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A CORRECTNESS PROOF FOR AL-BARAKĀT’S LOGICAL
DIAGRAMS
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Abstract. In Baghdad in the mid twelfth century Abū al-Barakāt proposes a radical new
procedure for finding the conclusions of premise-pairs in syllogistic logic, and for identifying
those premise-pairs that have no conclusions. The procedure makes no use of features of the
standard Aristotelian apparatus, such as conversions or syllogistic figures. In place of these
al-Barakāt writes out pages of diagrams consisting of labelled horizontal lines. He gives no
instructions and no proof that the procedure will yield correct results. So the reader has to work
out what his procedure is and whether it is correct. The procedure turns out to be insightful and
entirely correct, but this paper may be the first study to give a full description of the procedure
and a rigorous proof of its correctness.

§1. Al-Barakāt and Aristotle’s logic. In the middle of the twelfth century a Jewish
Baghdad scholar named Abū al-Barakāt bin Malkā al-Baghdādı̄, al-Barakāt for short,
published a startling new method in logic, which had the potential to speed up the
historical development of logic by several hundred years. Unfortunately the potential
was never realised. We know of nobody apart from al-Barakāt himself, from his time
up to this last decade, who had the faintest idea what he was talking about. (The
brief account of al-Barakāt’s diagrams in al-T. ūsı̄’s Persian textbook Asās al-iqtibās [3]
confirms this, as I hope to explain elsewhere.) By the time that any logician recognised
what al-Barakāt was doing, most of the ideas that he used had been reinvented and
become standard for a hundred or so years—the chief of them being Tarski’s ‘model-
theoretic consequence’ [14].

To explain al-Barakāt’s method, we need a brief sketch of Aristotle’s logic of
categorical syllogisms, as explained in Aristotle’s Prior Analytics i.4–6. This book was
written in Greek in the fourth century BC, and translated into Arabic a few hundred
years before the time of al-Barakāt. Aristotle introduced four sentence forms, that we
can translate as

Sentence form Truth conditions

Every A is a B . ∀x(Ax → Bx)

No A is a B . ∀x(Ax → ¬Bx)

Some A is a B . ∃x(Ax ∧ Bx)

Not every A is a B . ∃x(Ax ∧ ¬Bx)
(1)
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370 WILFRID HODGES

Sentences of these four forms are called categorical sentences. The first two sentences
are described as universal, and the last two as existential (or by some authors particular).
The formulas on the right are first-order sentences whose truth-conditions are what
al-Barakāt in his method took to be the truth conditions of the four sentence forms
on the left. The letters A and B can be replaced by any two distinct letters. We call A,
B and any other letters put in place of them the term letters, or the terms for short.

Aristotle called attention to (categorical) premise-pairs. We follow what al-Barakāt
supposed Aristotle had said, disregarding the question whether he was right to suppose
this. Al-Barakāt took a premise-pair to be an ordered pair of categorical sentences (the
premises) with exactly one term in common. This common term was called the middle
term of the premise-pair, and al-Barakāt assumed that it was not both the first term in
the first premise and the second term in the second. The minor term of the premise-pair
was the letter appearing only in the first premise, and its major term was the letter
appearing only in the second premise. In expounding his new method, al-Barakāt
assumed that the minor term is A, the middle term is B and the major term is C. With
these conventions there are exactly 48 premise-pairs. (Aristotle had slightly different
definitions, but in practice he finished up with the same 48 premise-pairs as al-Barakāt.)

Aristotle asked what other sentences follow logically from a premise-pair. In his
answers he normally limited himself to categorical sentences whose first term is the
minor term of the premise-pair and whose second term is the major term. There are
four such categorical sentences, and we will call them the candidate conclusions, or for
short the candidates. (With al-Barakāt’s conventions the candidate conclusions are the
four categorical sentences with first term A and second term C.)

Aristotle divided premise-pairs into two groups. The first group are those which
logically entail at least one of their candidate conclusions. Aristotle and al-Barakāt
described the logically strongest candidate that is entailed by the two pemises the
conclusion of the premise-pair. The second group are those which don’t logically entail
any of their four candidate conclusions. (They might entail other categorical sentences,
but this was ignored.) By the time of al-Barakāt the first group of premise-pairs had
come to be described as productive (Arabic muntij) and the second group as sterile
(caqı̄m).

An appropriate modern language for studying al-Barakāt’s methods is the first-order
language L(Σ) built on the signature Σ, where Σ consists of 1-ary relation symbols.
Structures for this language are called Σ-structures. We say that a Σ-structure M is
without empty terms if for every relation symbol R in Σ, the interpretation RM of R in
M is a nonempty set.

Al-Barakāt himself didn’t have the modern notion of a Σ-structure. But when Σ is
the set {A,B,C}, al-Barakāt’s counterpart to the notion of a Σ-structure was that of
an interpretation of the three letters. He gave an interpretation I by supplying, for each
letter R in Σ, a singular noun or noun phrase I (R). We writeRI for the set of all objects
in the real world that satisfy the description I (R). We can convert I into a Σ-structure
M by takingRM , for each letter R in Σ, to beRI . Then we can take the domain of M to
be the set AM ∪ BM ∪ CM . (In fact it will always be irrelevant what elements M may
have that are outside the setAM ∪ BM ∪ CM .) In the other direction, translating from
Σ-structures M to interpretations, we have to find for each letter R a singular noun
phrase that captures all and only the elements of RM . (This correspondence between
structures and interpretations also applies to the interpretations that Aristotle used to
prove sterility.) In general al-Barakāt allowed Σ-structures to have empty terms, but in
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his new method he required them to be without empty terms; we will discuss this point
below.

1.1. Al-Barakāt’s new method. In his book [1], pp. 126–148, al-Barakāt advertised
a method for showing whether a premise-pair is productive or sterile, and for finding
its conclusion if it is productive. Al-Barakāt runs through the 48 premise-pairs with
minor term A and major term C. For each sterile premise-pair he normally writes down
diagrams giving three models M1,M2,M3 of the premise-pair, without empty terms,
such that

M1 |= ∀x(Ax → Cx),
M2 |= ∀x(Ax → ¬Cx),
M3 |= ∃x(Ax ∧ Cx) ∧ ∃x(Ax ∧ ¬Cx).

This is equivalent to what Aristotle does, except that Aristotle omits the interpretation
M3. But if the premise-pair is productive, al-Barakāt does something very different
from Aristotle. He gives several models of the premise-pair (the number varies, but
again al-Barakāt gives only models without empty terms), and verifies that there is a
candidate conclusion � such that each of these models is also a model of �. If there is
such a �, he always chooses as conclusion the logically strongest one. (See the examples
in Section 3.)

The effect is that in both cases, the sterile and the productive, al-Barakāt starts by
looking at the range of models that the premise-pair can have. If he finds models like
M1,M2,M3 above then he reckons he has shown that the premise-pair is sterile. If he
can’t find three such models, then he looks instead for a candidate conclusion as above,
and fortunately he always finds one, proving productivity.

We can sum up al-Barakāt’s method as follows (in my words, not those of al-
Barakāt).

Procedure One. Let the premise-pair be (φ,�), with minor and major
terms A and C respectively. Examine in turn all the models of {φ,�}
without empty terms. If there is a candidate conclusion � such that
each of these models is also a model of �, then the logically strongest
such sentence � is the conclusion of (φ,�). As you run through the
models of the premise-pair without empty terms, look out for three
modelsM1,M2 andM3 of {φ,�}, such that

M1 |= ∀x(Ax → Cx),
M2 |= ∀x(Ax → ¬Cx),
M3 |= ∃x(Ax ∧ Cx) ∧ ∃x(Ax ∧ ¬Cx).

If you find three such models, the premise-pair {φ,�} is sterile.

This procedure raises several questions. The most obvious is that every consistent
first-order theory has infinitely many models, so how does al-Barakāt think there is
any hope of examining them all in turn? We will deal with this question in the next
two subsections. Another obvious question is what connection al-Barakāt is invoking
between sterility and finding the three modelsM1,M2,M3. We will answer this question
in Theorem 2.9 A third question is whether al-Barakāt is entitled to use only models
without empty terms. We will deal with this question in Theorem 2.1

https://doi.org/10.1017/S1755020321000332 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000332


372 WILFRID HODGES

1.2. First refinement: Barakāt classes. In fact what Barakāt does is two refinements
distant from Procedure One, although it follows Procedure One in general intention.
The first refinement is to replace structures by equivalence classes of structures; we will
see in the second refinement how al-Barakāt identifies these equivalence classes.

Let us assume that Σ is the set {A,B,C}. By an interior type of Σ we mean a formula
of L(Σ) of the form

Af(A)x ∧ Bf(B)x ∧ Cf(C )x, (2)

where A1 means A, A0 means ¬A and similarly with the other letters, and f is a
function, f : Σ → 2, which takes the value 1 at least once. We note for future reference
that this interior type is uniquely determined by the nonempty subset {R : f(R) = 1}
of Σ. We write F for the set of functions f : Σ → 2 that take the value 1 at least once.

We write tpf(x) for the interior type defined using the function f ∈ F as in (2).
If M is a Σ-structure, we define tpf(M ) to be the set of elements of M that satisfy
tpf(x). We say that the Σ-structures M and N are Barakāt-equivalent if

for every f ∈ F , tpf(M ) = ∅ if and only if tpf(N ) = ∅. (3)

A Barakāt class is an equivalence class of the relation of Barakāt-equivalence on the
class of Σ-structures.

We will prove in Theorem 2.3 that if two Σ-structures are Barakāt-equivalent, then
they are models of exactly the same categorical sentences. So we can speak of Barakāt
classes being models of categorical sentences.

Procedure Two. This is the same as Procedure One, except that instead
of examining in turn all Σ-structures without empty terms that are
models of the premises, we examine in turn all those Barakāt classes
of structures without empty terms that are models of the premises.

This is certainly better than Procedure One, because the number of Barakāt classes of
structures without empty terms is a relatively small finite number. In fact Theorem 2.4
will prove that it is exactly 109 (the third ‘Gergonne number’ as defined before Theorem
2.4). Procedure Two can be turned straightforwardly into a computer program. In
Chapter 4 of [11] there is a report generated by a run of such a program in C++. The
report lists all the productive categorical premise-pairs and their conclusions, all the
sterile premise-pairs, and other information about numbers of models. The program
takes only a few seconds to run. It is efficient, and following al-Barakāt it makes no use
at all of much of the apparatus of Aristotle’s logic (affirmative/negative, conversions,
ectheses, figures).

The program uses a way of representing Barakāt classes. Al-Barakāt had his own
idea of how to represent them: he used Barakāt diagrams, which consist of labelled
horizontal lines. These diagrams are the first thing that strikes the eye as one looks at
al-Barakāt’s text. Reducing Procedure Two to one that works with Barakāt diagrams
is the second refinement of Procedure One.

1.3. Second refinement: Barakāt diagrams. We first explain Barakāt diagrams for
two letters. Suppose the letters are A and B. Suppose also that we have an interpretation
I of these letters, such that the setsAI and BI are not empty. These setsAI and BI can
be related in any of five ways. We show how al-Barakāt represents these relationships
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with diagrams consisting of labelled horizontal lines. (The manuscript Esad Efendi
1931 of al-Barakāt’s book, on pages 44B–45A, gives diagrams of the five cases.)

First case. AI = BI .

A

B

Second case. AI ⊂ BI .

A

B or
A

B or
A

B

Third case. BI ⊂ AI . This is as the second case but with A and B the other way
round.

Fourth case. AI ∩ BI = ∅.

A

B or
A

B

or A B

Fifth case. AI overlaps BI , i.e., none of the first four cases applies:

A

B or
A

B

Some of these cases allow more than one picture, but the pictures for one case count
as equivalent. Also al-Barakāt allows them to be written with B on the upper line and
A on the lower.

In the fourth case al-Barakāt avoids writing

A

B

probably because it leaves open the possibility that the righthand endpoint of the B
line overlaps the lefthand endpoint of the A line. If he had allowed this notation for
the fourth case, and adopted a convention to avoid the overlap reading, it would be
tempting to say that he anticipated the well-known result of [2], that there are exactly
thirteen possible relationships between two bounded nonempty left-closed right-open
intervals on a line. But it would be misleading, because al-Barakāt never makes any
use of the linear ordering of his horizontal lines. (I thank Valentin Goranko for raising
this point.)

We turn to Barakāt diagrams for three letters, taking Σ to be {A,B,C}. To diagram
a Σ-structure M we draw three horizontal lines, for A, B and C respectively, so that
the layout of the lines indicates whether AM ∩ BM ∩ CM is nonempty, and whether
AM \ (BM ∪ CM ) is nonempty, and so on.
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For example al-Barakāt gives the diagram

C stone

B animal

A human
(4)

with suggested nouns that yield the required structure: every human is an animal but
not every animal is a human, and no animal is a stone. A three-line diagram of this kind
includes a two-line diagram for each pair of letters; for example (4) restricted to A and
C indicates that A and C are disjoint. These two-letter diagrams suffice to determine
which categorical sentences are true in the structure represented by the diagram.

If we use the noun labels to define an {A,B,C}-structure M, then the diagram above
tells us which of the sets tpf(M ) introduced in Section 1.2 are nonempty. Divide the
diagram into segments marked by the ends of the three lines:

f1 f2 f3 f4

C

B

A

(5)

Each nonempty segment indicates that a certain tpf(M ) is nonempty. The leftmost
is for the function f1 with {R : f1(R) = 1} = {B}. Then {R : f2(R) = 1} = {A,B},
and tpf3 repeats tpf1 . Finally {R : f4R = 1} = {C}. So two {A,B,C}-structures with
the same diagram are Barakāt-equivalent. This is how al-Barakāt represents Barakāt
classes. The Barakāt class of a structure determines what categorical sentences are
true in the structure, so that we can speak of diagrams satisfying or being models of
categorical sentences.

The noun labels deserve a comment. In the cases where he is proving sterility, al-
Barakāt is following Aristotle’s custom of giving interpretations. The interpretations
serve to prove that structures in the required Barakāt class exist—though today we
would reckon that it’s a trivial exercise to find for each Barakāt diagram a Σ-structure
to match it. But when al-Barakāt is proving productivity or finding conclusions, the
interpretations and the labels that name them serve no logical purpose at all. There is
a very similar use of logically irrelevant nouns in the sixth century Syriac introductory
logic textbook of Paul the Persian. In [10] it is suggested that Paul included these nouns
for educational rather than logical reasons. Possibly the same holds for al-Barakāt; but
one also wonders if he found this usage in an earlier logical text and it played some
role in bringing him to his method.

Unfortunately not every Barakāt class of Σ-structures can be diagrammed in this
way. We say that a Σ-structure is diagrammable if there is a Barakāt diagram that
correctly reports its Barakāt class. We will see in Theorem 2.5 that a Σ-structure M is
undiagrammable if and only if it meets any one of three conditions. The first is that M
has one or more empty terms; Barakāt diagrams have no way of recording an empty
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set. The second and third conditions are that M is a model of the two categorical
theories that we write at (10) and (11).

Procedure Three. This is the same as Procedure Two, except that
instead of inspecting Barakāt classes that are models of the premises,
we inspect Barakāt diagrams that are models of the premises.

The move to Procedure Three makes the entire procedure straightforward to carry
out on paper, and I think al-Barakāt is right when he claims that it is intuitive—at least
in its proofs of productivity. But we will need to show that Procedure Three still gives
correct results in spite of being limited to diagrammable structures.

§2. Mathematical theory. Al-Barakāt makes no attempt at all to prove that his
method gives correct results, nor does he publish any of the calculations that would
be needed to prove this. We are completely in the dark about how much of the
background theory he really understood. For example did he know which structures
are not diagrammable?

Size matters. Al-Barakāt’s method stands at an intermediate level of complexity,
simple enough for anyone to check through the details of any number of individual
cases (as al-Barakāt does in plenty), but too complex to be guaranteed correct without
a mathematical proof. The Gergonne number �(3) = 109 that we calculate in Theorem
2.4 is a witness to this intermediate level. If al-Barakāt had tried to extend his method
to logics at the next level of complexity (such as Ibn Sı̄nā’s temporal (dt) fragment,
cf. [11]), he would have hit �(4) = 32, 297 and been completely overwhelmed.

For the same reason al-Barakāt’s approach is feasible only for syllogisms with two
premises. Applying it to compound syllogisms with three premises would be another
way of hitting �(4). For compound syllogisms, proof procedures like that of [12] have
the advantage over al-Barakāt’s method. (I thank a referee for raising this question.)

2.1. Empty terms. Was al-Barakāt justified in restricting his new method to
structures or interpretations that have no empty terms? In this form the question
may be unanswerable, because it depends on various prior questions about what he
was assuming and what he was trying to do.

But we can say something about the context in which he made this choice. In the
previous century Ibn Sı̄nā (c. 976–1037) had allowed empty terms, but with a different
reading of the categorical sentences from that in (1). Instead Ibn Sı̄nā gave these
sentences truth conditions corresponding to the following first-order sentences:

Sentence form Truth conditions

Every A is a B . (∀x(Ax → Bx) ∧ ∃xAx)

No A is a B . ∀x(Ax → ¬Bx)

Some A is a B . ∃x(Ax ∧ Bx)

Not every A is a B . (∃x(Ax ∧ ¬Bx) ∨ ∀x¬Ax) (6)

(See [8] and [4] pp. 106ff.) The effect of this reading is that if the term A is interpreted
so as to be empty, then Ibn Sı̄nā counts ‘Every A is a B’ and ‘Some A is a B’ as both
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false, and ‘No A is a B’ and ‘Not every A is a B’ as both true. When all terms are
interpreted as nonempty then the readings (1) and (6) make the same assignments
of truth value. In the tenth century al-Fārābı̄ (c. 870–950) in some of his more
mature work also allowed empty terms and adopted readings equivalent to (6) (see [5]
pp. 34f).

From passages elsewhere in [1] we know that al-Barakāt started out from a position
where terms can be interpreted as empty and the readings (6) apply. There is one
obvious reason for him to turn his back on empty terms when he uses his method: his
diagrams have no way to represent empty sets. But then he can reasonably be asked
whether he is changing the inferences of syllogistic logic by renouncing empty terms.
With the help of first-order logic we can give a partially reassuring answer to this
question.

Theorem 2.1. Let Σ be a signature consisting of 1-ary relation symbols, and let categorical
sentences be read as first-order according to the readings (6). If M is a Σ-structure then
there is a Σ-structureM+ that is without empty terms and is a model of exactly the same
categorical sentences as M.

Proof. We formM+ by adding to M the following new elements. Whenever R is a
letter with RM = ∅, we add a new element aR, putting it in RM

+
but not in SM

+
for

any other letter S. It is left to the reader to check that this works, bearing in mind that
the two term letters in a categorical sentence must always be distinct letters.

Corollary 2.2. Let categorical sentences be read as first-order according to the readings
(6). Then the following are equivalent, for any set T of categorical sentences and any
categorical sentence �. (Here � is first-order consequence.)

(a) T � �.
(b) If M is any structure without empty terms that is a model of T, then M is also a

model of �.

Proof. The implication (a) ⇒ (b) is immediate. In the other direction, suppose � ′ is
a categorical sentence logically equivalent to ¬�. (There always is such a � ′, as we can
check from (6).) If (a) fails to hold then there is a model M of T ∪ {� ′}. Hence by the
theorem there is a structure M+ that is without empty terms and is also a model of
T ∪ {� ′}, and so (b) fails.

Note that Theorem 2.1 and its Corollary hold only under the readings (6). Under
these readings ‘Every A is a B’ and ‘No A is a B’ together form a logical inconsistency,
but under the readings (1) they can both be true in the same Σ-structure when empty
terms are allowed.

Note also that if we restrict ourselves to structures without empty terms, then the
readings (6) and (1) are equivalent. So we are entitled to use the simpler readings (1)
when we are discussing al-Barakāt’s procedures, as we did in Section 1

The reason why Corollary 2.2 gives only partial reassurance is as follows. Write �
for al-Barakāt’s notion of entailment, whatever it may have been. If it was anything
like the notions we find in Aristotle and Ibn Sı̄nā, then it preserves truth in the sense
that if T � � then any model of T is a model of �, and hence T � �. Now Aristotle
managed to show, by an examination of each of the 48 separate cases, that for every
categorical premise-pair Φ and candidate conclusion �, if Φ � � then there is a proof
which deduces � from Φ by undeniable inferences, so that Φ � �. So at least for
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categorical premise-pairs and candidates, Aristotle’s version of � coincides with �
even if they are intensionally different. But it could be argued that al-Barakāt has
abandoned Aristotle’s proofs by chains of undeniable inferences. This might leave him
with no reason to believe that if Φ � � then Φ � �, unless he is breaking conventions
radically and taking � as a definition of �. This is not the place to pursue this issue
any further.

Tarski would have commented that his own notion of consequence in [14] quantifies
over arbitrary Σ-structures M, regardless of whether their sets AM etc. are definable
by noun phrases available to us. But he would also have agreed that this is not a
point of conflict with al-Barakāt’s method, since every {A,B,C}-structure is Barakāt-
equivalent to some {A,B,C}-structure whose sets we can define by noun phrases.

2.2. Barakāt classes. For the rest of this paper we read categorical sentences
according to the reading (1).

Theorem 2.3. The categorical sentences true in a structure are determined by the Barakāt
class of the structure.

Proof. Let the signature Σ consist of the n distinct 1-ary relation symbols A0, ...,
An–1 where n is a positive integer.

Claim. Every categorical sentence of L(Σ) is logically equivalent to a boolean
combination of sentences of the form

∃x
∧
i<n

Af(i)
i x, (7)

where f : n → 2 takes the value 1 for at least one argument, and we read A1 as A and
A0 as ¬A.

Proof of claim. Observe first the logical equivalences

∀x(Ax → Bx) ≡ ¬∃x(A1x ∧ B0x)
∀x(Ax → ¬Bx) ≡ ¬∃x(A1x ∧ B1x)
∃x(Ax ∧ Bx) ≡ ∃x(A1x ∧ B1x)
∃x(Ax ∧ ¬Bx) ≡ ∃x(A1x ∧ B0x).

(8)

The conjunctions can be expanded to include all n relation symbols by using the
equivalence

∃xφ(x) ≡ (∃x(φ(x) ∧R1x) ∨ ∃x(φ(x) ∧R0x)) (9)

for any 1-ary relation symbol R. � Claim.
The theorem follows from the claim.

We write Σ(n) for the signature consisting of the n 1-ary relation symbolsA0, ... , An–1

(n � 0). We write �(n) for the number of Barakāt classes of Σ(n)-structures without
empty terms. We call �(n) the n-th Gergonne number, in view of [6] where Gergonne
considered the case of �(2). The number �(2) counts the Barakāt classes of {A,B}-
structures without empty terms; in Section 1.3 we confirmed Gergonne’s observation
that this number is 5.

Theorem 2.4. The Gergonne number �(n) is given recursively by:

�(0) = 1,

�(n + 1) = 22n+1–1 –
∑

0≤i≤n

(
n + 1
i

)
�(i).

https://doi.org/10.1017/S1755020321000332 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000332


378 WILFRID HODGES

In particular

�(0) = �(1) = 1; �(2) = 5; �(3) = 109; �(4) = 32, 297.

Proof. All Σ(0)-structures are Barakāt equivalent, so that �(0) = 1.
Recall from Section 1.2 that there is a natural bijection between the nonempty subsets

of Σ(n) and the interior types of Σ(n). So the Barakāt class of a Σ(n)-structure M can
be characterised by giving the set C of nonempty subsets of Σ(n) corresponding to
the interior types realised in M. And conversely for each set C of nonempty subsets
of Σ(n) we can build a Σ(n)-structure M which realises all and only the interior types
corresponding to sets in C. The structure M is without empty terms if and only if every
letter in Σ(n) appears in at least one of the sets in C, in other words if

⋃
C = Σ(n).

By a cover of Σ(n) we will mean a set C of nonempty subsets of Σ(n) such that⋃
C = Σ(n). By the previous paragraph, the number �(n) of Barakāt classes of Σ(n)-

structures without empty terms is the number of covers of Σ(n).
The recursive formula given above for this number is known; see for example [7]. The

number of nonempty subsets of Σ(n) is 2n – 1, so the number κ(n) of sets of nonempty
subsets of Σ(n) is 22n–1. For each set C of nonempty subsets of Σ(n),

⋃
C is some subset

X of Σ(n). So �(n) is κ(n) minus, for each proper subset X of Σ(n), the number of
C with

⋃
C = X . One can check that the number of C with

⋃
C = X is �(|X |). The

recursive formula follows.

2.3. Diagrammable structures. We say that a theory is a type one block if it is the
theory

∃x(Ax ∧ Bx ∧ ¬Cx), ∃x(Ax ∧ ¬Bx ∧ Cx), ∃x(¬Ax ∧ Bx ∧ Cx) (10)

or a theory got from this one by replacing A,B,C by any three distinct letters. We say
that a theory is a type two block if it is the theory

∃x(Ax ∧ Bx ∧ Cx), ∃x(Ax ∧ ¬Bx ∧ ¬Cx),
∃x(¬Ax ∧ Bx ∧ ¬Cx), ∃x(¬Ax ∧ ¬Bx ∧ Cx)

(11)

or a theory got from this one by replacing A,B,C by any three distinct letters.

Theorem 2.5. An {A,B,C}-structure is diagrammable if and only if it is without empty
terms and is not a model of any type one or type two block.

Proof. ⇒: Suppose for example that the {A,B,C}–structure M is a model of the type
two block shown at (11). Then since it satisfies∃x(Ax ∧ Bx ∧ Cx), its Barakāt diagram
contains a segment of the form ≡. Because M also satisfies ∃x(Ax ∧ ¬Bx ∧ ¬Cx),
there must be a segment of the diagram consisting of just a part of the line labelled
A; without loss of generality put this to the left of ≡. Likewise because M satisfies
∃x(¬Ax ∧ Bx ∧ ¬Cx), the diagram must have a segment consisting of just a part of
the line labelled B, and this must be on the other side of the segment ≡:

C

B

A (12)

But M also satisfies ∃x(¬Ax ∧ ¬Bx ∧ Cx), and there is no third side available for the
corresponding segment of the line labelled C.

The argument for blocks of type one is similar.
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⇐: Assume M is not a model of either a type one block or a type two block.
Since it is not a model of a type one block, we have without loss of generality that
AM ∩ BM ⊆ CM .

Case 1: AM ∩ BM = ∅. Then we can draw diagrams for {A,C} and for {B,C}.
Moreover we can draw them so that the line labelled C, where it is nonempty, reaches
the righthand side of the diagram for {A,C} and the lefthand side of the diagram for
{B,C}. We get a diagram for {A,B,C} by juxtaposing these two diagrams, adding a
link in the C line if M satisfies ∃x(¬Ax ∧ ¬Bx ∧ Cx).

Case 2: AM ∩ BM �= ∅. In this case also AM ∩ BM ∩ CM �= ∅. So since M is not a
model of a type two block, it satisfies at least one of the sentences

∀x(Ax → (Bx ∨ Cx)), ∀x(Bx → (Ax ∨ Cx)), ∀x(Cx → (Ax ∨ Bx)). (13)

Case 2(i): M |= ∀x(Ax → (Bx ∨ Cx)). In this case M can be diagrammed by the
whole or part of the diagram

C

B

A (14)

The two segments missing in the diagram are for AM ∩ BM \ CM and AM \ (BM ∪
CM ), both of which are empty.

Case 2(ii):M |= ∀x(Bx → (Ax ∨ Cx)). This is the same as 2(i) but with A and B
transposed.

Case 2(iii): M |= ∀x(Cx → (Ax ∨ Bx)). In this case the whole or part of the
diagram

C

B

A (15)

suffices, since the two segments missing are both empty in M.

Corollary 2.6. There are exactly 86 Barakāt diagrams for the three letters A,B,C .

Proof. Probably the simplest proof is to run through the 109 Barakāt classes of
structures without empty terms, and exclude those that are models of a block of type
one or two.

Lemma 2.7. Let M be an {A,B,C}-structure, and suppose M is a model of either a
type one block or a type two block. Then M is not a model of any universal categorical
sentence.

Proof. Suppose first that M is a model of the type one block ∃x(Ax ∧ Bx ∧
¬Cx),∃x(Ax ∧ ¬Bx ∧ Cx),∃x(¬Ax ∧ Bx ∧ Cx). Because of ∃x(Ax ∧ ¬Bx ∧ Cx),
M is not a model of ∀x(Ax → Bx). Because of ∃x(¬Ax ∧ Bx ∧ Cx), M is not a
model of ∀x(Bx → Ax). Because of ∃x(Ax ∧ Bx ∧ ¬Cx), M is not a model of either
∀x(Ax → ¬Bx) or ∀x(Bx → ¬Ax). By symmetry the same argument works for both
the other pairs of letters.

The argument for a type two block is similar.

Theorem 2.8. Let M be an {A,B,C}-structure without empty terms.

(a) If M is a model of a universal categorical sentence then M is diagrammable.
(b) If M is a model of a productive premise-pair then M is diagrammable.
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Proof.

(a) is by Theorem 2.5 and Lemma 2.7
(b) By (a), if M is a model of the premise-pair Φ and is not diagrammable then

the sentences of Φ are both existential. A standard fact of syllogistic logic (e.g.,
[13], Section 5.5) is that every premise-pair consisting of two existential sentences is
sterile.

Theorem 2.9. A premise-pair with minor, middle and major terms A,B,C respectively
is sterile if and only if it has three diagrammable modelsM1,M2,M3 such that

M1 |= ∀x(Ax → Cx),
M2 |= ∀x(Ax → ¬Cx),
M3 |= ∃x(Ax ∧ Cx) ∧ ∃x(Ax ∧ ¬Cx).

Proof. Let Φ be a premise-pair with minor, middle and major terms A,B,C
respectively.

⇒: Assume Φ is sterile. Then Φ �� ∃x(Ax ∧ ¬Cx), so there exists a model M1 of
Φ ∪ {∀x(Ax → Cx)}. By Theorem 2.1 we can find such a model M1 without empty
terms. It is diagrammable by Theorem 2.8(a) since it satisfies a universal sentence.

Similarly the fact that Φ �� ∃x(Ax ∧ Cx) guarantees the existence ofM2 as required.
For M3 we have to work a little harder, dividing into two cases. The first case is

that Φ includes a universal sentence. In this case ensure (by taking isomorphic copies
if necessary) that the domains of M1 and M2 are disjoint. Since AM1 is nonempty,
M1 is a model of ∃x(Ax ∧ Cx); similarly M2 is a model of ∃x(Ax ∧ ¬Cx). Form
M3 with domain the union of the domains of M1 and M2, and for each letter R
put RM3 = RM1 ∪RM2 . Then it can be checked that M3 is a model of Φ and of
both ∃x(Ax ∧ Cx) and ∃x(Ax ∧ ¬Cx). Since Φ contains a universal sentence,M3 is
diagrammable by Theorem 2.8(a).

The second case is that both sentences of Φ are existential. We have to put intoM3

elements inAM3 ∩ CM3 andAM3 \ CM3 ; neither of these will be inCM3 \ AM3 . We also
need to put into M3 two elements to ensure that M3 is a model of Φ. Since neither
of the sentences of Φ mentions both A and C, we can do this without adding any
elements of CM3 \ AM3 . We may need to add one further element to ensure that BM3

is not empty; again this element can be put outside CM3 \ AM3 . By this construction
M3 |= ∀x(Cx → Ax), so that M3 is without empty terms and satisfies a universal
categorical sentence. So by Theorem 2.8(a),M3 is diagrammable.

⇐: In fact the existence of the modelsM1 andM2 suffices to show that Φ is sterile.
The existence ofM1 shows that Φ �� ∃x(Ax ∧ ¬Cx), and also that Φ �� ∀x(Ax → ¬Cx)
(given that M1 is diagrammable and so AM1 is nonempty). Likewise the existence of
M2 shows that Φ �� ∃x(Ax ∧ Cx), and also that Φ �� ∀x(Ax → Cx) (again using the
fact that AM2 is nonempty).

In the light of the proof of Theorem 2.9 one wonders why al-Barakāt bothered with
giving the models M3. Surely if he had read Aristotle’s Prior Analytics with any care
he would have known that only M1 and M2 are needed? In a submitted paper with
the title ‘Abū l-Barakāt’s logical diagrams and their possible sources’ I suggest that
al-Barakāt may have been led to the modelsM3 by giving too much credence to some
ill-judged remarks of Aristotle in Prior Analytics.
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To conclude:

Theorem 2.10. Procedure Three, applied to any categorical premise-pair Φ, either
correctly concludes that Φ is productive and finds its correct conclusion, or it correctly
finds three diagrams to show that Φ is sterile.

Proof. Suppose Φ is productive. Then by Theorem 2.1 every model M of Φ satisfies
the same categorical sentences as some model M+ without empty terms, and by
Theorem 2.8(b)M+ is diagrammable. If � is a candidate conclusion of Φ and Φ � �,
then the fact that Φ � � can be discovered by checking that each of the diagrams of
modelsM+ as above satisfies �. We can then find which of the entailed candidates is
logically strongest, and this is the conclusion of Φ.

On the other hand if Φ is sterile, then by Theorem 2.9 it has diagrammable models
of the three types required by Procedure Three for showing that it is sterile. Diagrams
for these three models will be found if one checks all the 86 Barakāt diagrams.

We noted earlier that both Aristotle and al-Barakāt restricted themselves to 48
categorical premise-pairs. There are another 16 categorical premise-pairs known as
the fourth figure. Logicians were beginning to investigate the fourth figure during al-
Barakāt’s lifetime, though he seems to have ignored this development. The theorems
above, including Theorem 2.10, apply also to the fourth figure premise-pairs.

There is further discussion of al-Barakāt’s method in [9]. The submitted paper ‘Abū
l-Barakāt’s logical diagrams and their possible sources’ mentioned above will consider
how al-Barakāt could have arrived at his method, and how al-Barakāt related it to
Aristotle’s approach. Also I hope that Amirouche Moktefi and I together will soon
give a fuller account of al-Barakāt’s diagrams as logical diagrams.

§3. Translation of passages from al-Barakāt. The following translations are from
Esad Efendi 1931, one of the more accurate manuscripts of al-Barakāt’s Kitāb al-muc-
tabar fı̄ al-h. ikmat al-ilāhı̄ya. I include page references to the printed edition [1], which
I believe is a copy of the edition printed in Hyderabad in 1938–9; but be warned that
the diagrams in [1] are hopelessly inaccurate. Two slight corrections to the diagrams in
Esad Efendi 1931 are noted in the translation below.

The first passage is from Esad Efendi 1931 pages 47B–48A ([1] 126–128). It is al-
Barakāt’s first example, the productive mood known to the Latins as Barbara. There
are four Barakāt diagrams of the premises, and al-Barakāt gives them all. (In later
examples of productive moods he often gives only a representative sample.) Although
al-Barakāt makes brief references to syllogistic figures and to Aristotle-style proofs
in his descriptions of individual diagrams, the four diagrams together demonstrate
Barbara without any need for these Aristotelian features.

The first [productive mood in the first figure] consists of two
affirmative universal sentences, as in:

Every A is a B; and every B is a C. So there follows an affirmative universal

sentence, namely: Every A is a C.
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An example of it is:
C body

B animal

A human

/Esad 48A/ because human (i.e., A) is included in the class of animala
(i.e., B) and animal is included in the class of bodies (i.e., C), so human
(i.e., A) is included in the class of bodies (i.e., C). And also
[Esad TEXT]

C animal

B sentient

A human

[CORRECTED]

C animal

B sentient

A human

because human (i.e., A) is included in the class of sentient beings (i.e.,
B) and sentient is equivalent to the class of animals (i.e., C) so that
human (i.e., A) is included in the class of animals (i.e., C). Also

C sentient

B rational

A human

because human (i.e., A) is as a class equivalent to rational (i.e., B),
and rational is included in the class of sentient beings (i.e., C), so
human (i.e., A) is included in the class of sentient beings (i.e., C).
Also

C laugher

B rational

A human

because human (i.e., A) is as a class equivalent to rational (i.e., B)
and rational is as a class equivalent to laugher (i.e., C). So human
(i.e., A) is as a class equivalent to laugher (i.e., C).

The second example is translated from Esad Efendi 1931 pages 50B–51A ([1], p. 135).
It describes a sterile mood. As normally with sterile moods, al-Barakāt gives three
examples corresponding toM1–M3 in Theorem 2.9

And the fifth [sterile first-figure] mood consists of a major premise
that is affirmative existential and a minor premise that is negative
universal [thus: No A is a B, and some B is a C]. /Esad 51A/
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[Esad TEXT]

C animal

A crowB white

[CORRECTED]

C animal

A crowB white

Thus every crow is an animal.

C human

B animal

A stone

Thus no stone is a human.

C animal

B black

A white

Thus some white thing is an animal and some white thing is not an
animal.
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translation of passages of al-T. ūsı̄’s Persian Asās, Peter Cameron for directing me to
the sequence that counts covers of sets, and a referee for raising some thoughtful
questions.

BIBLIOGRAPHY

[1] al-Barakāt, A. (2007) Kitāb al-muctabar f ı̄ al-h. ikmat al-ilāhı̄ya. Byblion,
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