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The change in direction of the wavevector and group velocity experienced by a wave
refracted at the interface of an anisotropic medium in uniform linear motion are deter-
mined analytically. These transmission conditions, which are shown to be consistent with
the generalised Snell’s law written in the laboratory frame, are then used to examine
the effect of motion on waves incident on a magnetised plasma. For an incident wave
in the plane perpendicular to the magnetic field the motion is observed to lead to non-
negligible deviation of the low-frequency X-mode, as well as to non-symmetrical total
reflection angles. These effects are shown to be further complicated when the magnetic
field is in the plane formed by the incident wavevector and the medium’s velocity, as the
anisotropy now competes with the motion-induced drag. Although obtained in simplified
configurations, these results suggest that accounting for motion when modelling plasma
wave trajectories could be important under certain conditions, calling for a more detailed
quantification of the effect of motion in actual diagnostics and plasma control schemes.
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1. Introduction

Wave propagation in moving media is affected by motion. Sorting out these
effects, one may arrange the manifestations of motion in two groups. A first group
gathers manifestations which manifest as ‘phase’ effects. One classical example is
the modification of the phase index of a wave due to a motion of the medium along
the wavevector, which materialises as the longitudinal Fresnel drag first postulated
by Fresnel (1818) and later demonstrated by Fizeau (1851). Another example is the
phase index difference between circularly polarised modes with opposite handedness
introduced by a rotational motion, from which arises polarisation drag (Fermi 1923;
Jones 1976; Player 1976). The second group gathers manifestations which manifest
as ‘ray’ effects. An example is the modification of the group velocity that leads to
the transverse drag or beam deflection experienced by a wave normally incident on
a moving medium (Jones 1975; Player 1975; Carusotto et al. 2003).

While these effects have received considerable attention in isotropic dielectrics,
notably since the realisation that drag effects can be enhanced in slow light
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conditions (Franke-Arnold et al. 2011), the case of magnetised plasmas has been
comparatively much less studied (Gueroult, Rax & Fisch 2023). On the other hand,
because plasma waves are extensively used for plasma control and diagnostics, accu-
rately modelling and quantifying the effect of motion on plasma waves are essential,
and correcting for the generally neglected effect of motion might be of importance
in a number of environments and applications. Information on the wave phase is for
instance routinely used for diagnostics in the form of Faraday rotation measurements
(Segre 1999; Van Eck et al. 2017), and it has recently been surmised that rotation
corrections could have important implications for these measurements, notably in
astrophysics. Specifically, interstellar magnetic field estimates are commonly inferred
from pulsar polarimetry measurements that fail to account for polarisation drag
in the rotating magnetosphere surrounding pulsars, and neglecting this effect has
recently been shown to possibly lead to errors in magnetic field estimates (Gueroult
et al. 2019). The effect of motion on the wave phase also creates opportunities to
develop plasma-based non-reciprocal devices, which have been shown to hold high
upside potential for light manipulation in the terahertz regime (Gueroult, Rax &
Fisch 2020). As shown above though, the effect of motion is not limited to the
wave phase: it can also affect the ray dynamics. It stands to reason that the effect
of motion on these rays might be equally important. For instance, given that the
effectiveness of cyclotron heating (Prater et al. 2008) and current drive (Fisch 1987)
in tokamaks depends crucially on the accurate modelling of the propagation of
radiofrequency waves across a moving plasma, it seems desirable to quantify what
the effect of the plasma motion on radiofrequency beams is. Light drag is also funda-
mentally a manifestation of momentum coupling between the wave and the medium.
Understanding how the ray dynamics in plasmas is affected by motion could thus
bring insights into this basic yet important problem, notably in relation to the use
of waves to drive rotation (Ochs & Fisch 2021a,b, 2022; Rax et al., 2023b,c,a; Ochs
2024). More generally, capturing the effects of motion on a plasma’s response to a
wave as seen by an observer in the laboratory frame is required to correctly deter-
mine wave accessibility in experiments featuring plasma flows. This is expected to
be particularly relevant for fusion devices based on centrifugal confinement mech-
anisms (Lehnert 1971; Endrizzi et al. 2023; Kolmes et al. 2024), where one must
know how a wave spectrum imposed by antennas outside the plasma is transmitted
or not into the moving plasma, and can from there be used to effectively manip-
ulate particles (Fetterman & Fisch 2008; Rubin et al. 2023, 2024). This may also
create new means to maintain communications with a satellite reentering the Earth’s
atmosphere, by leveraging possible effects of motion to attenuate if not circumvent
blackout (Rybak & Churchill 1971; Starkey 2015). Reversing finally the problem,
determining accurately the effect of a moving plasma screen on the path of light
between a distant source behind that screen and a static observer is expected to be
important for a number of astrophysical applications. This has notably been shown
to be true in the study of the physical properties of planetary atmospheres using
time and frequency transfers in atmospheric occultation experiments (Bourgoin et
al. 2019, 2021), where the assumption of an unmagnetised plasma made it possible
to make use of Gordon’s metric. It stands to reason that accounting for motion
could prove just as important when using similar techniques to now determine the
properties of magnetised plasma screens, such as a magnetosphere, or to model the
effect of the said screen on the measured time of arrival of pulses from pulsars
(Krishnakumar et al. 2021; Kumar et al. 2022).
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A challenge in determining the transverse drag that light incident on a moving
magnetised plasma experiences is that magnetised plasmas are anisotropic media.
For an observer in the laboratory frame this moving anisotropic medium then
appears bianisotropic (Kong 1974, 2008). This difference makes the analysis of
refraction at a moving interface, and thus of transverse drag, more involved than in
isotropic media (Player 1975; Carusotto et al. 2003). In particular, one in general
has to deal with two refracted beams which are each characterised by a group veloc-
ity vg that is at an angle to the propagation direction k. To avoid this complexity, a
number of studies on transverse drag in plasmas have examined particular configura-
tions – i.e. directions of the wavevector k, the background magnetic field B0 and the
medium velocity v – for which vg and k are aligned even if the medium is anisotropic
(Mukherjee 1975; Meyer-Vernet 1980). This is reminiscent of the fact that, although
the dielectric tensor of a cold magnetised plasma is anisotropic, propagation parallel
or perpendicular to the background magnetic field (k ‖ B0 or k ⊥ B0) is characterised
by a group velocity aligned with the wavevector vg ‖ k (Ginzburg 1964, p. 145). In
doing so the phase index of the mode does not depend on the direction of prop-
agation, which as we will show simplifies substantially the derivation of the beam
deflection angle. Yet, one expects that the geometry in actual applications will, at
least locally, not match these simplified configurations, motivating the development
of a more general theory.

In this paper we address this problem by constructing a general theory for refrac-
tion at the interface with an anisotropic medium in uniform linear motion, which we
use to derive a formula for the transverse drag experienced by a wave at oblique inci-
dence on this medium. In § 2, we begin by recalling the theory and manifestations
of Fresnel drag at the interface with a moving isotropic medium. Then, in § 3, we
extend this theory to the case where the moving medium is anisotropic, and briefly
show in § 4 how the obtained drag coefficients can be seen as generalised Snell’s
laws written in the laboratory frame. We finally apply in § 5 these new results to the
case of a moving magnetised plasma, showing that drag effects could be important,
especially at low frequency, and also compete with the plasma anisotropy. Section 6
summarises the main findings of this study.

2. Fresnel drag in isotropic media

As a primer for the upcoming derivation in § 3 of drag in moving anisotropic
media, we first recall in this section the theory of drag in moving isotropic dispersive
media.

A derivation of the drag experienced by an electromagnetic wave refracted at the
interface of a moving isotropic dispersive medium, generally referred to as Fresnel
drag, was first proposed by Player (1975), and soon after that discussed in the par-
ticular case of a plasma by Ko & Chuang (1978). The central point of this derivation
is, as we will show, to apply Snell’s law of refraction in the frame of reference in
which the interface between the medium and vacuum is at rest, using relativistic
kinematics arguments to rewrite variables observed in the laboratory frame in terms
of these same variables written in the rest frame of the interface. Note that because
we restrict ourselves in this study to a medium in rigid-body motion, the rest frame
of the interface is in fact the medium rest frame. We also consider here for simplicity
a wave incident on a moving medium from vacuum, but note that the generalisa-
tion to the case of an incident wave propagating in a material medium at rest in
the laboratory frame is straightforward. Lastly, when used with vector quantities the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000182
Downloaded from https://www.cambridge.org/core. IP address: 3.142.124.135, on 15 Apr 2025 at 08:21:39, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000182
https://www.cambridge.org/core


4 J. Langlois, A. Braud and R. Gueroult

β

ki

kt

vgt

θi

θt

ϑt

ex

ez

Σ frame

e′x

e′z

θ′i

θ′t

k′
i

k′
t

v′
gt

(n̄)

Σ′ frame

FIGURE 1. Light drag experienced by a wave at oblique incidence, as observed in the laboratory
frame � (left) and in the medium’s rest frame �′ (right). Here the moving medium is isotropic
at rest, so that the group velocity and the wavevector are aligned in �′. On the other hand,
because they do not follow the same transformation rules from one frame to the other, they are
misaligned in �.

adjectives normal, longitudinal and parallel (and tangential, transverse and perpen-
dicular) are used throughout this paper to indicate projections along (and in the
plane perpendicular to) respectively the interface normal, the wavevector and the
magnetic field.

2.1. Relations at the interface for a moving isotropic medium
Consider a medium in uniform linear motion with velocity v = vx̂ as seen in the

inertial reference frame of the laboratory �. In its rest frame �′ – which is also
inertial since v is uniform – the medium is assumed to be homogeneous, isotropic
and time dispersive. We note n̄(ω′) its optical index. The laboratory-frame coordinate
system is chosen so that the interface between this moving medium (half-space z > 0)
and the vacuum (half-space z < 0) defines the (O, x̂, ŷ) plane, that is, that the medium
moves parallel to its boundaries.

Consider now as illustrated on the left-hand side of figure 1 an electromagnetic,
monochromatic wave with angular frequency ω in � incident from the vacuum
onto the moving medium. We take for simplicity this wave to be in the (O, x̂, ẑ)
plane and accordingly write its wavevector ki = (kx

i , 0, kz
i ), though a generalisation

to a non-zero ky
i poses no particular problem. The angle of incidence relative to the

surface normal ẑ in � is written θi. We would like to determine the properties of
the refracted wave as seen in the laboratory frame �. To do so we will first consider
refraction as seen in �′.

To obtain the incident wave properties in �′ we use the fact that (ω/c, k) forms
the 4-wavevector in Minkowski coordinates. Its transformation to �′ is thus given
by the Lorentz transformation (Einstein 1905; Landau & Lifschits 1975, p. 125):

ω′ = γ (ω − kxv), (2.1a)

�: kx′ = γ
(
kx − vω/c2

)
, (2.1b)

kz′ = kz, (2.1c)

where γ = [1 − β2]−1/2 is the Lorentz factor with β = v/c. In vacuum, kc = ω and
one immediately finds
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ω′ = γω(1 − β sin θi), (2.2a)

kx
i
′ = γω (sin θi − β) /c, (2.2b)

kz
i
′ = ω cos θi/c. (2.2c)

Since the medium’s boundaries are at rest in �′, the spatial and temporal phase-
matching conditions of Snell’s law (S ′) must apply in �′ at the interface (z = 0)
(Player 1975). Using (2.2), one finds

ω′
t = ω′, (2.3a)

kx
t
′ = kx

i
′ = γω (sin θi − β) /c. (2.3b)

Here and throughout this study we denote respectively with indexes r and t reflected
and transmitted wave variables. Equation (2.3b) provides the tangential part of the
rest-frame transmitted wavevector. Meanwhile, the normal part may be determined
from the definition of the optical index, that is,

n̄(ω′) def= c
ω′

√
kx

t
′2 + kz

t
′2. (2.4)

With the refracted wavevector k′
t in hand we can now simply use the inverse

Lorentz transformation (�−1):

ω = γ (ω′ + kx′v), (2.5a)

�−1: kx = γ (kx′ + vω′/c2), (2.5b)

kz = kz′, (2.5c)

to obtain from (2.3)–(2.4) the laboratory-frame transmitted 4-wavevector:

ωt = ω, (2.6a)
kx

t = kx
i = ω sin θi/c, (2.6b)

kz
t = kz

t
′ = (γω/c)

√
n̄2(1 − β sin θi)2 − ( sin θi − β)2. (2.6c)

On the other hand, determining the refracted wave group velocity in � requires a
little more work. One can, however, take advantage here of the fact that the phase
and group velocity must be collinear in �′, as the medium is isotropic. Specifically,
one can write v′

gt = (c/n̄g)k̂′
t with n̄g = n̄ + ω′dn̄/dω′ the medium’s rest-frame group

index and k̂′
t the unit vector along k′

t. Then, since the group velocity transforms
between inertial frames like particle velocities, the Einstein velocity addition theorem
(Einstein 1905) can be used to give

vx
gt =

vx′
gt + v

1 + βvx′
gt/c

= c
kx

t
′ + n̄g

√
kx

t
′2 + kz

t
′2

βkx
t
′ + n̄g

√
kx

t
′2 + kz

t
′2

(2.7a)

and

vz
gt =

1

γ

vz′
gt

1 + βvx′
gt/c

= c
γ

kz
t
′

βkx
t
′ + n̄g

√
kx

t
′2 + kz

t
′2

. (2.7b)
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It is worth noting that using the same approach to derive the phase velocity in
� from its expression in �′ would lead to a different (an erroneous) expression
compared with what is given by (2.6) and the definition vφt = ω/kt. This is simply
because the phase velocity is not the spatial part of a 4-vector (Deck-Léger et al.
2021).

Putting these pieces together, we can finally derive the angle of refraction of the
wavevector θt and of the ray ϑt shown in figure 1, which from (2.3)–(2.4) and
(2.6)–(2.7) respectively are written

tan θt
def= kx

t

kz
t

= sin θi

γ
√

n̄2(1 − β sin θi)2 − ( sin θi − β)2
(2.8)

and

tan ϑt
def= vx

gt

vz
gt

= γ
n̄n̄gβ(1 − β sin θi) + ( sin θi − β)√
n̄2(1 − β sin θi)2 − ( sin θi − β)2

, (2.9)

where both n̄ and n̄g are evaluated in ω′ = γω(1 − β sin θi). We verify that (2.8) and
(2.9) are consistent with the results derived by Ko & Chuang (1978). One further
recovers the results of Player (1975) in the particular case of normal incidence θi = 0.
Finally these results are consistent with those of Gjurchinovski (2004) in the limit of
a non-dispersive medium, i.e. for n̄g = n̄.

An analogous, albeit simpler, treatment of the reflected wave shows that θr = θi,
i.e. the reflection angle must always be equal to the incidence angle.

2.2. Refraction diagram
Having derived expressions for the refraction angle (2.8) and for the beam devi-

ation angle (2.9), we now would like to provide some physical insights into these
manifestations. To do so we consider here the particular and simpler case of a
non-dispersive medium. The added contribution of dispersion is examined when
discussing plasmas in § 5.

To discuss the origin of drag manifestations, we use the refraction diagrams shown
in figure 2. These diagrams, in plotting the dispersion relation in (nx

t , nz
t ) space, are

similar to the isofrequency diagrams used for instance by Deck-Léger et al. (2021),
though in our case these diagrams further incorporate the physics of refraction at
the interface. To each incident vector corresponds a point on the unit half-circle
that represents propagation in vacuum. From there conservation of the tangential
wavevector component kx

i at the interface can be used to immediately deduce the
wavevector component along the surface normal kz

t . The refracted wave group veloc-
ity is then aligned with the normal to the dispersion curve at this point, whereas the
phase velocity is aligned with the orthoradial direction. To underline the effect of
motion, we consider in figure 2 these diagrams in both � and �′.

In �′ our moving medium is isotropic, so that the dispersion curve in (nx
t
′, nz

t
′)

is also a half-circle, with radius n̄. Equivalently the phase and group velocity are
aligned, as expected for an isotropic medium. This is illustrated in the refraction
diagrams on the right-hand side of figure 2. In contrast, we see moving to the
refraction diagrams on the left-hand side of figure 2 that the dispersion curve in
(nx

t , nz
t ) is distorted. This is the effect of motion. One finds in particular that the

dispersion curve is no longer a half-circle, and is notably asymmetrical with respect
to kx

i . As a result there is now a deviation between the phase and group velocity.
This is light dragging induced by motion.
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FIGURE 2. Refraction diagrams for a moving isotropic non-dispersive medium (β = 0.2) for two
values of the rest-frame refractive index n̄. The left-hand diagram corresponds to the laboratory
frame �, whereas the right-hand diagram corresponds to the rest frame �′. The solid black line
represents the vacuum dispersion curve for the incident wave. The solid coloured lines represent
the moving medium dispersion curves (n̄ > 1 in red and n̄ < 1 in green). The long black and
green/red arrows illustrate the incident and refracted wavevectors, respectively, for the particular
case of normal incidence. The short green and red arrows on the dispersion curve represent the
direction of the group velocity for the local wavevector.

Trying to shed light onto the origins of these manifestations, a contribution to the
distortion of the dispersion curve going from �′ to � is the misalignment between
the wavevectors expressed in these two frames. The latter is itself a result of rela-
tivistic aberration, as can be seen in the Lorentz transformation (2.1). Specifically,
since we find Snell’s laws to take their usual form in the rest frame �′, the inci-
dent wavevector for which a symmetrical dispersion curve is found is k′

i, which
is not aligned with ki as the relative motion introduces a change of the component
along the motion direction. This misalignment carries back to �′ through the inverse
Lorentz transformation written for k′

t, giving the dispersion curve in (nx
t , nz

t ) space
an asymmetrical shape.

Finally, another facet of this motion-induced asymmetry is the shift of the critical
angles above which total reflection occurs, as can be seen on the left-hand side
of figure 2 for n̄ < 1. For an isotropic medium at rest, the total reflection critical
angles are symmetrical ±θ c

i
′. This property comes naturally on the right-hand side

of figure 2 as the dispersion curve in �′ is again a half-circle centred on the origin.
However, we verify on the left-hand side of figure 2 that the shift of the dispersion
curve due to the motion leads to total reflection critical angles that are no longer
symmetrical.

3. Refraction laws for an anisotropic dispersive medium in uniform linear motion

Having reviewed in the previous section the main traits of Fresnel drag in a
moving isotropic medium, we can now examine how these results generalise to the
case of an anisotropic medium. The major modification introduced by the medium’s
material anisotropy lies in the loss of the collinearity between phase and group
velocities in the rest frame �′, which as we have shown above was an essential
argument in determining interface relations for the moving isotropic medium. An
added complexity is that an anisotropic medium supports several propagation modes
(denoted by an index α here), so that a monochromatic incident ray is refracted into
as many rays as there are modes.
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Our starting point is the dispersion function for the mode α in the medium at rest,
which we write here in generality as

D′
α

(
ω′, k′) = n̄α

(
ω′, k̂′) − k′c/ω′. (3.1)

We underline here that, importantly and unlike the isotropic case, n̄α is now a func-
tion of the direction of the wavevector k̂′. The dispersion functions of the different
modes then yield the dispersion relation∏

α

D′
α

(
ω′, k′) = 0. (3.2)

The dispersion relation (3.2) is classically used to determine ω′ for a given k′, or
vice versa. Here, however, we have seen in (2.3) that the continuity conditions
at the interface impose ω′ = γω(1 − β sin θi) and kx

t
′ = γω( sin θi − β)/c. The dis-

persion relation (3.2) is then instead used to recast (3.1) as an implicit equation
D′

α

(
ω′, kx

t
′, kz′

tα
) = 0 for the normal component of the refracted wavevector kz′

tα as
a function of the tangential component of the refracted wavevector kx

t
′ and the

rest-frame frequency ω′, which we write

kz′
tα

def=K′
α(ω′, kx

t
′). (3.3)

In other words,
D′

α

(
ω′, kx

t
′
,K′

α(ω′, kx
t
′)
) = 0. (3.4)

One further verifies that the inverse Lorentz transformation (2.5) does not affect
this wavevector component, that is to say kz

tα = kz′
tα, which gives

kz
tα =K′

α(ω′, kx
t
′). (3.5)

Equipped with the tangential and normal laboratory-frame wavevector compo-
nents (2.6b) and (3.5), respectively, and the Doppler-shifted frequency (2.2a), the
laboratory-frame transmitted phase angle (2.8) is written

tan θtα = ω sin θi

cK′
α

(
ω′, kx

t
′) . (3.6)

We stress that ω′ and kx
t
′ in (3.6) are not free variables but instead known functions

of the laboratory-frame incident angle θi and the laboratory-frame wave frequency
ω through (2.6b) and (2.2a).

Considering now the group velocity of the refracted wave, we can no longer take
advantage of the alignment of the phase and group velocities in the rest frame �′
used above for isotropic media. Instead we use here the definition (2.9) together with
the inverse Lorentz transformation (2.5) to formally express the beam deviation as
a function of the rest-frame wavevector and wave frequency, giving

tan ϑt = − ∂kz
t

∂kx
t

= −
[

∂kz
t
′

∂kx
t
′
∂kx

t
′

∂kx
t

+ ∂kz
t
′

∂ω′
∂ω′

∂kx
t

]

= γ

[
v
∂kz

t
′

∂ω′ − ∂kz
t
′

∂kx
t
′
]

. (3.7)
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Plugging in (3.4) then yields

tan ϑtα = γ

[
v
∂K′

α

∂ω′ (ω′, kx
t
′) − ∂K′

α

∂kx
t
′ (ω′, kx

t
′)
]

, (3.8)

where again ω′ and kx
t
′ are given by (2.6b) and (2.2a).

In magnetised plasmas the dispersion relations are often expressed in terms of
the components of the refractive index parallel and perpendicular to the background
magnetic field n‖ and n⊥. Pursuing this analogy, we can similarly recast our results in
terms of the refractive indexes parallel and perpendicular to the motion nx

t
′ = ckx

t
′/ω′

and nz
t
′ =N ′

α = cK′
α/ω′, which leads to

tan θtα = sin θi

N ′
α

(
ω′, nx

t
′) (3.9)

and

tan ϑα = γ

[
β

(
N ′

α(ω′, nx
t
′) + ω′ ∂N ′

α

∂ω′ (ω′, nx
t
′)
)

− ∂N ′
α

∂nx
t
′ (ω′, nx

t
′)
]

, (3.10)

where now

nx
t
′ = sin θi − β

1 − β sin θi
. (3.11)

We note that in the particular case where the rest-frame refractive index n̄α does
not depend on the propagation direction, as is notably the case for O-X and L-R
modes in magnetised plasmas (Ginzburg 1964), (3.4) reduces to

K′
α(ω′, kx

t
′) =

√(
ω′n̄α(ω′)

c

)2

− kx
t
′2. (3.12)

One verifies that plugging this result into (3.6) and (3.8) yields the laboratory-frame
transmitted angles (2.8) and (2.9) of an isotropic medium with refractive index n̄α.
Drag phenomena for this particular mode thus manifest essentially as in an isotropic
medium with the appropriate index.

4. Generalised Snell’s laws in the laboratory frame

The derivation of drag phenomena proposed in §§ 2 and 3 followed the approach
proposed by Player (1975), that is to say to derive laboratory-frame refraction prop-
erties from those determined in the medium rest frame. This is the path illustrated in
blue in figure 3. A different approach consists of modelling the interface directly in
the laboratory frame. Indeed, since the moving medium as seen from the laboratory
frame appears to have been bestowed additional properties as a result of motion
(for instance bianisotropy (Kong 2008) and spatial dispersion (Lopez 1997)), one
can seek to recast these additional properties in the form of generalised reflection
and refraction laws, which can then be directly applied in the laboratory frame (Pyati
1967; Kong & Cheng 1968; Mukherjee 1975; Huang 1994). This is the red path in
figure 3. In this section we make a brief digression to present this second approach
and underline the equivalence of the two approaches.

As we have seen in § 2, the relation for the tangential part of the refracted
wavevector is entirely deduced from continuity at the interface. On the other hand,
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[ωi,ki] [ω′
i,k

′
i]

[ω′
t,k

′
t][ωt,kt]

Λ

S ′ + D′

Λ−1

S + D

FIGURE 3. Representation of the two possible paths to derive the 4-wavevector of a beam
refracted at the interface with a moving medium. The blue path represent the approach orig-
inally proposed by Player (1975), which uses standard refraction laws written in the rest frame
(see §§ 2 and 3). The red path directly employs generalised Snell’s laws written in the laboratory
frame, in which motion appears as an effective property.

determining its normal component demands the dispersion function for the wave
in the medium. Generalising this to the laboratory frame thus entails determin-
ing an effective dispersion function D(ω, k), that is, the dispersion function that
characterises wave propagation as seen in the laboratory frame. This is simply a
generalisation of the previously defined rest-frame dispersion function (3.1). Here
we use the result derived by Censor (1980) that the dispersion relations of any linear
medium are covariant between inertial frames. This means that D(ω, k) can simply
be obtained by substituting to k′ and ω′ in D′(ω′, k′) their Lorentz transformation
in the laboratory frame, or mathematically

D(ω, k) =D′(ω′[ω, k], k′[ω, k]
)
. (4.1)

Given this laboratory-frame dispersion function, Snell’s law for the normal compo-
nent of the wavevector is then written

kz
t =K(ωt, kx

t ), (4.2)

where K is similarly the analogue of K′ in (3.4). The generalised Snell’s laws (S) in
the laboratory frame are thus written

ωt = ω, (4.3a)
kx

t = kx
i , (4.3b)

kz
t =K(ωt, kx

t ). (4.3c)

Since the equivalence of the two methods has already been demonstrated for the
tangential part of the wavevector, all that is left to do is to verify the consistency of
the two methods for the normal component of the wavevector, that is, (4.3c). Going
back to our rest-frame analysis, the rest-frame refracted wavevector k′

t verifies the
rest-frame dispersion relation, that is,

D′ (ω′
t, kx

t
′
, kz

t
′ =K′(ω′

t, kx
t
′)
) = 0. (4.4)

Meanwhile, substituting the laboratory-frame Lorentz transformation variables, and
noting importantly that the normal component of the wavevector is unaffected kz

t =
kz

t
′, one can write

D′ (ω′
t, kx

t
′
, kz

t
′ =K′(ω′

t, kx
t
′)
) =D′ (ω′

t[ωt, kx
t ], kx

t
′[ωt, kx

t ], kz
t
′ = kz

t
)

=D (
ωt, kx

t , kz
t
)

. (4.5)
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Putting together (4.4) and (4.5), this implies that kz
t verifies the dispersion relation

in the laboratory frame, or in other words that kz
t =K(ωt, kx

t ), which is precisely
(4.3c). The two methods, as illustrated in blue and red in figure 3, are thus indeed
equivalent.

To summarise, for a medium with known rest-frame dispersion function D′(ω′, k′),
the covariance of the dispersion function demonstrated by Censor (1980) can be
used to obtain the refracted wavevector directly in the laboratory frame. This result
is consistent with the rest-frame approach proposed by Player (1975) and used above
in §§ 2 and 3.

5. Application to moving magnetised plasmas

With the theory for the drag induced by a moving anisotropic medium in hand,
we can now examine more particularly how these effects manifest themselves in a
magnetised plasma in uniform linear motion with respect to the observer. We con-
sider first these effects for the ordinary and extraordinary modes classically obtained
for propagation perpendicular to the magnetic field, as the collinearity of rest-frame
phase and group velocities (Ginzburg 1964) simplifies the algebra. In doing so, we
recover previously established results, but also underline the important contribution
of dispersion and Doppler shift to dragging effects. We then examine the more
general case, making full use of the results from § 3.

5.1. Magnetic field normal to the incidence plane (O and X modes)
We consider here the moving medium to be a magnetised plasma with background

magnetic field B′
0 = B′

0ŷ in its rest frame. Given our choice to have the incident
wavevector ki in the (O, x̂, ẑ) plane, and the result that the Lorentz-transformed
k′

i for v = vx̂ is also in the (O, x̂, ẑ) plane, this corresponds as shown in figure 4
to perpendicular propagation in the rest frame �′. The normal modes are hence
classically the ordinary (O) and extraordinary (X) waves (Rax 2005, p. 288). We
note that given the Lorentz transformations of fields

E‖ = E′‖, (5.1a)

B‖ = B′‖, (5.1b)

E⊥ = γ
(
E′⊥ − v × B′) , (5.1c)

B⊥ = γ
(
B′⊥ + v/c2 × E′) , (5.1d)

this field configuration implies B0 = γ B′
0 ∼ B′

0 and E0 = −v × B0 in the laboratory
frame. This laboratory-frame field configuration (E0, B0) is consistent with a plasma
drift with velocity v.

5.1.1. The O-mode
The refractive index of the O-mode in the rest frame, whose polarisation is along the
magnetic field B′

0, is simply written as

n̄O(ω′) =
√

1 −
(

ω′
p

ω′

)2

, (5.2)
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β

E0

⊗B0

ki

θi

ex

ez

(O)
(X)

FIGURE 4. The incident wave is in the plane normal to the background magnetic field perme-
ating the magnetised plasma in uniform linear motion. The rest-frame modes are the classical
ordinary (O) and extraordinary (X) waves.

where ω′2
p = ∑

s ω′2
ps = ∑

s n′
se

2/(m′
sε0) is the rest-frame plasma frequency. The

associated dispersion function is

D′
O(ω′, k′) = ω′2 − k′2c2 − ω′2

p , (5.3)

which, noting that the plasma frequency is Lorentz-invariant ωp = ω′
p (Chawla &

Unz 1966), can be rewritten using the Lorentz transformation for ω′ and k′ as the
laboratory-frame dispersion function

DO(ω, k) = ω2 − k2c2 − ω2
p . (5.4)

Comparing (5.3) and (5.4) shows that the O-mode dispersion relation is remark-
ably Lorentz-invariant. As a consequence, as noticed by Mukherjee (1975) and Ko &
Chuang (1978), it is unaffected by motion. This property, which is characteristic
of modes satisfying n̄n̄g = 1, was suggested to support Minkowski’s formulation of
momentum partitioning in a medium (Arnaud 1976; Jones 1978). In this case the
relations at the interface simply follow the static Snell’s laws. One indeed finds plug-
ging the mode’s refractive index (5.2) into (3.9)–(3.10) that n̄O sin θt = sin θi and
ϑt = θt, that is to say that the group velocity remains aligned with the wavevector in
the laboratory frame.

5.1.2. The X-mode
The dispersion relation of the X-mode, whose polarisation is in the (v, k′) plane
perpendicular to B′

0, is written (Rax 2005, p. 289)

n̄X(ω′) =
√

(ω′2 − ω′2
L )(ω′2 − ω′2

R)

(ω′2 − ω′2
UH)(ω′2 − ω′2

LH)
, (5.5a)

where

ω′
R/L = ∓′

ce + ′
ci

2
+ 1

2

√
(′

ce − ′
ci)

2 + 4ω′2
p (5.5b)

are the right and left cutoffs and

ω′
UH/LH =

[
� ′2

e + � ′2
i

2
± 1

2

√
(� ′2

e − � ′2
i )2 + 4ω′2

peω
′2
pi

]1/2

(5.5c)
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are the upper- and lower-hybrid frequencies, and where we write � ′2
s = ω′2

ps + ′2
cs

with ′
cs = qsB′

0/m′
s the signed rest-frame cyclotron frequency for species s. One

verifies that n̄n̄g �= 1, so that the X-mode is expected to experience Fresnel drag.
Asymptotic trends. Since the wave index (5.5a) does not depend on the inci-

dence angle θi, drag phenomena for the X-mode can still, as already indicated
above, be evaluated with the comparatively simpler isotropic model presented in § 2.
Specifically plugging (5.5a) into (2.8)–(2.9) yields lengthy yet analytical formulae for
the refraction and group velocity angles for any laboratory-frame wave frequency ω.
As is customary, simpler forms can, however, be obtained if considering separately
different wave frequency bands. For instance, if one focuses on the high-frequency
electronic response, the wave index reduces to

n̄X(ω′ � ω′
LH) ∼

√
1 − ω′2

pe(ω′2 − ω′2
pe)

ω′2(ω′2 − ω′2
pe − ′2

ce)
. (5.6)

In this limit (2.8), combined with the trigonometric relation sin θ = tan θ/
√

1 + tan2 θ
and cs = ′

cs/γ here, gives

sin θt = sin θi

[
1 − ω2

pe

ω2

(1 − β2)ω2
pe − (1 − β sin θi)2ω2

2
ce + (1 − β2)ω2

pe − (1 − β sin θi)2ω2

]−1/2

(5.7)

which we verify is precisely the generalised Snell’s law derived by Mukherjee (1975).
Furthermore, using this same high-frequency wave index in the relation for the group
velocity (2.9) in the limit of normal incidence θi = 0 leads to

tan ϑt =
βγω2

pe
2
ce√

[ω2 − ω2
pe/γ

2 − 2
ce]3[(1 − ω2

pe/ω
2)(γ 2ω2 − ω2

pe) − γ 22
ce]

, (5.8)

which we verify is the result derived by Meyer-Vernet (1980). At very high frequency
ω � ωpe, ce, tan ϑt ∝ β/(γ 2ω4). The drag is hence very small short of relativistic
velocities.

The low-frequency regime ω′ �ω′
LH has in contrast to our knowledge received less

attention. In the limit ω′ �′
ci and assuming v′

A/c = ′
ci/ω

′
pi � 1 with v′

A the Alfvén
velocity, one classically shows that

n̄X(ω′ �ω′
LH) ∼ c

v′
A

√
1 −

(
ω′
′

ci

)2

. (5.9)

Equation (2.9) then gives in the very-low-frequency regime ω′ � ′
ci and for normal

incidence
tan ϑt = v

vA
(5.10)

to lowest order in β. This shows that, in contrast with the high-frequency regime,
non-negligible drag can occur for the compressional Alfvén (or fast magnetoacoustic)
branch of the X-mode, and that even for non-relativistic velocities.

To confirm these trends, explore the intermediate-frequency regimes and study
the effect of incidence, we now examine the results obtained using the full solution
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FIGURE 5. Angle between the group velocity vg and the wavevector kt of the X-mode refracted
by a wave at normal incidence on a moving magnetised plasma, as a function of the frequency
and for several values of the velocity, for a hydrogen plasma with n′

e = 1019 m−3 and B′
0 =

1 T. Here (v, kt, B0) forms an orthogonal basis. The three panels represent the three standard
propagation branches of the X-mode. The superscript ∗ indicates a normalisation by the rest-
frame electron cyclotron frequency |′

ce|. The vertical grey line for ω∗ = 1.77 in the third panel
highlights the frequency for which oblique incidence is examined in figure 6.

(5.5a) in (2.8)–(2.9). To this end we consider as a baseline a hydrogen plasma with
density n′

e = 1019 m−3 and rest-frame magnetic field B′
0 = 1 T.

Normal incidence. To start with, we consider the case of normal incidence, that is,
when (v, B0

′, ki) forms an orthogonal basis. In this particular case the transmitted
wavevector kt is conveniently along ki, i.e. along ẑ. Figure 5 plots the angle (̂kt, vg)
between the refracted wavevector kt and the group velocity vg across the entire
frequency range for different values of β = v/c. Without motion, i.e. for β = 0, we
recover the classical behaviour of the X-mode, that is to say a group velocity that is
aligned with the wavevector vg ‖ k. This materialises in figure 5 as an angle (̂kt, vg)
that is zero for all frequencies. We also recognise in figure 5 for β = 0 the three
usual propagation branches of this mode, namely below the lower-hybrid resonance
ωLH, in between the left cutoff ωL and the upper-hybrid resonance ωUH, and finally
above the right cutoff ωR (Rax 2005, p. 289).

Moving on to the effect of velocity, figure 5 confirms that the angle (̂kt, vg) is
now finite for β �= 0, and positive for all frequencies. This means that the X-mode is
dragged in the direction of motion. This drag is further found to increase with veloc-
ity for all frequencies. Overall, drag effects are observed to be strongly enhanced
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near resonances and cutoffs. They even reach at these frequencies the maximum
angle π/2 which represents a limit case where the wave is fully dragged by the
medium. Although this increase appears consistent with the classic n̄g − 1/n̄ scal-
ing of transverse drag (Player 1975) (the phase velocity goes to zero near cutoffs
while the group velocity goes to infinity near resonances) and with the observation
of enhanced drag effects in slow-light media (Franke-Arnold et al. 2011), results
for these frequencies warrant caution as the cold plasma model used in this study
is expected to break down. Notwithstanding these limitations, these results suggest
that augmented drag effects could be achieved near resonances and cutoffs.

Away from resonances and cutoffs, figure 5 confirms that drag effects are neg-
ligible for the two high-frequency bands, consistent with (5.8). On the other hand,
figure 5 also confirms that significant drag occurs at low frequency ω �ωLH as
anticipated from (5.10). In this low-frequency regime the angle (̂kt, vg) is observed
to be nearly independent of the wave frequency, consistent with the fact that the
X-mode at these frequencies is nearly non-dispersive. Quantitatively, we find a drag
of a few degrees for β ∼ 10−4. This result matches the prediction from (5.10) as
c/vA ∼ 40 for the plasma parameters considered here, and larger drags are expected
for denser plasmas at the same field (or a similar density but at weaker fields).

Oblique incidence and Doppler. While the low-frequency X-mode is nearly non-
dispersive, this is not the case at higher frequency, which brings additional
complexity. More precisely, dispersion can manifests due to the Doppler shift expe-
rienced by the wave as seen in the rest frame, leading to new effects compared with
the non-dispersive medium considered in § 2. Specifically, the Lorentz transforma-
tion for the wave frequency (2.2a) shows that the rest-frame frequency ω′ depends
on the angle of incidence θi. As a result, the propagation bands of the X-mode, which
normally are independent of the wavevector direction, now depend on the incidence
angle θi.

To illustrate this point, we have plotted in figure 6 the refraction diagrams obtained
for the X-mode with normalised rest-frame wave frequency ω∗ = ω/|′

ce| = 1.77. As
shown in figure 5 this frequency falls in the high-frequency electronic branch of the
X-mode for β = 0, just above the right cutoff. We see in figure 6 that while the effect
of motion is limited at low β, new features emerge for larger β. It is notably found
that the incident wave, which again verifies ω > ωR, can in fact couple instead to the
low-frequency electronic branch for sufficiently large β and kx

i (i.e. sufficiently large
incidence angle θi). For kx

i > 0 the Doppler shift is indeed such that ω′ < ω, and ω′
can become smaller than the rest-frame upper-hybrid frequency ω′

UH. In this case
a strong drag is observed, as ω′ is close to the resonance. As a direct consequence
of this behaviour, we note the existence of an intermediate total reflection region
in between the values of kx

i yielding these two distinct branches. This remarkable
feature is entirely due to the plasma motion. Note also that a symmetrical behaviour
can be observed if choosing a rest-frame frequency in the low-frequency electronic
branch just below the upper-hybrid resonance, and this time kx

i < 0 so that ω′ > ω.
To sum up, it is found here that while drag effects on the X-mode are generally

small at high frequency away from cutoffs and resonances, they can be significant at
low frequency, i.e. for the compressional Alfvén branch. In addition, the motion can
have a noticeable effect near resonances and cutoffs, where it can lead to jumps from
a given branch to the other as the incidence angle changes at fixed wave frequency,
to the onset of incidence-angle-dependent asymmetric propagation windows and also
possibly to augmented drag effects.
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FIGURE 6. Refraction diagrams for a wave with rest-frame right cutoff (ω/|′
ce| = 1.77) at

oblique incidence on a moving plasma for two different values of β. In the absence of motion the
refracted wave is on the upper branch of the X-mode. The coloured bands highlight the regions
of total reflection.
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FIGURE 7. Configuration with the rest-frame magnetic field B′
0 in the plane defined by the

incident wavevector ki and the medium velocity v. Propagation is in this case in general oblique.

5.2. Magnetic field in the incidence plane
To expose how rest-frame anisotropy can further complicate the drag picture,

we finally consider the case where the magnetic field B′
0 lies in the plane defined

by the incident wavevector ki and the medium velocity v. As depicted in figure 7,
we write Ψ ′ as the angle in this plane between the normal to the velocity and the
magnetic field. Other than for singular values of Ψ ′ the wavevector is now inclined
with respect to the rest-frame magnetic field, so that the rest-frame indexes n̄′

α indeed
depend on the wavevector of the refracted wave k′

t, i.e. on the propagation direction
in the rest frame.

5.2.1. General formulation
Propagation in the rest frame is oblique, and as such is governed by a generalised
Appleton–Hartree equation (Bittencourt 2013). The normal component of the wave
index N ′ (3.10) can then be shown to verify the quartic equation

ΛN ′4 + ΘN ′3 + ΓN ′2 + ΥN ′ + Ξ = 0 (5.11)
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with

Λ = P cos2 (Ψ ′) + S sin2 (Ψ ′), (5.12a)

Θ = nx
t
′ sin (2Ψ ′)(P − S), (5.12b)

Γ =
[
cos (2Ψ ′)(LR − PS) − LR + 2nx

t
′2(P + S) − 3PS

]
/2, (5.12c)

Υ = nx
t
′ sin (2Ψ ′)

[
LR + nx

t
′2(P − S) − PS

]
/2, (5.12d)

Ξ = P
[
nx

t
′2 sin2 (Ψ ′)(nx

t
′2 − S) + LR − nx

t
′2S

]
+ nx

t
′2 cos2 (Ψ ′)(nx

t
′2S − LR),

(5.12e)

where nx
t
′ = kx

t
′c/ω′ and P, L, R, S are the classical functions defined by Stix (1992).

They here depend on the rest-frame frequency ω′ and are explicitly written as

P(ω′) = 1 −
∑

s

ω2
ps

ω′2 , (5.13a)

R(ω′) = 1 −
∑

s

ω2
ps

ω′(ω′ + ′
cs)

, L(ω′) = 1 −
∑

s

ω2
ps

ω′(ω′ − ′
cs)

(5.13b)

and

S(ω′) = 1

2
(R + L) = 1 −

∑
s

ω2
ps

ω′2 − ′2
cs

. (5.13c)

Compared with standard textbook expressions, the odd terms in (5.11) are here
non-zero because the background magnetic field B′

0 is not aligned with a basis vector
in �′. Nonetheless, the quartic equation (5.11) must similarly yield two modes that
are either purely propagative (N ′ > 0) or evanescent (N ′2 < 0), as usual in a mag-
netised plasma. Although cumbersome, this quartic equation (5.11) can be solved to
obtain the index N ′± of these two modes, denoted here by the subscript ±. These
wave indexes can then be used to compute the drag experienced by each of the
beams using (3.10).

5.2.2. Magnetic field along the direction of motion
Rather than going this route, we focus here on the particular case Ψ ′ = π/2, that is
to say on the case where the magnetic field is parallel to the direction of motion v.
We note that this configuration, which is illustrated in figure 8, could for instance be
thought of as a simplified model for the effect of toroidal rotation in a tokamak. In
this case (5.12) then gives Θ = Υ = 0, so that the Appleton equation (5.11) reduces
to the more usual bi-quadratic equation

Λ‖N ′4 + Γ‖N ′2 + Ξ‖ = 0, (5.14a)

where

Λ‖ = S, (5.14b)

Γ‖ = nx
t
′2(P + S) − (LR + PS), (5.14c)

Ξ‖ = P(nx
t
′2 − L)(nx

t
′2 − R). (5.14d)
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FIGURE 8. The incident wave is in the plane formed by the background magnetic field B′
0 = B0

permeating the magnetised plasma and the direction of motion β. The rest-frame modes are the
two solutions ( + ) and ( − ) for oblique propagation.

As expected the odd terms are here zero as B′
0 is now along x̂. Also, from the

Lorentz transformations of fields (5.1), the laboratory-frame electric field is null, and
the external magnetic field is the same in the laboratory frame and in the rest frame,
i.e. B0 = B′

0. As a result the prime on the cyclotron frequencies can be dropped in
(5.13).

Although n̄′
α still depend on the wavevector of the refracted wave k′

t since k′
t is in

general inclined with respect to B′
0, this bi-quadratic equation has, compared with

(5.11), simpler analytical solutions in the form of

N ′± =
[

1

2Λ‖

(
−Γ‖ ±

√
Γ 2‖ − 4Λ‖Ξ‖

)]1/2

. (5.15)

The two modes denoted here by ( + ) and ( − ) are the standard solutions for oblique
propagation, also referred to as the slow and fast modes, respectively. In the partic-
ular case of normal incidence for which k′

t ⊥ B′
0, the ( + ) or slow solution is found

to reduce to the O-mode, whereas the ( − ) or fast solution reduces to the X-mode.
These general solutions (5.15) can then be used in (3.10) to derive explicit formulas
for the Fresnel drag.

To illustrate how drag effects and rest-frame anisotropy can compete with one
another, figure 9 plots on the left-hand side the same angle (̂kt, vg) as in figure 5, but
we consider now the ( − ) mode at finite incidence angle θi = −π/4. We focus here
on the low-frequency branch. For frequencies just above the ion cyclotron frequency,
we observe a behaviour similar to that of the compressional Alfvén branch at normal
incidence already observed in figure 5, that is, a drag in the direction of motion that
increases with the velocity, and that can be significant even for modest β. This
similarity can be explained as follows. For ω′ ∼ Ωci one shows that the axial wave
index N ′− is large for as long as

nx
t
′ � √

R ∼ ωpi√
2Ωci

, (5.16)

reaching

N ′− ∼
√

LR
S

∼ ωpi

Ωci
(5.17)

for perpendicular propagation nx
t
′ = 0. This is verified in the dispersion diagram on

the right-hand side of figure 9. Since nx
t
′ � 1 from (2.3b), this shows that the rest-

frame refractive index will be large, which from Snell’s law implies that the refracted
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FIGURE 9. Angle between the transmitted group velocity vg and the wavevector kt as a function
of the frequency for a (−) mode incident with θi = −45◦ for different values of the velocity
(left), and rest-frame dispersion diagram (nx

t
′, nz

t
′) for the three wave frequencies highlighted

on the left-hand side (right). The region of interest here is in between the ion cyclotron fre-
quency (Ωci/|Ωce| = 5.4 × 10−4) and the lower-hybrid frequency (ωLH/|Ωce| = 1.7 × 10−2).
The plasma parameters are those already used in figure 5, leading to c/vA = 43.4.

wavevector k′
t is close to ẑ. This in turn implies nearly perpendicular propagation in

�′, thus the X-mode-like behaviour.
As the frequency increases, however, we observe a departure from this behaviour,

with the angle (̂kt, vg) that now decreases with frequency. It notably becomes nega-
tive for large enough frequency, and even for significant β. Because the rest-frame
refractive index remains large (see the right-hand side of figure 9), it implies that
the component of the group velocity along v must now be negative. The reason
for that, as supported by the curve obtained for β = 0 in figure 9, is the rest-frame
anisotropy. Indeed, the angle between k′

t and v′
g grows and approaches −π/2 at the

lower-hybrid resonance. We see in figure 9 that, short of very large β, the anisotropy
progressively suppresses drag effects in the frequency range below the lower-hybrid
frequency. Yet, drag effects eventually dominate again in the immediate vicinity of
the cutoff, as the group index goes to infinity at the resonance. This translates into
a sudden π upshift near ω = ωLH in figure 9.

For completeness, we note here (not shown in figure 9) that a behaviour similar
to that discussed earlier for the X-mode, notably enhanced drag and dispersion
effects near high frequency cutoffs and resonances (electron cyclotron range), is
also observed in this configuration.

In summary, rest-frame anisotropy is found to bring about additional complexity
on top of the motion drag effects already identified for the X-mode. These two effects
can notably oppose one another, with a relative importance that depends strongly
on the wave frequency. More practically, the fact that these results are obtained for
a configuration which, while very simplified, in essence matches that of a toroidal
flow in a tokamak, and for a wave frequency range relevant to magnetic confinement
fusion applications, points to the need to explore these manifestations further.
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6. Conclusions

The transmission angles for the wavevector and the group velocity of a wave
at oblique incidence on an anisotropic medium in uniform linear motion directed
along the interface, as observed by an observer in the laboratory frame, have been
determined analytically. These findings confirm and extend results that had been
previously established, notably for isotropic media and/or for normal incidence.

These laboratory-frame relations for the wavevector and group velocity, which
were obtained by considering Snell’s law in the reference frame in which the
anisotropic medium is at rest, are further shown to be consistent with the generalised
Snell’s law. More specifically, the interface relations derived here match Snell’s law
written for the rest-frame index one obtains by invoking the covariance of the dis-
persion relation between inertial frames. In doing so one can then retire the need
for the change of frame of reference in determining the laboratory-frame relations,
by considering instead the moving medium has an equivalent medium bestowed
with motion-dependent properties. This direct method may, however, come at the
expense of physical insights.

These new results were then applied to examine the effect of motion on waves
incident on a magnetised plasma in uniform linear motion. Starting with the simpler
case where the magnetic field is normal to the incident wavevector, for which the
rest-frame wavevector and group velocity of the refracted wave are aligned, we show
that while the O-mode is unaffected by the motion, the motion can in contrast affect
the X-mode. While, as previously noticed, drag effects are weak at high frequency,
it is found here that they could be significant for the low-frequency compressional
Alfvén branch. Motion, through the Doppler shift experienced by the wave, is also
found to create asymmetric total reflection conditions, and even incidence-angle-
dependent propagation bands near cutoffs and resonances.

We finally considered the case where the magnetic field is aligned with the
medium’s direction of motion, for which the rest-frame wavevector and group
velocity of the refracted wave are no longer aligned. While very simplified, this con-
figuration shares similarities with the geometry of a wave incident on a toroidally
rotating tokamak plasma. In this case it is found that, in addition to the effects
found for perpendicular propagation, anisotropy and drag can now compete with
one another, notably near the lower-hybrid frequency.

Looking ahead, the finding that plasma motion can under certain conditions affect
the trajectory of waves in possibly non-negligible ways, notably for wave frequencies
below the electron cyclotron frequency, confirms that accounting for these effect
could be important for the accurate modelling of radiofrequency waves in magnetic
confinement fusion plasmas. With that in mind, a goal with these results in hand
would be to quantify how large these motion-induced wave trajectory corrections
are in practical configurations, similarly to what has been done for instance for the
corrections due to spin–orbit coupling (Fu, Dodin & Qin 2023).
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