BULL. AUSTRAL. MATH. Soc. 54035, 54r05, 54040
VoL. 49 (1994) [483-488]

ORDERED COMPACTIFICATIONS WITH
COUNTABLE REMAINDERS

D.C. KENT AND T.A. RICHMOND

It is shown that if a partially-ordered topological space X admits a finite-point T5-
ordered compactification, then it admits a countable Tz-ordered compactification
if and only if it admits n-point 7%-ordered compactifications for all n beyond some
integer m.

1. INTRODUCTION

Countable compactifications of topological spaces have been studied in [1, 5, 7, 9].
In [7], Magill showed that a locally compact, T> topological space X has a countable T,
compactification if and only if it has n-point T, compactifications for every integer n >
1. We generalise this theorem to Ty-ordered compactifications of ordered topological
spaces.

Before starting our generalisation of Magill’s theorem, we recall two unpleasant
facts about ordered compactifications. For the class of ordered topological spaces which
allow T;-ordered compactifications (that is, the T s-ordered spaces), local compactness
does not guarantee the existence of finite-point T3-ordered compactifications (think of
the reals with the usual order and discrete topology); furthermore the existence of an
n-point Tp-ordered compactification for some n > 1 does not guarantee the existence
of a one-point T3-ordered compactification (think of the reals with the usual order and
topology). Here is our main theorem: If a Tjs-ordered space X allows a finite-point
Ty-ordered compactification, then X allows a countable T;-ordered compactification if
and only if there is a positive integer m such that X allows an n-point T3-ordered
compactification for every n > m. In case the order on X is equality, the result is
equivalent to Magill’s theorem.

An ordered topological space, or simply an ordered space is a triple (X,7,0) where
T is a topology on the set X and 8 is the graph of a partial order on X. An ordered
space (X, 7,0) is Ty-ordered if 8 is closed in the product space X x X, and is Ty 5-
ordered (completely regular ordered in [10]) if the following conditions are satisfied: (1)
If AC X is closed and z € X\ A, then there exist continuous functions f,g: X — [0,1]
with f increasing, g decreasing, f(z) = g(z) =1, and f(a) A g(a) =0 for all a € 4;
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(2) If z and y are distinct points in X, then there exists a continuous monotone
function f : X — [0,1] with f(z) = 0 and f(y) = 1. Compact Ty-ordered implies
T; s-ordered, and T3 s-ordered is hereditary.

An ordered compactification of (X,7,0) is a compact T,-ordered space (X', 7',6')
such that (X', 7') contains (X, 7) as a dense subset, and 8 C §'. We shall usually write
(X',7',0') simply as X'. An ordered space has an ordered compactification if and only
if it is T3 s-ordered (see [4] or [10]). An ordered compactification (X', 7',8') of (X, T,6)
is strictif @' is the smallest order that makes (X', 7') an ordered compactification, that
is, if ' is the intersection of all closed partial orders on (X', 7') that extend 8.

If X' is an (ordered) compactification of X, the associated remainder is the sub-
space X'\X of X'. An (ordered) compactification whose remainder is finite or count-
ably infinite is called a finite-point (ordered) compactification or a countable (ordered)
compactification, respectively. A relation < is defined on the set K(X) of all compact-
ifications of a topological space X by X* > X' if and only if there exists a continucus
function f: X* — X' which leaves X pointwise invariant. If X* > X' and X' > X*
then X™* and X' are equivalent compactifications. If we do not distinguish between
equivalent compactifications, then < is a partial order on K(X). The set Ko(X) of
all ordered compactifications of ordered space X can be partially ordered in the same
manner with the only additional requirement that the projection function f: X* — X'
be increasing.

If 6' is a partial order on X', we shall write ¢ <'y for (z,y) €8'. A set BC X'
is increasing if B = {x € X' : b <' z for some b € B}. Decreasing sets are defined
dually. The discrete order on a set X is Ax = {(z,z) :z € X}.

2. COUNTABLE REMAINDERS

A locally compact topological space X has a two-point compactification if and only
if X has some compactification with disconnected remainder (for example, 6.16 in [2]).
We say an ordered space X is order disconnected if there exists a continuous increasing
surjection f: X — {0,1} where {0,1} has the discrete topology and the usual order
0 < 1. While the existence of an order disconnected remainder does not imply the
existence of a two-point ordered compactification (consider R\{0}, which has only
three-point and four-point ordered compactifications), we do have the following result.

LEMMA 2.1. Suppose X' is an m-point strict ordered compactification of (X, 7, 8)
and X* is a larger ordered compactification of X . Suppose h: X* — X' is the projec-
tion function and there exists a € X'\ X such that h™!(a) is order disconnected. Then
there exists a (m + 1)-point ordered compactification X" with X" > X', obtained by
replacing « in X' by two compactification points.

PROOF: Let X" be the disjoint union of X'\{a} and {0,1}. Suppose
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g : h™Y(a) — {0,1} is continuous, increasing, and onto. Define f : X* — X" by
f(z) = h(z) for z € X*\h™}(a) and f(z) = g(z) for z € A~ (). If X" is given the
quotient topology 7" derived from f and X*, then (X", 7") is a topological compact-
ification of X . i

Define a relation 6" on X" by a <" b if and only if there exist points ¢ =
€0,€1,--- y€n = b in X" such that for each 7 = 1,... ,n, there exists a net (z,y») in
0 converging in X" x X" to (ci—1,¢;). The points a = cg,¢1,-.. ,¢n = b are called a
trail from a to b with length n. In [12, Theorem 1.1} it is shown that the analogous
relation ' defined on X' is the strict order on X'. Observe that the nets (z,y5)
defining a trail are nets in § C X? and thus (z,) and (y») are embedded in X', X",
and X*. Since X' is a quotient of X", zx — ¢; in X" implies z) — ¢} in X', where
ct=c;if ;€ X"\{0,1} = X'\{a},and ¢, =a if ¢; € {0,1}. If cg,... ;€5 is a trail in
X" from ¢o to ¢, where ¢g, ¢, € X"\{0,1}, then co = cj,c},-.. ,¢, = ¢y is a trail in
X' from co to cn, and thus ¢y <' c,. This shows that 8" extends ' N (X'\{0,1})?,
and therefore extends 6.

We now show that <" is antisymmetric. Suppose a <" b and b <" a. If a,b €
X"\{0,1} = X'\{a},thena <'band b <'a,and thusa =b. If a € X"\{0,1} and b €
{0,1}, then the trails from a to b and from b to a imply ¢ €' a and a <’ @, contrary to
the fact that a € X'"\{0,1} = X'\{a}. Finally, suppose a, b € {0,1}, that is, suppose
0<"1 and 1 <" 0. Since 0 <" 1, there exists a trail 0 = ¢g,... ,¢iy... ;¢ =1 in X"
from 0 to 1. Viewing the nets involved as netsin X’ wehave a =0' <'¢{ <'1' = a,
and thus ¢; € {0,1}. Thus, the only trail with minimal length from 0 to 1 is 0,1.
Similarly, 1 <" 0 implies 1,0 is the unique minimal trail from 1 to 0. Suppose
(za,y») is a net in @ converging to (0,1) and (2z4,w,) is a net in § converging to
(1,0). Now in X* x X*, there are convergent subnets (zo(),¥-(x)) — (a*,b*) and
(z,,(.,,),wp(..,)) — (b#,a#) where a*,a# € g7!(0) and b*,b%¥ € g~*(1). Since these
subnets are in 6 and 8* is closed, it follows that a* <* b* and % <* o#. But
1 =g(b*) £ g(a#) = 0, contrary to g being increasing. Thus 0 <" 1 and 1 <" 0 is
not possible, and <" is antisymmetric. The relation <" is easily seen to be reflexive
and transitive, and is thus a partial order on X".

To show that <" is closed in X" x X" it suffices to show that if (A, B) is any
net in <" converging to (4, B), then A <" B. This can be shown by an induction
argument on max,{length of a minimal trail from Ay to B,} (which is bounded), as
in the proof of Theorem 1.1 of [12].

Thus, (X", 7",<") is a strict ordered compactification of X with X" > X'. 0

The lemma below gives us a supply of order disconnected spaces.

LEMMA 2.2. Every countable T3 s-ordered space is order disconnected.
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PROOF: We shall show the stronger result that for any distinct points z and y
in a countable T3 s-ordered space X, there exists a continuous increasing surjection
g:X — {0,1} with g(z) # g(y). Let CI*(X) denote the set of continuous increasing
functions from X to [0,1]. Since X is Ty s-ordered, the evaluation map e : X —
[0,1]°7°(X) defined by e(z) = O¢eccor+(x)f(z) is a topological and order embedding (see
[4]). Choose f, € CI*(X) such that f,(z) # fo(y). Since X is countable, there exists
an irrational number a strictly between f,(z) and f,(y) with a & 75, (e(X)). Now
since the projection wy, is continuous and increasing, wz’l([O,a)) = 7r;ol([0,a]) =Uis
a closed, open, decreasing set in e(X) = X. The function g : X — {0,1} defined by
g(U) =0 and g(X\U) =1 has the desired properties. a

In [3] Engelking and Sklyarenko show that the supremum of a set {X;}ier of
compactifications of a topological space X can be constructed by forming the product
P = ;e X;, identifying X with the subspace {z € P : z = H;egrz for some z €
X}, then taking c¢lpX. This construction also yields the supremum of any set of
ordered compactifications. By 1.8 of [8], the remainder of the supremum of a set
of (ordered) compactifications is contained in the product of the remainders of these
(ordered) compactifications. Thus, we have the following result.

LEMMA 2.3. If {Xi}ics is a set of (ordered) compactifications of X with
|X:\X| < p for each i € I, then sup{Xi}icsr is an (ordered) compactification whose
remainder has cardinality at most p X |I|.

THEOREM 2.4. Suppose (X,7,8) admits finite-point ordered compactifications.
Then X has a countable ordered compactification if and only if X admits n-point
ordered compactifications for all integers n greater than some m.

PROOF: Suppose X has m-point ordered compactification X' and countable or-
dered compactification X*. Without loss of generality, we may assume X' is a strict
ordered compactification, and X* > X' (otherwise, replace §' by the strict order on
(X',7') and replace X* by sup{X',X*}). If h: X* - X' is the projection function,
there must exist a € X'\ X such that h~!(a) is countable. By Lemmas 2.2 and 2.1, X
has an (m + 1)-point ordered compactification X" . Repeating this process shows that
X has n-point ordered compactifications for all n > m.

Conversely, if X admits n-point ordered compactifications X, for all n > m,
Lemma 2.3 implies that sup{X, : = > m} is a countable ordered compactification of

X. 0

THEOREM 2.5. If(X,t,0) admitsa countable ordered compactification X* and
a finite-point ordered compactification X' with X' € X*, then X* is the supremum
of all finite-point ordered compactifications below it.

PROOF: The proof is analogous to that of Theorem 2.3 of [9]. Let X" = sup{X# <
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X*: X# is a finite-point ordered compactification of X}. Clearly X* > X". Equality
holds if the projection f : X* — X" is one-to-one. Suppose z # y in X*. If the
projection h : X* — X' maps z and y to distinct points, then f(z) # f(y). If
h(z) = h(y), use the strong statement proved in Lemma 2.2 to find a finite-point
ordered compactification X# £ X* such that the projection k : X* — X# does
separate =z and y. 0

THEOREM 2.6. Suppose X admits a finite-point ordered compactification. Then
X has a largest finite-point ordered compactification if and only if it has no countable

ordered compactification.

ProoF: If X has no countable ordered compactification, then there is an inte-
ger n such that X has an n-point ordered compactification but no m-point ordered
compactifications for m > n. Now any two n-point ordered compactifications must
be topologically equivalent, for otherwise by considering the associated n-stars (see
[6]) we find that the supremum of the topological compactifications underlying the two
n-point ordered compactifications has more than n compactification points. Now by
the remarks preceeding Lemma 2.3, the supremum of a set of ordered compactifica-
tions is topologically equivalent to the supremum of the set of underlying topological
compactifications, which leads to the contradition that X admits an m-point ordered
compactification with m > n. Thus, all n-point ordered compactifications of X are
topologically equivalent; intersecting their orders gives a largest finite-point ordered
compactification.

The converse is immediate from Theorem 2.4. 0

Although Theorem 2.6 gives necessary and sufficient conditions for the existence of
alargest finite-point ordered compactification, no such result is known which guarantees
the existence of a smallest ordered compactification, finite-point or otherwise. Indeed,
if X is the half-open interval [0,1) with the usual topology and discrete order, there
i1s a unique largest finite-point ordered compactification whose order is also discrete,
however there is no smallest ordered compactification of X .

If a T3s-ordered space X admits a finite-point ordered compactification, it
obviously admits ordered compactifications whose remainders have minimal finite
cardinality; we call any such compactification a minimal-point ordered compactifica-
tion. If X has a smallest finite-point ordered compactification, then all minimal-point
ordered compactifications of X have equivalent topologies, but the converse is false as
is shown by the example of the preceding paragraph. On the other hand, if all minimal-
point ordered compactifications of X have equivalent order, there exists a smallest
ordered compactification; again, the converse is false. In general, minimal point or-
dered compactifications of the same space may have non-equivalent topologies and/or
non-equivalent order.
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Finally, for the sake of comparing finite-point ordered compactifications with finite-
point (non-ordered) compactifications, we mention a few additional facts. A Tj;s-
ordered space may have a largest finite-point (non-ordered) compactification but no
largest finite-point ordered compactification (for example, the Euclidean plane); on the
other hand, it may have a largest finite-point ordered compactification but no largest
finite-point (non-ordered) compactification (for example, the natural numbers). There
are also examples of T3 s-ordered spaces which have a largest finite-point ordered com-
pactification and a largest finite-point (non-ordered) compactification whose remainders
are of different cardinality.
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