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ORDERED COMPACTIFICATIONS WITH
COUNTABLE REMAINDERS

D.C. KENT AND T.A. RICHMOND

It is shown that if a partially-ordered topological space X admits a finite-point Tj-
ordered compactification, then it admits a countable Tj-ordered compactification
if and only if it admits n-point Tj-ordered compactifications for all n beyond some
integer m.

1. INTRODUCTION

Countable compactifications of topological spaces have been studied in [1, 5, 7, 9].
In [7], Magill showed that a locally compact, T2 topological space X has a countable T2

compactification if and only if it has n-point Ti compactifications for every integer n ^
1. We generalise this theorem to T2-ordered compactifications of ordered topological
spaces.

Before starting our generalisation of Magill's theorem, we recall two unpleasant
facts about ordered compactifications. For the class of ordered topological spaces which
allow T2-ordered compactifications (that is, the Ts.s-ordered spaces), local compactness
does not guarantee the existence of finite-point T2-ordered compactifications (think of
the reals with the usual order and discrete topology); furthermore the existence of an
n-point T2 -ordered compactification for some n > 1 does not guarantee the existence
of a one-point Tj-ordered compactification (think of the reals with the usual order and
topology). Here is our main theorem: If a T3.5-ordered space X allows a finite-point
T2-ordered compactification, then X allows a countable T2-ordered compactification if
and only if there is a positive integer m such that X allows an n-point T2-ordered
compactification for every n ^ m. In case the order on X is equality, the result is
equivalent to Magill's theorem.

An ordered topological space, or simply an ordered space is a triple (X,T, 8) where
T is a topology on the set X and 9 is the graph of a partial order on X. An ordered
space (X,T,6) is Ti-ordered if 8 is closed in the product space X x X, and is T3.5-
ordered (completely regular ordered in [10]) if the following conditions are satisfied: (1)
If A C X is closed and x G X\A, then there exist continuous functions / ,g : X —• [0,1]
with / increasing, g decreasing, f(x) = g(x) = 1, and f(a) A g(a) = 0 for all a € A;

Received 5th August, 1993.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 SA2.00+0.00.

483

https://doi.org/10.1017/S0004972700016580 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016580


484 D.C. Kent and T.A. Richmond [2]

(2) If x and y are distinct points in X, then there exists a continuous monotone
function / : X —» [0,1] with f(x) — 0 and f(y) = 1. Compact T2-ordered implies
T3.5-ordered, and T3.s-ordered is hereditary.

An ordered compactification of (X,T,9) is a compact T2-ordered space (X',T',0')

such that (X',T') contains (X,T) as a dense subset, and 0 C 0'. We shall usually write
(X', T', 0') simply as X'. An ordered space has an ordered compactification if and only
if it is T3.5-ordered (see [4] or [10]). An ordered compactification (X',T', 0') of (X, T, 0)
is strict if 0' is the smallest order that makes (X', T') an ordered compactification, that
is, if 0' is the intersection of all closed partial orders on (X',T') that extend 0.

If X' is an (ordered) compactification of X, the associated remainder is the sub-
space X'\X of X'. An (ordered) compactification whose remainder is finite or count-
ably infinite is called a finite-point (ordered) compactification or a countable (ordered)
compactification, respectively. A relation ^ is defined on the set K(X) of all compact-
ifications of a topological space X by X* ^ X' if and only if there exists a continuous
function / : X* —> X' which leaves X pointwise invariant. If X* ^ X' and X' ^ X*
then X* and X' are equivalent compactifications. If we do not distinguish between
equivalent compactifications, then ^ is a partial order on K(X). The set KO(X) of
all ordered compactifications of ordered space X can be partially ordered in the same
manner with the only additional requirement that the projection function f : X* —> X'
be increasing.

If 0' is a partial order on X', we shall write x ^ ' y for (x,y) £ 0'. A set B C X'
is increasing if B = {x £ X' : b ^ ' x for some b £ B}. Decreasing sets are defined
dually. The discrete order on a set X is Ax = {(x,x) : x £ X}.

2. COUNTABLE REMAINDERS

A locally compact topological space X has a two-point compactification if and only
if X has some compactification with disconnected remainder (for example, 6.16 in [2]).
We say an ordered space X is order disconnected if there exists a continuous increasing
surjection / : X —» {0,1} where {0,1} has the discrete topology and the usual order
0 < 1. While the existence of an order disconnected remainder does not imply the
existence of a two-point ordered compactification (consider R\{0}, which has only
three-point and four-point ordered compactifications), we do have the following result.

LEMMA 2 . 1 . Suppose X' is an m-point strict ordered compactification of(X, T, 0)
and X* is a larger ordered compactifica.tion of X . Suppose h : X* —* X' is the projec-
tion function and there exists a £ X'\X such that h-1(a) is order disconnected. Then
there exists a (m + l)-point ordered compactification X" with X" ^ X', obtained by
replacing a in X' by two compactification points.

PROOF: Let X" be the disjoint union of -X"'\{a} and {0,1}. Suppose
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g : / i - 1 ( a ) —> {0,1} is continuous, increasing, and onto. Define / : X* —> X " by
/(x) = h{x) for x G X ^ / i - ^ a ) and / (x) = 5 (x) for x G fc-^a). If X" is given the
quotient topology T " derived from / and X*, then (X",T") is a topological compact-
ification of X.

Define a relation 9" on X" by a ^ " b if and only if there exist points a ='

Co,Ci,... , c n = b in X" such that for each i = 1 , . . . , n , there exists a net {x\,y\) in
9 converging in X" x X" to (ci_i,Cj). The points a = CQ,CI, ... ,cn = b are called a
trail from a to 6 with length n. In [12, Theorem 1.1] it is shown that the analogous
relation ^ ' defined on X' is the strict order on X'. Observe that the nets (x\,y\)

defining a trail are nets in 9 C X2 and thus (x^) and (y\) are embedded in X', X",
and X*. Since X' is a quotient of X", x\ —> c, in X" implies x\ —> cj in X ' , where
c[ -Ci if Ci G X " \ { 0 , l } = X ' \ { a } , and c\ = a if c< e {0,1}. If c O ) . . . ,cn is a trail in
X " from Co to cn where eg, cn £ X " \ { 0 , l } , then CQ = c'o,c\,... ,c'n — cn is a trail in
X' from co to cn, and thus c0 ^ ' c n . This shows that 6" extends 6' l~l (X' \{0,1})2 ,
and therefore extends 0.

We now show that ^ " is antisymmetric. Suppose a ^ " 6 and b ^" a. If a, b £
X " \ { 0 , l } = X ' \ { a } , then a s$' b and 6 ̂ ' a, and thus a = b. If a G X " \ { 0 , l } and 5 £
{0,1}, then the trails from a to 6 and from 6 to a imply a ^' a and a ^' a, contrary to
the fact that a £ X " \ { 0 , l } = X ' \ { a } . Finally, suppose a, b G {0,1}, that is, suppose
0 ^ " 1 and 1 ^ " 0. Since 0 ^ " 1, there exists a trail 0 = c 0 , . . . , c,-,... , cn = 1 in X "
from 0 to 1. Viewing the nets involved as nets in X ' we have a = 0' ^ ' cj ^ ' 1' = a ,
and thus Ci G {0,1}. Thus, the only trail with minimal length from 0 to 1 is 0 ,1 .
Similarly, 1 ^ " 0 implies 1,0 is the unique minimal trail from 1 to 0. Suppose
{x\,y\) is a net in 9 converging to (0,1) and (z^,wy) is a net in 9 converging to
(1,0). Now in X* x X*, there are convergent subnets (xa(^),J/a(A)) ~* (a*i&*) a n d
(zp^^Wp^) -> (b*,a#) where a*,a* G g'1^) and b*,b* G ff"^1)- S i n c e t h e s e

subnets are in 9 and 9* is closed, it follows that a* ^* b* and 6* ^* a^. But

1 = 5(6*) 5C 5(0*) = 0, contrary to g being increasing. Thus 0 ^ " 1 and 1 ^ " 0 is
not possible, and ^ " is antisymmetric. The relation ^ " is easily seen to be reflexive
and transitive, and is thus a partial order on X".

To show that s$" is closed in X" x X", it suffices to show that if (Ay,B-f) is any
net in ^ " converging to (A, B), then A ^ " B. This can be shown by an induction
argument on maxT{ length of a minimal trail from Ay to By} (which is bounded), as
in the proof of Theorem 1.1 of [12].

Thus, ( X " , T " , < " ) is a strict ordered compactification of X with X" ^ X' . D

The lemma below gives us a supply of order disconnected spaces.

LEMMA 2 . 2 . Every countable Tz.s-ordered space is order disconnected.
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PROOF: We shall show the stronger result that for any distinct points x and y
in a countable T^.s-ordered space X, there exists a continuous increasing surjection
g : X —> {0,1} with g(x) ^ g{y)- Let CI*(X) denote the set of continuous increasing
functions from X to [0,1]. Since X is 7s .5 -ordered, the evaluation map e : X —»
[0,1]CI (*) denned by e{x) — Uf^Cl'(x)f(x) is a topological and order embedding (see
[4]). Choose fo 6 CI*(X) such that /o(z) ^ fo(y). Since X is countable, there exists
an irrational number a strictly between fo(x) and fo{y) with a $ TTfo(e(X)). Now
since the projection nfo is continuous and increasing, irJ*([Q,a)) — TJ*{[0,OI\) = U is
a closed, open, decreasing set in e(X) « X. The function g : X —» {0,1} defined by
g(U) = 0 and g(X\U) = 1 has the desired properties. D

In [3] Engelking and Sklyarenko show that the supremum of a set {X,-}j£j of
compactifications of a topological space X can be constructed by forming the product
P = HiziXi, identifying X with the subspace {z g P : z = 11,-gja: for some x £
X } , then taking clpX. This construction also yields the supremum of any set of
ordered compactifications. By 1.8 of [8], the remainder of the supremum of a set
of (ordered) compactifications is contained in the product of the remainders of these
(ordered) compactifications. Thus, we have the following result.

LEMMA 2 . 3 . II {Xi},-g/ is a set ol (ordered) compactilica.tions oi X with
\Xi\X\ < p lor each i £ I, then sup{-X,-}j€/ is an (ordered) compactification whose
remainder has cardinality at most p x \I\.

THEOREM 2 . 4 . Suppose (X, T, 0) admits Unite-point ordered compactifications.
Then X has a countable ordered compactification if and only il X admits n-point
ordered compactifications for all integers n greater than some m.

PROOF: Suppose X has m-point ordered compactification X' and countable or-
dered compactification X*. Without loss of generality, we may assume X' is a strict
ordered compactification, and X* ^ X' (otherwise, replace 6' by the strict order on
(X',T') and replace X* by sup{X',X*}). If h : X* —* X' is the projection function,
there must exist a G X'\X such that h~1(a) is countable. By Lemmas 2.2 and 2.1, X
has an (m + l)-point ordered compactification X". Repeating this process shows that
X has n-point ordered compactifications for all n ^ m.

Conversely, if X admits n-point ordered compactifications Xn for all n > m,
Lemma 2.3 implies that sup{Xn : n > m} is a countable ordered compactification of

x. D
THEOREM 2 . 5 . II (X,T, 0) admits a countable ordered compactification X* and

a finite-point ordered compactification X' with X' ^ X*, then X* is the supremum
oi all finite-point ordered compactifications below it.

PROOF: The proof is analogous to that of Theorem 2.3 of [9]. Let X" = sup{X# ^
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X* : X * is a finite-point ordered compactification of X } . Clearly X* ^ X". Equality
holds if the projection / : X* —» X" is one-to-one. Suppose x ^ y in X*. If the
projection h : X* —* X' maps x and y to distinct points, then f(x) ^ f(y)- If
h{x) = h(y), use the strong statement proved in Lemma 2.2 to find a finite-point
ordered compactification X * ^ X* such that the projection k : X* —> X * does
separate z and y. U

THEOREM 2 . 6 . Suppose X admits a finite-point ordered compactification. Then
X has a largest finite-point ordered compactification if and only it it has no countable
ordered compactification.

PROOF: If X has no countable ordered compactification, then there is an inte-
ger n such that X has an n-point ordered compactification but no m-point ordered
compactifications for m > n. Now any two n-point ordered compactifications must
be topologically equivalent, for otherwise by considering the associated n-stars (see
[6]) we find that the supremumof the topological compactifications underlying the two
n-point ordered compactifications has more than n compactification points. Now by
the remarks preceeding Lemma 2.3, the supremum of a set of ordered compactifica-
tions is topologically equivalent to the supremum of the set of underlying topological
compactifications, which leads to the contradition that X admits an m-point ordered
compactification with m > n. Thus, all n-point ordered compactifications of X are
topologically equivalent; intersecting their orders gives a largest finite-point ordered
compactification.

The converse is immediate from Theorem 2.4. U

Although Theorem 2.6 gives necessary and sufficient conditions for the existence of
a largest finite-point ordered compactification, no such result is known which guarantees
the existence of a smallest ordered compactification, finite-point or otherwise. Indeed,
if X is the half-open interval [0,1) with the usual topology and discrete order, there
is a unique largest finite-point ordered compactification whose order is also discrete,
however there is no smallest ordered compactification of X.

If a Tz_5 -ordered space X admits a finite-point ordered compactification, it
obviously admits ordered compactifications whose remainders have minimal finite
cardinality; we call any such compactification a minimal-point ordered compactifica-
tion. If X has a smallest finite-point ordered compactification, then all minimal-point
ordered compactifications of X have equivalent topologies, but the converse is false as
is shown by the example of the preceding paragraph. On the other hand, if all minimal-
point ordered compactifications of X have equivalent order, there exists a smallest
ordered compactification; again, the converse is false. In general, minimal point or-
dered compactifications of the same space may have non-equivalent topologies and/or
non-equivalent order.
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Finally, for the sake of comparing finite-point ordered compactifications with finite-
point (non-ordered) compactifications, we mention a few additional facts. A T3.5-
ordered space may have a largest finite-point (non-ordered) compactification but no
largest finite-point ordered compactification (for example, the Euclidean plane); on the
other hand, it may have a largest finite-point ordered compactification but no largest
finite-point (non-ordered) compactification (for example, the natural numbers). There
are also examples of Ts.s-ordered spaces which have a largest finite-point ordered com-
pactification and a largest finite-point (non-ordered) compactification whose remainders
are of different cardinality.
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