)2 + (—e2sin26,)% Jo

D

2 1-5 4
~ (1 —600829a+€—(COS490— 1) / r—1[64 + €V + €2y ] dr
2 0 06,

—cos 20, 9 . ,
+ f (1 — eF)— [90 + 2yl 4 e2w§’)] (—e dF) (4.60)
8/e 96,

1
~ 5 + %(1 + 4log2) cos?26,

5| I+1log2 501 + 7072 + 11161log 2 — 1680 1log> 2
—€ +
3 3780

cos 49a:| (4.61)

ase — 0.

There are several interesting points about the preceding result. Firstly, if € =0, we
retrieve the expected uniform density D = 1/2 for a circular droplet. Secondly, when
€ > 0, we see that the coefficient of the O(¢)-term in (4.61) is maximised for 6, =
0, T — i.e. where the contact line has highest curvature — and minimised when 6, =
t/2,3m/2 — i.e. where the contact line has lowest curvature. Thus, we see the expected
enhancement (respectively, diminishing) of the coffee ring effect along the high-curvature
(low-curvature) parts of the contact line.

Thirdly, we note that, in the vicinity of zeros of cos 26, the O(€?)-term dominates the
O(e)-term in (4.61). Indeed, we moreover find that there are four regions in which the
perturbation of the density from the circular solution is o(e?); namely about

T 3w 5w n

Qa:Z—l—eot, T—E(X, T—i—ea, T—EO[

where
_ 70m? — 16801og” 2 — 1441log 2 — 759

o= (4.62)
1260(4log2 + 1)

To calculate the cumulative mass, M(6,), between the ray 6 = 6, and the horizontal,
we may integrate the density (4.61) around the contact line with respect to arc length s.

961 All-17


https://doi.org/10.1017/jfm.2023.229

https://doi.org/10.1017/jfm.2023.229 Published online by Cambridge University Press

A.W. Wray and M.R. Moore

Method c1 &) c3

—1038 — 3572 + 72log 2 + 84010g? 2
Asymptotics 12025 L(1+1og2) ~0.5644 n 2 log 2 8000872 L 0.1230
Numerics using € = 0.2 0.2478 0.5646 -0.1152

Table 1. Coefficients for the cumulative final mass at the contact line as a function of angle (4.63) according
to the asymptotic predictions (4.63) and numerical simulations for a droplet with n = 2.

Figure 4. Asymptotic results for the case n = 2, € = 0.2: the liquid pressure (darker shading corresponds to
higher pressure), contours of the evaporative flux (dashed curves) and liquid streamlines (solid curves).

We find that
M = 0,(% + €%c1) + ecasin 20, + €2c3 sin 46, (4.63)

where the coefficients ci, ¢z and c¢3 are given in table 1. For reference, we also include
numerical estimates of the same coefficients for ¢ = 0.2. We see that, despite the relatively
large value of €, the comparison between the numerical and asymptotic predictions of the
final residue is good.

Further details of the asymptotic solution for the n = 2 example are shown in figure 4.
We plot contours of the evaporative flux (dashed lines), while the liquid pressure (4.14)
is given by the shading, with the higher pressure corresponding to darker shading. The
pressure gradient drives a volume flux towards the contact lines, with the composite
streamlines (4.57) given by the solid curves. Note that the streamlines do not approach
the contact line perpendicularly as observed in the surface tension-dominated limit (Sdenz
et al. 2017; Wray et al. 2021). This is due the absence of the &7 ~ a — r zero of the interface
in the present work due to the neglect of the small surface tension boundary layer. In
practice, we anticipate that including this boundary layer would result in such behaviour
being recovered.

5. Droplets with polychromatic footprints
5.1. Evaporation of droplets with regular polygonal footprints

As discussed previously, it is very desirable to be able to determine the evaporative
flux for droplets with non-monochromatic footprints, especially shapes such as polygons.
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Shape N N>
Triangle 2 1
Square 2 1
Pentagon 3 4
Hexagon 3 5

Table 2. Suitable upper limits for the truncation of the Fourier series representations for the evaporative flux
for smoothed polygonal droplets (5.3). In all cases N3 = Ns.

However, exact polygons are problematic due to the presence of sharp corners (and hence
Fourier representations that do not decay), and so instead we apply our approach of §§ 3—4
to smoothed polygons. We note that Popov & Witten (2003) and Zheng, Popov & Witten
(2005) discuss the evaporative flux and associated deposition pattern for solute-laden flows
in sharp corners in detail.

To utilise our analysis in § 3, we seek a Fourier representation of a smoothed polygon as
follows. The parametric equation for a regular n-gon is

sec (9—2—“{““’%)'. (5.1)
n 27

This is evolved under the heat equation

ry =

ot rz 962"’ ’
while being normalised to have constant term unity, until the maximum curvature of f;
does not exceed 10 dimensionless units. This is then taken to be the shape of the droplet

a(6). An expression for the evaporative flux is then sought in the approximate form

Ny Ny
2 a
Va2 — 2 + ?Zli cnif1(r; ni) cos ni6 + E 20 (r; ni)

i=1

N3
+ > caifaa(r; ni) cos 2nif) ¢ (5.3)

i=1

where f1, f21 and f>; are given by (3.9), (3.10) and (3.11), respectively, and Ny, N, and
N3 are selected to minimise e(0, n) 4+ e(7/n, n). In all cases we find N = N3, and the
corresponding Ny and N, for different polygons are given in table 2. Note that for higher
polygons, the additional terms in the series are very small due to the decay of the Fourier
coefficients, and we suggest taking N1 = 20 and N> = 10 for good accuracy.

We plot the corresponding fluxes for triangular and square droplets in figure 5
alongside numerical simulations of the full concentration problem (2.2)—(2.4). As with the
monochromatic shapes, we see excellent agreement between the asymptotic and numerical
results, even with the additional approximations discussed above. In particular, using the
error metric defined in (3.14), we find

€(3,0)=9.6 x 1073, ¢(3,m/3)=1.2x 107 (5.4)
e(4,0)=1.1x 1072, e(4, mt/4) =19 x 1072, (5.5)
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(b)

J
25r

2.0F
1.5¢

1.0

0.2 0.4 0.6 0.8 1.0 1.2

(c) (d)

J
2.5+
2.0+
0. 1.5+
1.0+
s s s s s R
0.2 0.4 0.6 0.8 1.0 1.2

Figure 5. (a,c) Asymptotic (dashed) and numerical (solid, black) contours of evaporative fluxes;
(b,d) comparisons of asymptotic flux (solid curve) and numerical flux (dashed curve) for a smoothed triangular
droplet (a,b) and a smoothed square droplet (c,d). In (a,c), the red curves represent the pinned contact line. The
contact line shapes, and corresponding fluxes, are determined as described in § 5.1.

indicating strong agreement. These excellent comparisons give us encouragement to utilise
the asymptotic results in our considerations of the internal flow dynamics and solute
transport.

5.1.1. Internal flow dynamics of large droplets with regular polygonal footprints

For droplets with polychromatic footprints, we set No = N3 = 0 when modelling the
internal flow dynamics so as to avoid the second-order complications. We shall see that
this does not significantly diminish the resulting predictions. To this end, and following
the model presented in § 4.1, we find

A — 4’ 5.6
ar n/ (5.6)

and the liquid pressure has the expansion

N
Q(r,0) = Qo(r) + Z cniQ1(r; ni) cos nif, (5.7)

i=1
where Qg and Q; are given by (4.19) and (4.20), respectively.
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5.1.2. Residue from large droplets with regular polygonal footprints
Once we have determined the pressure, the streamlines terminating at the contact line at
0 = 0, satisfy

Y (r) =6a + Y1 (r), (5.8)
where
N
dyr; Do 1 . N
— = ~ ni ¢,; Q1 (r; ni) sinni6, (5.9
dr ~ 2p Qo) ; i
which must be solved subject to
Vilr=a = 0. (5.10)

In determining Q and ¥, we must first expand the evaporative flux in a Fourier series.
However, when expanding
2 a N
J(r,0) = P {1 + ;‘ cnif i (r; ni) cos ni } (5.11)
there are two contributions involving cosnif: one from expanding the a terms in the
leading coefficient, and one from that multiplying f;. While both of these contribute to
(1, in principle the two should be summed separately: the former up to N = oo and the
latter up to N = N (in accordance with table 2). However, it turns out that each separate
contribution is substantially more complicated than using the two combined. This therefore
suggests using two models: a ‘simple’ model where N = Ny, and an ‘extended’ model
where N = 0o. We shall present solutions from both approaches in the sequel and discuss
their accuracy and usefulness in reference to full numerical solutions.
Once the pressure and streamlines have been found, we may finally determine the
deposit density using

1 dm 1 ¢ 9
D = E = / r % dr.
/a2 + a% a [ a2 + ag 0 a
In order to facilitate our comparisons, we note that all solutions for the density may be
expanded as Fourier series of the form

(5.12)

D =dy+ Zdi cos nif, (5.13)

1

where the upper limit is chosen according to which model is used. We present asymptotic
and numerical calculations of the first few coefficients of this series in table 3 for a
number of different polygons. Both the simple and extended models are presented for the
asymptotic results, while we give numerical results for both smoothed and sharp polygons.
Throughout, we see that the asymptotic predictions do a remarkably good job of capturing
the coefficients, particularly given that the expression for the evaporative flux was derived
in the limit of nearly circular droplets. Finally, we note that, in practice it was found that a
mean of the simple model and the extended model gave the best agreement with DNS; we
term this the ‘averaged model’, and use it for the remaining comparisons.

We give comparisons between the various models for triangles and squares in figure 6
and for pentagons and hexagons in figure 7. In each case, the mass accumulated between
6 =0 and 6§ = 27 /n (i.e. for the first period) is plotted for the DNS for the sharp n-gon
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Method do dj d ds dy ds
Triangle
Smoothed numerical 0.389845 —0.185761  0.152323  —0.102641 0.0765863 —0.0551933
Simple approximate 0.365957 —0.188585  0.234613 0.0156282 0.0322937 —0.0327363
Extended approximate  0.371964 —0.19741 0.204035  —0.151659 0.113871  —0.0858848
Sharp numerical 0.333647 —0.148966  0.114942  —0.100272 0.0925472  —0.0794294
Square
Smoothed numerical 0.442415 —0.171044  0.115701  —0.0636093  0.0439018 —0.0298748
Simple approximate 0.433424 —0.196197  0.161807  —0.00288329 0.0193128 —0.018677
Extended approximate  0.435694 —0.199382  0.152589  —0.107735 0.0770608 —0.0550148
Sharp numerical 0.409369 —0.190932  0.140932  —0.116876 0.101247  —0.0896022
Pentagon
Smoothed numerical 0.464833 —0.153297  0.0954394 —0.0778922  0.0346092 —0.0200515
Simple approximate 0.460645 —0.183146  0.123048  —0.0874442  0.00728663 —0.0116989
Extended approximate  0.461384 —0.184498 0.123788  —0.0844159  0.0587529 —0.0407542
Sharp numerical 0.44519  —0.191098  0.133475  —0.109293 0.0938368 —0.082076
Hexagon
Smoothed numerical 0.476887 —0.132762  0.0791473  —0.061533 0.0261548  —0.0144765
Simple approximate 0.474262 —0.167634  0.103962  —0.07047 0.00588958 —0.00794147
Extended approximate  0.474668 —0.168374  0.104359  —0.0688598  0.0464603 —0.031108
Sharp numerical 0.464299 —0.178226  0.121561 —0.0949031 0.0800684 —0.0694642

Table 3. Fourier coefficients in the expansion (5.13) for the residue density, according to numerical
calculations for the smoothed polygon, the simple approximate model, the extended approximate model and
numerical calculations for the sharp polygon. The contact line shapes, and corresponding fluxes, are determined
as described in § 5.1. Notably, these coefficients only depend on the geometry of the contact line; there are no
other parameters involved.

(solid line), the DNS for the smoothed n-gon (dashed line) and the averaged model (dotted
line). In all cases the smoothed polygon DNS and the averaged model agree very well,
essentially obscuring one another for n > 4. For n = 3 there is a small deviation close
to the corner of the droplet. In all cases the sharp polygon demonstrates a significantly
sharper increase in mass close to the corner than for the smoothed polygon.

The second plot for each shape shows the pressure (coloured background), streamlines
(solid line) and contours of evaporative flux (dashed lines). The pressure is highest at the
centre and lowest at the corners, driving a flow that is predominantly radially outwards,
and preferentially towards the corners, hence the resulting streamlines. As anticipated, the
contours of the evaporative flux are approximately circular close to the centre, and better
approximate the shape of the contact line further out, as the effects of geometry become
more pronounced. This change in contour shape indicates the necessity of the corrective
terms in (3.8), compared with the simplified approach of Fabrikant (1986), for which the
contours are all scaled versions of the contact line profile.

The final plots show predicted residue densities according to the averaged asymptotic
model and the smoothed DNS model. In particular, to aid visualisation, the shape displayed
is all points whose (x, y) coordinates are within 0.2 dimensionless units of the contact
line, and lie between z = 0 and z = D. Again, the agreement is generally quite good,
although the triangle and square models show some disagreement along the straight sides.
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Figure 6. Comparison plots for triangles (a—d) and squares (e—f), showing (a,¢) mass accumulation, with
sharp polygon DNS as a solid curve, smoothed polygon DNS as a dashed curve and averaged asymptotic
model as a dotted curve; (b,e) pressure (background colour), streamlines (solid curves) and contours of equal
evaporative flux (dashed curves); (c,g) residue density according to the averaged asymptotic model; (d,h) the
residue according to the smoothed DNS model. In order to aid visualisation of the residue density in (c),
(d.g.h), we have plotted the one-dimensional density profile over a distance of 0.2 dimensionless units normally
inwards from the contact line.
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Figure 7. As in figure 6, for pentagons (a—d) and hexagons (e, f).
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Although the curvature is essentially zero here, the residue is still non-zero, indicating that
the residue density is not solely due the curvature of the contact line.

Finally, we note an important detail about the streamlines. In these cases, the streamlines
tend to converge towards the corners, as this is where the most liquid mass is being
lost due to evaporation. This is in contrast to the case where the system is surface
tension-dominated. For example, figure 3(e) of Sdenz et al. (2017) shows the streamlines
diverging close to the corners. This is due to the effect of the interfacial height approaching
zero there. We anticipate that, in our problem, similar behaviour would be observed in the
small, capillarity-induced boundary layer near the contact line that is not resolved here,
where our primary goal was to illustrate the usefulness of the solution for the evaporative
flux given by (3.8) and (5.3) in a specific application. Unfortunately, this means that
further analysis of this boundary layer would be necessary to facilitate comparisons with
experimental results such as those in Sdenz et al. (2017) to the residues predicted here.
However, with J(r, ) to hand, this is now something that can be readily addressed in
future studies.

5.2. Droplets with other polygonal footprints

We finish by examining two further polygons. The first is a rectangle, selected as one of
the simplest polygons which is not regular. The second is a five-pointed star, selected as a
strongly non-convex polygon. Their evaporative fluxes and residues are given in figure 8.

One interesting note is that, despite having the same curvature, the residue for the
rectangle at & = 0 is higher than that at 6 = 7t/2 by 30.6 % (for comparison, the contact
line at 6 = 0 is 47.4 % further away than at & = 1/2). It is noted that for higher aspect
ratios, the agreement between asymptotic solutions and DNS became weaker, especially
close to the origin. It is anticipated that this could be alleviated at least in part via the use
of Galin’s theorem (Sneddon 1966).

We note that for the star, despite high levels of curvature and strong non-convexity, good
agreement is still found for the contours of the evaporative flux, indicating that, at least for
smoothed polygons, this method is quite robust. What is more, we actually have large areas
of negative curvature here. As expected, the residue is very low in these areas.

Finally, we note that the contours close to the centre of the droplet are approximately
circles for the five-pointed star, and ellipses for the rectangle. This is in stark contrast
to the solution predicted by the leading-order solution of Fabrikant (1986), which would
predict star-like and rectangular contours all the way to the origin. Again, this highlights
the necessity and accuracy of the corrections to the evaporative flux derived herein.

6. Conclusions

In the present work, we have examined the evaporation of thin, non-circular droplets in
the diffusion-limited regime. The governing equations are a challenging non-rectilinear
mixed boundary value potential problem, which has various analogues in other disciplines,
including electro-/magnetostatics and contact mechanics. In this work, we have solved the
mixed boundary value problem using a novel asymptotic approach. This has yielded an
asymptotic expansion for the evaporative flux which is correct up to second order in the
small size of the contact line perturbation (3.8) and is shown to be in excellent agreement
with full numerical solutions of the mixed boundary value problem.

While the asymptotic solution is nominally valid only for droplets whose contact lines
are small, monochromatic perturbations to circles, we have further shown that the solution
can be used to determine the evaporative flux from droplets whose contact lines have large,
polychromatic disturbances, including shapes such as (smoothed) regular polygons (§ 5.1),
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Figure 8. (a,c) Asymptotic (dashed curves) and numerical (solid, black curves) contours of evaporative flux
and (b,d) residues for (a,b) a rectangle and (c,d) a five-pointed star. The red curve denotes the pinned contact
line of the droplet.

and even irregular and non-convex polygons (§ 5.2). Agreement between the asymptotic
solution and full numerical solutions was again shown to be very good.

This allows for the analysis of numerous problems in the field of droplets that were
previously inaccessible. This includes the classic ‘coffee stain’ or ‘coffee ring’ problem
of determining the residue from a solute-laden droplet. In particular, we examine the most
analytically tractable case, in which the droplet shape is dominated by gravity, yielding
a quasi-static flat interface, and where the contact line is assumed to be pinned (§4).
For small asymmetries in the contact line, we demonstrated the effects of one particular
monochromatic perturbation by finding the final pattern of solute up to second order, which
exhibits increased deposition at high-curvature parts of the contact line, in agreement with
previous studies of the coffee ring effect (see, for example, Freed-Brown 2015; Sdenz et al.
2017; Moore et al. 2022). Such behaviour is accentuated even further in large polygonal
droplets, which we demonstrated explicitly for a range of different cases, taking advantage
of the aforementioned strong agreement between the asymptotic form of the evaporative
flux and full numerical simulations.

While we have focused on the dynamics for droplets with a pinned contact line in this
study for illustrative purposes, deposition in other modes of evaporation, such as constant
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angle, stick-slide or stick-jump modes remains an interesting open problem. Indeed, for
many other modes, deposition has yet to be treated analytically even for a circular droplet,
save in certain special cases (Freed-Brown 2015). Nonetheless, these can be solved exactly,
and the methodology herein could in future be applied to a non-circular droplet.

Notably, close to the contact line, the flow patterns seen inside the large
gravity-dominated droplets studied herein are a significant departure from those seen in,
for example, the surface tension-dominated droplets analysed by Sdenz et al. (2017). This is
due to the fact that we have ignored the effects of capillarity. As discussed in § 4.3.3, even
at large Bond number there is a small boundary layer in which capillarity is significant,
and in which the interfacial height /2 goes to zero — a phenomenon which also of course
occurs in surface tension-dominated droplets. This boundary layer will locally alter the
streamlines so that they meet the contact line orthogonally as seen in the experiments of
Sédenz et al. (2017). The surface tension-dominated droplet problem can only be treated
analytically in certain special cases; it will form the focus of a forthcoming manuscript.

Finally, we reiterate that, while couched in the context of evaporating droplets here,
the fundamental result in this paper is in fact a generic result in potential theory. As
a consequence, this work will find applications in numerous fields such as elasticity,
thermodynamics, contact mechanics and electrostatics, among many others; some of the
corresponding problems in these areas are planned as a follow up to this work.
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Appendix A. Numerical methods
A.l. Evaporative flux

Numerical evaporative fluxes were determined by solving (2.2)—(2.4) using COMSOL
multiphysics. Under the thin assumption, the droplet was implemented as a
two-dimensional surface of the appropriate shape, on which the Dirichlet condition (2.3)
was imposed, while extending the problem symmetrically to z < 0 guarantees that the
Neumann condition on the non-wetted part of the substrate is satisfied automatically. The
far-field behaviour (2.4) was imposed by implementing a Dirichlet condition on a large
sphere centred at the origin of dimensionless radius Ry, >> 1. Extensive testing showed
that the results were insensitive to the choice of sufficiently large R;,;; we take Ry, = 500
in all our simulations.

A.2. Liquid pressure

Solving the thin-film equation (4.9) subject to (4.10) for the liquid pressure is an
under-constrained problem due to the Neumann boundary condition. While this can be
resolved in theory via an additional integral constraint, in practice it was easier to use the
method of false transients (Mallinson & de Vahl Davis 1973). This was implemented in
both COMSOL and Mathematica for verification, with solutions for all droplets presented
in this paper being in excellent agreement.

For the final steps of using the numerical pressure solution to compute masses
and corresponding densities, we integrated between suitable streamlines directly in
Mathematica.
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