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CORRIGENDA

ON A CLASSIFICATION OF THE FUNCTION FIELDS
OF ALGEBRAIC TORI

(Nagoya Math. J. 56 (1975), 85-104)
SHIZUO ENDO AND TAKEHIKO MIYATA

There are some errors in Theorems 3.3 and 4.2 in [2]. In this note
we would like to correct them.

1) In Theorem 3.3 (and [IV]), the condition (1) must be replaced by
the following one;

(1) I is (i) a cyclic group, (ii) a dihedral group of order 2m, m odd,
(iii) a direct product of a cyclic group of order q’, q an odd prime, f = 1,
and a dihedral group of order 2m, m odd, where each prime divisor of m
is a primitive q¢’~'(q — 1)-th root of unity modulo q’, or (iv) a generalized
quaternion group of order 4m, m odd, where each prime divisor of m is con-
gruent to 3 modulo 4.

Further replace the condition (1) in p. 96 by the following one:

@) II is (') a cyclic group, or (ii') @ direct product of a cyclic group
of order n, n odd, n = 1, and a group with generators p, © and relations
pm=1*=1 and 7't = p7', m odd, d =1, where each rational prime
dividing m is a prime in Z[{,.d.

If the unit group U(Z/n2¢Z) is not cyclic, then any rational prime is
not prime in Z[{,,s]. This observation shows that (1) is equivalent to (1').

Now, let II be a metacyclic group as in (ii’). Denote by ¢ an element
of II of order nm and put g = o7®. Let m'lm (m’ > 1),nln and 0 < d’' <
d — 1, and put b = n’'m’2¥. Suppose that m’ is not a prime power. Then
we see that Z[¢,] = Z[p]/(D,()) is unramified over Z[{, e, e + C57]. Since
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ZII/(Dy(p)) is a crossed product of Z[¢,] and a cyclic group of order 2,
this shows that ZII/(@,(»)) is a maximal, separable Z[{, s, &, + Cii]-order
in QIT/(®,()).

Noting this fact, the implication (1) = (2) can be proved along the
same line as in [2]. The implication (2) = (3) is evident. Hence we have
only to prove the implication (3) = (1).

Assume that /7 does not satisfy the condition (1’). Now we will prove
that T'(I) is not a finite group. By virtue of (1.5) and (2.3), it suffices to
show this in the case where every Sylow subgroup of II is cyclic and
i(II) £2. If T{I)is a finite group, then, for any normal subgroup /I’ of
II, T(I|IT") is a finite group. Therefore we may suppose that

(*) I is a metacyclic group with generators ¢, r and relations ¢"? =
" =1, t7l¢"c = ¢™" and ¢”r = rg”, where d = 1, n is an odd integer and
p is an odd prime with (p, n) = 1 which is not a prime in Z[{,.d].

The case d = 1. Write b = np, and let 4 = ZII/(®,(s)). Then A4 is a
trivial crossed product of Z[¢,] and {z). Let R = Z[{,] = Z[s]/(D:(s)) and
R, = Z[{,, ¢, + '], and let A = ({, — 1) & R. Both R and ¥ can be re-

garded as A-modules, and we have 4 ey 0, R < 0, U N 0 and 4 =
R®YU as A-modules. Since p is not a prime in Z[{,], we can find an

ambiguous prime ideal B of R such that A & . By localizing 4, R, ¥
and B at B N R,, it can be shown that the genus of P is different from
those of R and 2. We note that, if TeS,;, AT = R® ® A for some u,
v=>=0. Now suppose that (*) o 0 for j > 0. Then there is an exact
sequence

0—> 88 —>S—BP—0

of II-modules with S/, Se€S;. Tensoring this with 4 over ZII and eli-
minating the torsion parts, we get B D A4S’ = AS and so P P R D
AWM =~ R@> P A for some u, v, W, V = 0, which is a contradiction. This
shows that (*) —(S—O for any j > 0. Thus T'(Il) is not finite.

The case d = 2. We first assume that n = 1. As is easily seen, p is
not a prime in Z[i] if and only if p = 1 mod 4, and, for d > 3, p is not
a prime in Z[{,.]. We now write ¢ = ¢7*. Suppose that p = 1 mod 4, and
let 4 = ZII/(D,,(1)). Then 4 = Z[{,,7’] where "> =—1 and «/"'{,7' = {7,
and R, = Z[¢, + ;'] is the center of 4. Since 4/, —1) = F,[i] =F,® F,
and R/(¢, + {;' — 2) = F,, 4 is a non-maximal, hereditary R,-order in Q4.
Let I be a maximal ideal of 4 containing {, — 1. Then the genus of M
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is different from that of 4. Note that, for T'e §;, AT = A for some u >
0. Using this fact we see that (I*)¥ —(7); 0 for any j > 0, which shows

that T'(I]) is not finite. Suppose that p = 3 mod 4 and d = 3, and let 4
= ZI[(?,,(1)). Then 4= Z[¢,,i,7'] where > =i and "',z = ;', and
R, = Z[¢, + &', i] is the center of 4. Since 4/, — 1) = F,[¢] = F,. ® F,
and R/(¢, + ;' — 2) = F,[i] = Fp, 4 is a non-maximal, hereditary R,~order
in Q4. Note that, for T'e S;, we have AT = A" for some u = 0. Then,
in the same way as in the case p = 1 mod 4, we can show that T(I]) is
not finite.

Next, we assume that n > 1. We only need to consider the case
where p = 3 mod 4 and d = 2. If p is not a prime in Z[Z,], then T'(I1/{z*)
is not finite as shown in the case d = 1, and so T'(I]) is not finite. Hence
we may assume that p is a prime in Z[{,]. Write g = o¢2* and let 4 =
ZII[(Dy,,(p)). Then 4 = Z[(,, {,, 7] where % = —1, ¢/ (" = ¢, and /"', 7
=, and R, = Z[{,,{, + ;'] is the center of 4. We see that A4/({, — 1)
F,[C,, 1] = F,[(,] @ F,[¢,] and R/, + &' — 2) = F,[¢,]. This shows that
A is a non-maximal, hereditary Ry-order in @/4. Therefore, along the same
line as in the case n = 1, it can be shown that 7'(/]) is not finite. This
completes the proof of (3) = (1).

The implication (1) & (3) can also be proved by Theorem 3.1 in [1].
But Dress’ result does not immediately show the implication (1) = (2).

The argument on p. 96 in [2] is incorrect for non-cyclic groups. A
detailed and rectified proof of the implication (1) = (2) will be given in
a more general form in a forthcoming paper.

2) In Theorem 4.2, the condition (1) must be replaced by the following
one:

(1) I is one of the following groups: (i) a cyclic group of order n
where for every n'|n any prime ideal of Z[t,] containing n is principal.
(ii) a dihedral group of order 2m, m odd, where for every m'|m any prime
ideal of Z[C, + ¢} containing m is principal. (iii) a direct product of a
cyclic group of order q’, q an odd prime, f = 1, and a dihedral group of
order 2m, m odd, where any prime divisor of m is a primitive g* (g — 1)-th
root of unity modulo q’, for every 1 < ' < f any prime ideal of Z[{,,] con-
taining 2 is principal, and for every 0 < f' < f and every m'|m any prime
ideal of Z[C., Cn + (3] containing qm is principal. (iv) a generalized
quaternion group of order 4m, m odd, where any prime divisor of m is con-
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gruent to 3 modulo 4 and for every m’'|m any prime ideal of Z[C,. + (7]
containing 2m is generated by a totally positive element.

It should be noted that, for a finite group I7 satisfying the condition
(1) in the part 1), the converse of (4.1), (1) is true. Then we can prove
Theorem 4.2 in the same way as in [2].
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