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Abstract

A partition λ of n is said to be nearly self-conjugate if the Ferrers graph of λ and its transpose have exactly
n − 1 cells in common. The generating function of the number of such partitions was first conjectured
by Campbell and recently confirmed by Campbell and Chern (‘Nearly self-conjugate integer partitions’,
submitted for publication). We present a simple and direct analytic proof and a combinatorial proof of an
equivalent statement.
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1. Introduction

A partition λ of a positive integer n is a finite weakly decreasing sequence of positive
integers λ = (λ1, λ2, . . . , λr) such that

∑r
i=1 λi = n. The terms λi are called the parts of λ

and the number of parts of λ is called the length of λ, denoted �(λ). The weight of λ
is the sum of its parts, denoted by |λ|. We use m(λ) to denote the largest part of λ. The
Ferrers graph of λ is an array of left-justified cells with λi cells in the ith row. The
Durfee square of a partition is the largest possible square contained within the Ferrers
graph and anchored in the upper left-hand corner of the Ferrers graph. The conjugate
of λ, denoted λT , is the partition whose Ferrers graph is obtained from that of λ by
interchanging rows and columns.

A partition λ is said to be self-conjugate if λ = λT . It is well known that the number
of self-conjugate partitions of n equals the number of partitions of n into distinct odd
parts. This result is due to Sylvester [5]. Andrews and Ballantine [2] recently proved
that the number of parts in all self-conjugate partitions of n is almost always equal to
the number of partitions of n in which no odd part is repeated and there is exactly one
even part (possibly repeated).

There is an interesting variation of self-conjugate partitions. Assuming that λ is a
partition of n, then λ is said to be nearly self-conjugate if the Ferrers graphs of λ and
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FIGURE 1. The two nearly self-conjugate partitions of 5.

its conjugate have exactly n − 1 cells in common. For example, there are two nearly
self-conjugate partitions of 5, which are depicted in Figure 1.

Let nsc(n) count the number of nearly self-conjugate partitions of n. The sequence
{nsc(n)}n≥0 seems to be first considered by Campbell, who conjectured the generating
function of nsc(n) (see [4]).

CONJECTURE 1.1. We have∑
n≥0

nsc(n)qn =
2q2

1 − q2 (−q3; q2)∞. (1.1)

Throughout the paper, we adopt the following q-series notation:

(a; q)0 = 1,

(a; q)n =

n∏
k=1

(1 − aqk−1) for n ≥ 1,

(a; q)∞ =
∞∏

k=1

(1 − aqk−1).

To interpret the right-hand side of (1.1), Campbell and Chern (‘Nearly self-conjugate
integer partitions’, submitted for publication) introduced symplectic partitions, in
which the smallest part equals 2 and all others are distinct odd parts. Clearly, the
generating function of twice the number of symplectic partitions equals the expression
on the right-hand side of (1.1). Campbell and Chern, established a correspondence
showing that the number of nearly self-conjugate partitions of n is equal to twice the
number of symplectic partitions of n, which confirms Conjecture 1.1.

In this note, we aim to prove Conjecture 1.1 by analysing the structure of nearly
self-conjugate partitions and using elementary techniques (see Section 2). In Section 3,
we give an equivalent statement of Conjecture 1.1 and provide a combinatorial proof.

2. Analytic proof

Let N denote the set of nearly self-conjugate partitions and D denote the set of
partitions into distinct parts. Let G denote the set of gap-free partitions (partitions
in which every integer less than the largest part must appear at least once) and Gk
denote the subset of G consisting of the partitions with the largest part being k. Given
a partition λ ∈ G , we define

rep(λ) = |{i : i appears more than once in λ and i is not the largest part in λ}|.
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That is, rep(λ) counts the number of repeated parts less than the largest part of λ. For
example, if λ = (4, 4, 3, 2, 2, 1, 1), then rep(λ) = 2. For a partition λ ∈ D , we use c(λ)
to denote the number of separate sequences of consecutive integers of λ. For example,
if μ = (8, 7, 5, 4, 3, 1), then c( μ) = 3, counting the sequences

(8, 7), (5, 4, 3), (1).

REMARK 2.1. c(λ) serves as an important statistic in Sylvester’s refinement of Euler’s
partition identity [3, page 88], namely, the number of odd partitions of n with exactly
k different parts equals the number of distinct partitions of n into k separate sequences
of consecutive integers.

We first give an auxiliary result.

LEMMA 2.2. We have ∑
λ∈N

q|λ| = 2
∑
λ∈G

(rep(λ) + 1)q2|λ|+1−m(λ).

PROOF. Recall the Frobenius symbol [3] of λ, which is a two-rowed array(
a1 a2 · · · ak
b1 b2 · · · bk

)

with a1 > a2 > · · · > ak ≥ 0 and b1 > b2 > · · · > bk ≥ 0, where ai (respectively, bi)
counts the number of cells to the right of (respectively, below) the ith diagonal entry
of λ in its Ferrers graph and k is the size of the Durfee square of λ. Then,

|λ| =
k∑

i=1

ai +

k∑
i=1

bi + k.

Now we add one to each term of the Frobenius symbol of λ to get a modified Frobenius
symbol, (

α1 α2 · · · αk
β1 β2 · · · βk

)

with α1 > α2 > · · · > αk ≥ 1 and β1 > β2 > · · · > βk ≥ 1.
If λ ∈N , there exists exactly one j such that |αj − βj| = 1 and αi = βi for all i � j.

Assuming that αj − βj = 1,

|λ| = 2
k∑

i=1

βi + 1 − k.

Conversely, for a partition β = ( β1, β2, . . . , βk) ∈ D , there exists exactly c( β) separate
sequences of consecutive integers. For each i with 1 ≤ i ≤ c( β), let βji be the first
integer in the ith sequence of consecutive integers in β. We have

β1 = βj1 > βj2 > · · · > βjc( β) .
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We now construct a partition αi = (αi
1,αi

2, . . . ,αi
k) for each i with 1 ≤ i ≤ c( β) by

αi
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βr + 1 if r = ji,

βr otherwise.

Then, we have a modified Frobenius symbol with the first row being αi and the second
row being β, which corresponds to a nearly self-conjugate partition. Thus, in total,
there are c( β) nearly self-conjugate partitions with such modified Frobenius symbols.

If βj − αj = 1, we can exchange α and β in the Frobenius symbol and obtain the
same conclusion. Consequently, we can conclude that∑

λ∈N
q|λ| = 2

∑
β∈D

c( β)q2|β|+1−�( β).

For a partition λ ∈ D , its conjugate λT must be a gap-free partition and it follows
that �(λ) = m(λT ) and c(λ) = rep(λT ) + 1. Thus,∑

λ∈D
c(λ)q2|λ|+1−�(λ) =

∑
λ∈G

(rep(λ) + 1)q2|λ|+1−m(λ).

This completes the proof. �

We are now in a position to prove (1.1). By standard combinatorial arguments,

∑
λ∈Gk

zrep(λ)+1q|λ| =
∑
j≥0

q jkzqk(k+1)/2
k−1∏
i=1

(1 + zqi + zq2i + · · · )

= zqk(k+1)/2
∏k−1

i=1 (1 − qi + zqi)
(q; q)k

.

Differentiating the above equation with respect to z, putting z = 1 and replacing q
by q2,

∑
λ∈Gk

(rep(λ) + 1)q2|λ| =
1

(q2; q2)k

(
qk(k+1) + qk(k+1)

k−1∑
i=1

q2i
)

=
qk(k+1)

(q2; q2)k

k−1∑
i=0

q2i =
qk(k+1)(1 − q2k)
(q2; q2)k(1 − q2)

.

By Lemma 2.2,
∑
λ∈N

q|λ| = 2
∑
λ∈G

(rep(λ) + 1)q2|λ|+1−m(λ)

= 2
∑
k≥1

q1−k
∑
λ∈Gk

(rep(λ) + 1)q2|λ|

= 2
∑
k≥1

q1−kqk(k+1)(1 − q2k)
(q2; q2)k(1 − q2)
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= 2
∑
k≥1

qk2+1(1 − q2k)
(q2; q2)k(1 − q2)

=
2q2

1 − q2

∑
k≥1

qk2−1

(q2; q2)k−1
. (2.1)

Recall Euler’s identity [1, page 19],

(−zq; q)∞ =
∑
k≥0

zkqk(k+1)/2

(q; q)k
.

Replacing q by q2 and z by q,

(−q3; q2)∞ =
∑
k≥0

qk(k+2)

(q2; q2)k
.

From (2.1) and the above identity,

∑
λ∈N

q|λ| =
2q2

1 − q2

∑
k≥0

qk2+2k

(q2; q2)k
=

2q2

1 − q2 (−q3; q2)∞.

This completes the proof.

3. Equivalent statement

Multiplying both sides of (1.1) by 1 − q2 and comparing the coefficients of qn,

nsc(n) − nsc(n − 2) = 2do≥3(n − 2),

where do≥3(n) denotes the number of partitions of n into distinct odd parts with the
smallest part at least 3.

Based on the classical bijection [5] between the partitions of n into distinct odd parts
and the self-conjugate partitions of n, Campbell and Chern (‘Nearly self-conjugate
integer partitions’, submitted for publication) established the following result.

LEMMA 3.1 (Campbell and Chern). The number of nearly self-conjugate partitions of
n equals twice the number of partitions of n with exactly one even part such that the
differences between parts are at least 2.

Let O(n) denote the set of partitions of n with exactly one even part and the
differences between parts being at least 2. Thus, Conjecture 1.1 could be restated as
follows.

PROPOSITION 3.2. For n ≥ 2,

|O(n)| − |O(n − 2)| = do≥3(n − 2).
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PROOF. We first introduce an injection ϕ : O(n − 2)→ O(n) for every n ≥ 2.
Assuming that λ = (λ1, λ2, . . .) ∈ O(n − 2), we define ϕ(λ) = μ ∈ O(n) as follows.

Case 1: If λ has only one part, then this unique part must be even. Hence, we can
assume that λ = (2m) and define μ = (2m + 2).

Case 2: If �(λ) ≥ 2 and the smallest part is odd, we assume that

λ = (λ1, . . . , λi−1, 2m, λi+1, λi+2, . . .).

We define μ = (λ1, . . . , λi−1, 2m + 1, λi+1 + 1, λi+2, . . .). It is easy to see that �( μ) =
�(λ) ≥ 2 and the largest part of μ is odd.

Case 3: If �(λ) ≥ 2 and the smallest part is even, we suppose that

λ = (λ1, λ2, . . . , λi−1, 2m)

and define μ = (λ1 + 1, λ2, . . . , λi−1, 2m + 1). It is clear that �( μ) = �(λ) ≥ 2 and the
largest part of μ is even and the smallest part of μ is greater than or equal to 3.

We observe that each partition in O(n)\ϕ(O(n − 2)) is a partition μ =
(μ1, μ2, . . . , μr) with r ≥ 2, μ1 being even and μr = 1. Obviously, μ1 − μ2 ≥ 3.
Subtracting 1 from the largest part and removing the smallest part, we get a partition
into distinct odd parts with each part at least 3, which is counted by do≥3(n − 2). This
completes the proof. �
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