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Abstract
We study several parameters of a random Bienaymé–Galton–Watson tree Tn of size n defined in terms of
an offspring distribution ξ with mean 1 and nonzero finite variance σ 2. Let f (s)=E{sξ } be the generating
function of the random variable ξ . We show that the independence number is in probability asymptotic
to qn, where q is the unique solution to q= f (1− q). One of the many algorithms for finding the largest
independent set of nodes uses a notion of repeated peeling away of all leaves and their parents. The number
of rounds of peeling is shown to be in probability asymptotic to log n/ log (1/f ′(1− q)). Finally, we study
a related parameter which we call the leaf-height. Also sometimes called the protection number, this is
the maximal shortest path length between any node and a leaf in its subtree. If p1 = P{ξ = 1}> 0, then we
show that the maximum leaf-height over all nodes in Tn is in probability asymptotic to log n/ log (1/p1). If
p1 = 0 and κ is the first integer i> 1 with P{ξ = i}> 0, then the leaf-height is in probability asymptotic to
log

κ
log n.
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1. Introduction
The independence number is a fundamental graph invariant that arises often in computational
complexity theory and the analysis of algorithms. In a graph G= (V , E), a subset S⊆V of vertices
is said to be an independent set if no two elements of S are adjacent. The dual notion is that of a
vertex cover, namely a subset C⊆V such that every edge in G has an endpoint in C. The inde-
pendence number I(G) of G is defined to be the size of the largest independent set in G. In this
paper, we concern ourselves with the case G= T, a random tree in the Bienaymé–Galton–Watson
model. In recent years, analysis of the independence number of trees has been carried out for
various other random models. C. Banderier, M. Kuba, and A. Panholzer studied various families
of simply -generated trees [4], and a recent paper of M. Fuchs, C. Holmgren, D. Mitsche, and R.
Neininger considers random binary search trees as well as random recursive trees [13].

Because every tree T is bipartite, the independence number I(T) is always at least |T|/2 (we
take the larger element of the bipartition). Recall that a vertex set S is a vertex cover of T if every
edge of T intersects a vertex in S. Letting V(T) denote the size of a minimum-cardinality vertex
cover, we have the formula n=V(T)+ I(T). In a tree, there always exists a maximum-cardinality
independent set that includes all of the leaves, and the following algorithm, which will be the
starting point of our discussion, uses this fact to find an independent set of maximum size. Note
that this is only one of many possible algorithms that accomplishes this task.
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.

Algorithm 1 Independent set Given a directed tree T, this algorithm computes a maximum-cardinality independent
set A of vertices.

I1. [Initialise.] Set A←∅.
I2. [Compute leaves and parents.] Let L(T) be the set of leaves of T, that is, the set of vertices with out-degree 0. Let

P(T) be the set of parents of nodes in L(T).

I3. [Update.] Set A← A∪ L(T) and T← T \ L(T) \ P(T). (At this stage, T may now be a forest.)
I4. [Loop?] If T =∅, halt and output A; otherwise, return to step I2.

Figure 1. Peel numbers and leaf-heights of nodes in a unary-binary tree.

Algorithm I repeatedly peels away leaves and their parents to arrive at what we shall call the
layered independent set. We refer to L(T) as layer 0, to P(T) as layer 1, to L(T \ L(T) \ P(T)) as
layer 2, and so on. In this manner, each node u gets assigned a peel number ρ(u), the layer number
of the set to which it belongs. The peel number ρ(T) of a tree T is the peel number of the root
of T. We also let m(T) denote the maximum of the peel numbers of vertices in T; this quantity is
twice the number of loops that Algorithm I undergoes before termination, rounded up. Note that
all the peel numbers can be computed by postorder traversal of the tree in time O(|T|), and then
the layered independent set is simply the collection of all nodes with even peel number.

A quantity related to the peel number is the leaf-height λ(u) of a node u ∈ T. It is the length
of the path to the nearest leaf in the (fringe) subtree rooted at u. The leaf-height λ(T) of a tree T
is the maximal leaf-height of any node in T. The fact that ρ(u)= k implies that there is a leaf at
depth k from the root, so λ(u)≤ ρ(u) for all nodes u in a tree. It is also easily seen that for any
tree T, λ(T)≤ ρ(T)≤m(T). A small example is given in Figure 1; note that for nodes with few
children or small subtrees, the two quantities are quite similar. One corollary of our main results
is that under certain conditions, this phenomenon persists as n gets large, that is, the peel number
and leaf-height have the same order of asymptotic growth.

The leaf-height goes by the name protection number in the literature and has enjoyed some
recent attention. With this usage, a node whose minimal distance from any leaf is k is called k-
protected and a 2-protected node is often simply said to be protected. In this paper, we say that
a node has leaf-height k, which we believe is more illustrative than saying it is k-protected. The
number of nodes with leaf-height≥ 2 was examined by G.-S. Cheon and L.W. Shapiro for planted
plane trees, Motzkin trees, full binary trees, Catalan trees, and ternary trees [8]; by T.Mansour [23]
for k-ary trees; by R. R. X. Du and H. Prodinger for digital search trees [10]; by H. M. Mahmoud
andM.D.Ward for binary search trees [21] and for random recursive trees [22]; and by L. Devroye
and S. Janson, who considered simply generated trees and also unified some earlier results regard-
ing binary search trees and random recursive trees. Nodes with leaf-height > 2 were studied in
binary search trees by M. Bóna [5] and in planted plane trees by K. Copenhaver [9]. In the setting
of simply generated trees and Pólya trees, the leaf-height of the root as well as the leaf-height of a
node chosen uniformly at random was studied in [14].

Themain results of this paper characterise the asymptotic behaviour of the independence num-
ber In = I(Tn), themaximumpeel numberMn =m(Tn), and themaximum leaf-height Ln = λ(Tn)
for a Bienaymé–Galton–Watson tree Tn, which is conditioned on having n nodes. We also
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Figure 2. The parameter q satisfying q= f (1− q).

include distributional properties of closely related statistics, such as the peel number and leaf-
height of the root of an unconditional Bienaymé–Galton–Watson tree, as well as the leaf-height
L′n of the root and the leaf-height L′′n of a node chosen uniformly at random in a conditional
Bienaymé–Galton–Watson tree.

The Bienaymé–Galton–Watson model. For a nonnegative integer-valued random variable ξ , a
Bienaymé–Galton–Watson tree is a random tree in which every node has i children independently
with probability pi = P{ξ = i}. The random variable ξ is called the offspring distribution of the
tree; we only consider distributions with mean E{ξ} = 1 and variance V{ξ} = σ 2 ∈ (0,∞) (stan-
dard references include [3] and [20]). Let Tn denote the tree T, conditioned on having n nodes.
Note that many important simply generated families of trees can be characterised by a conditional
Bienaymé–Galton–Watson tree with a certain distribution [15]. Strictly speaking, T is a graph
(V , E), but we will abuse notation and write v ∈ T to indicate that v is in the vertex set of T.

2. The independence number
We begin by studying unconditional Bienaymé–Galton–Watson trees. Recall that the generating
function f (s) of an offspring distribution ξ is the infinite series E{sξ }, which converges absolutely
when 0≤ s≤ 1. We can thus differentiate to obtain f ′(s)=E{ξ sξ−1}. A quantity that will play a
key role in our story is q, the unique solution in (0, 1) of q= f (1− q). This is illustrated in Figure 2.

Lemma 1. Let ξ be an offspring distribution with 0<E{ξ} ≤ 1 and let f (s)=E{sξ }. The probability
that the root of a Bienaymé–Galton–Watson tree T with this distribution belongs to the layered
independent set is q, which belongs to the interval (1/2, 1).

Proof. Note that q is the probability that all the children of the root are not in the layered
independent set. By the recursive definition of a Bienaymé–Galton–Watson tree, we have

q=
∑
i≥0

pi(1− q)i = f (1− q), (1)

and the Banach fixed-point theorem guarantees the uniqueness of the solution to s= f (1− s) in
the compact interval [0, 1]. Of course, q cannot be 1 since P{ξ = 0} 
= 0. The fact that f (s)> s for
all s ∈ (0, 1) implies that q= f (1− q)> 1− q, hence q> 1/2. �

Lemma 1 is essentially known (see, e.g., Banderier, Kuba, and Panholzer [4]).
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Example. There is a well-known connection between certain families of trees and condi-
tioned Bienaymé–Galton–Watson trees. In each of the following cases, sampling a conditional
Bienaymé–Galton–Watson treeTn with the given distribution is equivalent to uniformly sampling
a tree of size n from the respective tree family.

i) In Flajolet’s t-ary tree, every node is either a leaf or has t children. This corresponds to the
distribution with p0 = 1− 1/t and pt = 1/t, so we can compute q numerically by finding
the unique solution to the equation

q= 1− 1
t
+ (1− q)t

t
. (2)

in the interval (1/2, 1). In the case t= 2 of full binary trees, we find that q= 2−√
2≈ 0.585786, and since the (1− q)t/t term is very small for larger values of t, q is

approximately 1− 1/t for large t.
ii) To obtain a random rooted Cayley tree, we set pi = (i!e)−1 for all i≥ 0. Since f (s)= es−1,

we have qeq = 1, which we can invert in terms of the Lambert W function. Concretely, we
have

q=W(1)=
(∫ ∞
−∞

dt
(et − t)2 + π2

)−1
− 1≈ 0.567143, (3)

which is also known as the omega constant.
iii) Planted plane trees correspond to the distribution pi = 1/2i+1 for i≥ 0. In this case,

f (s)= 1/(2− s), yielding the equation q2 + q− 1= 0, whose solution in the correct range
is q= 1/ϕ ≈ 0.618034. (The golden ratio ϕ = 1.618034 is the more famous solution to this
quadratic equation).

iv) Motzkin trees, also known as unary-binary trees, are trees in which every non-leaf node has
either one tree or two children. This corresponds to the distribution p0 = p1 = p2 = 1/3
and pi = 0 for all i≥ 3. So we have q= (1+ (1− q)+ (1− q)2)/3 and we have q= 3−√
6≈ 0.550510.

v) A binomial tree of order d can be thought of as a tree in which every node has d “slots” for

its children, some of which may be filled. Thus, a node can have r children in
(d
r

)
different

ways, for 0≤ r≤ d. This corresponds, fittingly, to a binomial offspring distribution, where

pi =
⎛
⎝d

i

⎞
⎠(1

d

)i (
1− 1

d

)d−i
, (4)

for 0≤ i≤ d, and pi = 0 otherwise. For this distribution, we have f (s)= (s/n+ 1− 1/n)n,
meaning that

q=
(
1− 1

d
+ 1− q

d

)d
=
(
1− q

d

)d
. (5)

For large d, this tends to the omega constant. An important case is d= 2, which produces
a random Catalan tree; it can be readily computed that q= 4− 2

√
3≈ 0.535898 for these

trees.

The following theorem shows the link between q and the size of the largest independent set in
a conditioned Bienaymé–Galton–Watson tree.
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Theorem 2. Let ξ be an offspring distribution withE{ξ} = 1 and let f (s)=E{sξ }. The independence
number In = I(Tn) of a Bienaymé–Galton–Watson tree, conditioned on having n nodes, satisfies

In
n
→ q

in probability as n→∞, where q is the unique solution in (1/2, 1) of the equation q= f (1− q).

Proof. For a vertex u, we let 	u denote the set of children of u and let

g(u)=
⎧⎨
⎩ 1, if the peel number of u is even;

0, otherwise.
(6)

Note that the recursive function
G(u)= g(u)+

∑
v∈	u

G(v) (7)

is exactly the independence number of the subtree rooted at u. Since g is bounded, we can apply
a result of S. Janson ( [16], Theorem 1.3) to find that for a conditional Bienaymé–Galton–Watson
tree Tn with root u,

In
n
= G(u)

n
→E

{
g(u)

}= q (8)

in probability as n→∞. �
Note that examples (ii), (iii), and the Catalan case agree with explicit computations given in [4].

For simply generated trees, that paper, which uses singularity analysis, derives the constant q in a
different manner, proves the stronger statement E

{
I(Tn)

}= qn+O(1), and also gives a formula
for the variance in terms of the degree-weight generating function. In particular, they show there
exists a constant ν depending on the family of trees such that the variance is νn+O(1).

3. Minimum-size s-path vertex covers
This section represents a brief digression and will not be related to our remaining results, though
it discusses the natural generalisation of Algorithm I and is related to the open problem we give
at the end of the paper. As mentioned in the introduction, the size V(T) of the minimal vertex
cover of a T with n nodes has size n− I(T), where I(T) is the independence number. In particu-
lar, Algorithm I outputs a minimum-cardinality vertex cover alongside the maximum-cardinality
independent set; it is the set of all nodes with odd peel number. We now tackle a more general
notion of vertex covers. For an integer s≥ 2, an s-path vertex cover of a rooted tree T is a subset C
of vertices such that any path of length s− 1 in the tree contains a vertex in C. Thus, the common-
or-garden vertex cover corresponds to s= 2. (The off-by-one quirk in the definition goes away
if we measure a path not by its length, but instead by its order, that is, the number of vertices it
contains.) Note that only directed paths are considered, so two children of the same node are not
connected by a path of length 2.

One might be tempted to generalise our earlier observations by claiming that the set of nodes
with peel number congruent to s− 1 modulo s is a minimal s-path vertex cover. This is not true!
Consider a tree in which the root has two children, and one of the children has itself one child.
Then no node has peel number equal to 2, but of course, the minimal 3-path vertex cover consists
of the root. Towards a correct generalisation, consider the fact that if in every loop of Algorithm I,
we removed all subtrees of height exactly 1, then the roots of these removed subtrees are precisely
the vertices with odd peel number. Thus, we arrive at an algorithm for computing a minimal
s-path vertex cover.

Note that if the original tree had height less than s− 1, the algorithm outputs the empty
set, which is a valid cover, since there are no paths of length s− 1 in the tree. The fact that
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.

Algorithm P Compute s-path vertex cover Given s≥ 2, and a rooted tree T, this algorithm computes a minimal
s-path vertex cover C.

P1. [Initialise.] Set C←∅.
P2. [Done?] If there are no subtrees with height exactly s− 1, we output C and terminate.
P3. [Prune a subtree.] Let v be a node in T such that the subtree Tv rooted at v has height exactly s− 1. We set

C← C ∪ {v} and set T← T \ Tv . Return to step P2.

this algorithm actually does output a minimum-size vertex cover is proved in [6], and it is also
remarked that the algorithm can be made to run in O(|T|) time.

Let Vs(T) denote the size of the minimum s-path vertex cover of a Bienaymé–Galton–Watson
tree T. To determine this random quantity, we will have to determine the probability that a node
is added to the set C in Algorithm P. We will say that a vertex v ∈ T is “marked” if Algorithm P
adds it to the cover C. The following lemma gives necessary and sufficient conditions for the root
of a tree to be marked.

Lemma 3. The root u of a tree is marked if and only if there exists a path of length s− 1 from the
root that contains no marked vertices (other than the root).

Proof. Suppose that the root u is marked. This means that in the final iteration of Algorithm P,
after all other marked nodes have been removed, the tree has height s− 1. This means that some
unmarked node v is at depth s− 1, and no node is marked on the path to this node. (This happens
when v is a leaf or all children of v are marked, since if a child of v is unmarked, then we have an
unmarked path of length s in the tree and the algorithm would have to mark some node on this
path before marking the root.) Conversely, if such a path exists, then Algorithm P will be in this
state in the final iteration of the loop and will therefore mark the root. �

This observation can be used to derive a functional equation for the probability that a node in
an unconditional Bienaymé–Galton–Watson tree is marked, as the following lemma shows.

Lemma 4. Let T be a Bienaymé–Galton–Watson tree with offspring distribution ξ satisfyingE{ξ} ≤
1. Let f (z)=E{ξ z} be the generating function of the distribution and let

g(z, q)= 1− f
(
q+ (1− q)z

)
(9)

The probability qs that the root of the tree is in the minimum s-path vertex cover produced by
Algorithm P satisfies

qs = g(g( · · · (g(0, qs) · · · , qs), qs), qs), (10)

where the function g is iterated s− 1 times.

Proof. For 1≤ j< s, let Ej be the event that in an unconditional Bienaymé–Galton–Watson tree,
there is a path of length j from the root that contains nomarked vertices (except possibly the root).
Thus qs = P{Es−1}. Restating things slightly, Ej is the probability that there exists an unmarked
child v of the root in whose subtree Ej−1 is true. If the degree of the root is i, then the probability
that all the children of the root fail to have this property is

(
qs + (1− qs)P{Ej−1}

)i, so for 1< j< s,

P{Ej} =
∑
i≥0

pi
(
1− (qs + (1− qs)P{Ej−1})i

)= 1− f
(
qs + (1− qs)P{Ej−1}

)
. (11)

Note that P{E1} is simply the probability 1− f (qs)= g(0, qs) that one of the children of the root
is unmarked, so unravelling the above equation proves the lemma. �
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Figure 3. Children of nodes with even and odd peel numbers.

Note that when s= 2, qs = 1− q, where q is the solution to z= f (1− z) we studied earlier.
By a recursive computation analogous to the one we performed for the independence number,
we find that if Vs(Tn) denotes the minimum size of an s-path vertex cover of the conditional
Bienaymé–Galton–Watson tree Tn, then as n→∞,

Vs(Tn)
n
→ qs, (12)

in probability. The function g given by Lemma 5 is rather unwieldy, so we cannot hope to find
neat closed forms for the limit of Vs(Tn) like we did for In in many special cases. However, we
can, in principle, use g to numerically approximate the s-path vertex cover number for arbitrary
distributions satisfying E{ξ} ≤ 1.

4. Distribution of the peel number
Let ri denote the probability that the root of an unconditional Bienaymé–Galton–Watson tree has
peel number i. In this section, we shall compute the distribution (ri)i≥0. It will also be convenient
to set ri = 0 when i is negative. We will establish the notation

r+i =
∑
j≥i

rj and r−i =
i∑

j=0
rj . (13)

There will be some asymmetry for odd and even i, so let us write r+oddi for the subsum of
r+i consisting of odd terms and r+eveni for the subsum of r+i consisting of even terms. Defining
r−oddi and r−eveni similarly, we have, of course, r+oddi + r+eveni = r+i and r−oddi + r−eveni = r−i . The
situation is depicted in Figure 3.

Clearly, r0 = p0. For even indices j, all children must have an odd peel number at most j− 1
and at least one must have peel number j− 1. Thus, if ξ is the number of children at the root, then
for i≥ 1,

r2i =E

{(
r−odd2i−1

)ξ −
(
r−odd2i−3

)ξ
}
= f
(
r−odd2i−1

)
− f
(
r−odd2i−3

)
. (14)

For odd indices j, all the children of the root with even peel number must have peel number at
least j− 1, and at least one must have peel number j− 1. Since∑

i≥0
r2i−1 = 1− q and

∑
i≥0

r2i = q, (15)

we find that for i≥ 1,

r2i−1 =E

{(
1− q+ r+even2i−2

)ξ − (1− q+ r+even2i
)ξ} . (16)

The following lemma describes ri for large i.

Lemma 5. Let ri be the probability that the root of an unconditional Bienaymé–Galton–Watson tree
with offspring distribution ξ ∼ (pi)i≥0 has peel number equal to i. As i→∞, we have

ri = f ′(1− q)i+o(i). (17)
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Proof. In the even case, we have

r2i = f
(
r−odd2i−1

)
− f
(
r−odd2i−3

)
∼ r2i−1

∑
j≥0

jpj
(
r−odd2i−3

)j−1

= r2i−1f ′
(
r−odd2i−3

)
, (18)

which, since r−odd2i−3 → 1− q, is asymptotic to r2i−1f ′(1− q). Similarly, we have

r2i−1 = f
(
r+even2i−2 + 1− q

)− f
(
r+even2i + 1− q

)∼ r2i−2
∑
j≥0

jpj(1− q)j−1, (19)

which is also asymptotic to r2i−2f ′(1− q). �
If Ni is the number of nodes in the ith layer for our algorithm, then Aldous’s theorem [1]

implies that for every fixed i,

Ni
n
→ ri (20)

in probability. The number of nodes in the layers decreases at the indicated rate, namely f ′(1− q).
As q ∈ (1/2, 1), we have

p1 = f ′(0)< f ′(1− q)< f ′
(
1
2

)
≤E

{
1
2ξ

}
. (21)

The next section will need the event that the maximum peel number in an unconditional tree
occurs at the root. We have the following lemma.

Lemma 6. Let T be an unconditional Bienaymé–Galton–Watson tree with offspring distribution ξ .
Let R be the peel number of the root of such a tree and let M be the maximum peel number of any
node in the tree. Let q be the solution to q= f (1− q), where f is the reproduction generating function
of this distribution. Then

τi:= P{R=M= i} = f ′(1− q)i+o(i) (22)

as i→∞.

Proof. The fact that τi ≤ P{R= i} = ri = f ′(1− q)i+o(i) means that we only have to worry about
finding a lower bound. To that end, consider the ξ children of the root (each the root of uncon-
ditional Bienaymé–Galton–Watson trees), with peel numbers R1, . . . , Rξ and maximum peel
numbersM1, . . . ,Mξ . We consider the odd and even cases separately.

When i is odd, the event that R=M= i is implied by the event that there exists some 1≤ j≤ ξ

with Rj =Mj = i− 1 and for all k 
= j, we have Rj odd and Mj ≤ i. Therefore, when i is odd, we
have, by the inclusion–exclusion inequality,

τi ≥E
{
ξ · τi−1P{R odd, M ≤ i}ξ−1}−E

⎧⎨
⎩
⎛
⎝ ξ

2

⎞
⎠ · τi−12P{R odd, M ≤ i}ξ−2

⎫⎬
⎭ . (23)
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Note that P{R odd, M > i} = o(1) as i→∞, and so

τi ≥E

{
ξ · τi−1

(
1− q− o(1)

)ξ−1}−E

⎧⎨
⎩
⎛
⎝ ξ

2

⎞
⎠ · τi−12 (1− q− o(1)

)ξ−2⎫⎬⎭
= τi−1f ′

(
1− q− o(1)

)− τi−12

2
f ′′(1− q)

≥ τi−1f ′
(
1− q− o(1)

)− τi−12σ 2

2
. (24)

When i is even, the event that R=M= i is implied by the event that there exists some 1≤
j≤ ξ with Rj =Mj = i− 1 and for all k 
= j, we have Rj odd, Rj ≤ i− 2, and Mj ≤ i. With another
application of the inclusion–exclusion inequality and by a similar argument as in the odd case, we
have

τi ≥E
{
ξ · τi−1P {R≤ i− 2, M ≤ i, R odd}ξ−1}

−E

⎧⎨
⎩
⎛
⎝ ξ

2

⎞
⎠ τi−12P {R≤ i− 2, M ≤ i, R odd}ξ−2

⎫⎬
⎭

≥ τi−1f ′
(
1− q− o(1)

)− τi−12σ 2

2
. (25)

In both the odd and even cases, we see that τi ≥ f ′(1− q)i+o(i), completing the proof. �
Using this result, we can give the following property of the distribution of the maximum peel

number.

Lemma 7. The maximum peel number M in an unconditional Bienaymé–Galton–Watson tree
satisfies

P{M ≥ i} = f ′(1− q)i/2+o(i), (26)

as i→∞, where f is the reproduction generating function.

Proof. As before, let R1, . . . , Rξ denote the peel numbers of children of the root and let
M1, . . . ,Mξ denote the maximum peel numbers in their respective subtrees. Let μi = P{M= i},
μ−i = P{M ≤ i}, and μ+i = P{M ≥ i}. The event thatM ≥ i is implied by the event(

max
1≤j≤ξ

Mj ≥ i
)
or
(
max
1≤j≤ξ

Mj < i and there is some 1≤ j≤ ξ with Rj =Mj = i− 1
)
. (27)

Thus, letting Ej be the event that Rj =Mj = i− 1, we have

P{M ≥ i} ≥ P

{
max
1≤j≤ξ

Mj ≥ i
}
+ P

⎧⎨
⎩max

1≤j≤ξ
Mj < i,

ξ⋃
j=1

Ej

⎫⎬
⎭ . (28)

Note first that

P

{
max
1≤j≤ξ

Mj ≥ i
}
= 1−E

{
(1−μ+i )

ξ
}= 1− f (1−μ+i ). (29)

By taking the Taylor series expansion of f around 1, we have

f (1− s)= f (1)− sf ′(1)+ s2

2
f ′′(θ) (30)
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for some 1− s≤ θ ≤ 1, so that

f (1− s)= 1− s+ s2

2
f ′′(θ)≤ 1− s+ s2

2
σ 2 (31)

and

P

{
max
1≤j≤ξ

Mj ≥ i
}
≥μ+i −

μ+i
2
σ 2

2
. (32)

Next, by the union bound, we have

P

⎧⎨
⎩max

1≤j≤ξ
Mj < i,

ξ⋃
j=1

Ej

⎫⎬
⎭= P

⎧⎨
⎩

ξ⋃
j=1

Ej

⎫⎬
⎭− P

⎧⎨
⎩

ξ⋃
j=1

Ej, max
1≤j≤ξ

Mj ≥ i

⎫⎬
⎭

= 1−E
{
(1− τi−1)ξ

}−E
{
ξ (ξ − 1)τi−1μ+i

}
= 1− f (1− τi−1)− σ 2τi−1μ+i

≥ τi−1 − τi−12σ 2

2
− σ 2τi−1μ+i . (33)

Collecting these bounds back into (28), we have

μ+i ≥μ+i + τi−1 − μ+i
2
σ 2

2
− τi−12σ 2

2
− σ 2τi−1μ+i (34)

and therefore
σ 2

2
μ+i

2 ≥ τi−1(1− σ 2μ+i )−
τ 2i−1σ 2

2
. (35)

Let φ(x) be a decreasing function that is o(1) as x→∞. We combine (35) with Lemma 7 to
conclude that

σ 2

2
μ+i

2 ≥ τi−1 (1− φ(i))= f ′(1− q)i+o(i). (36)

To bound μ+i from above, we observe that since the event that M ≥ i is a subset of the event
(27), we have

μ+i ≤ 1− f (1−μ+i )+E
{
1− (1− τi−1)ξ

}
≤μ+i −

μ+i
2

2
(
σ 2 + o(1)

)+ τi−1 − τi−12

2
(
σ 2 + o(1)

)
, (37)

and therefore
σ 2 + o(1)

2
μ+i

2 ≤ τi−1 = f ′(1− q)i+o(i), (38)

which is what we need. �

5. Asymptotics of the peel number
We are now ready to prove an asymptotic result for the peel number of Tn; that is, the maximum
peel number over all nodes in Tn. This is the number of rounds of peeling required by Algorithm
I to calculate a maximum-cardinality independent set. Our proof uses Kesten’s tree T∞, whose
construction we shall briefly recall here (see [18]). Fix an offspring distribution ξ with E{ξ} = 1.
Starting from the root, we attach ζ children, where P{ζ = i} = ipi for i≥ 0. Now select a child
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uniformly at random and mark it. We repeat the process at the marked child, while all other
children become the roots of independent unconditional Bienaymé–Galton–Watson trees with
the ordinary offspring distribution ξ . For a tree t, we let τ (t, k) denote t, truncated to include only
the first k levels. Letting TV denote total variation distance, it is well known (see [17] and [25])
that if k= o(

√
n), then

lim
n→∞ TV

(
τ (T∞, k), τ (Tn, k)

)= 0. (39)

Theorem 8. Let Mn be the maximum peel number in Tn, a conditional Bienaymé–Galton–Watson
tree on n nodes with offspring distribution ξ . Then

Mn
log n

→ 1
log
(
1/f ′(1− q)

) (40)

in probability, where f is the generating function of ξ .

Proof. For any tree t, let h(t) denote its height andm(t) its maximum peel number. For the lower
bound, we employ Kesten’s limit tree T∞. Let Sk denote the set of nodes of T∞ that are children
of nodes on the spine of τ (T∞, k) (i.e. nodes that are marked in the construction of T∞). Let

αn =
⌊ √

n
log2 n

⌋
and βn =

⌊ √
n

log n

⌋
.

By the same result of [17] and [25] that we used before, we can find a coupling of τ (Tn, βn) and
τ (T∞, βn) such that

P {τ (Tn, βn) 
= τ (T∞, βn)} = o(1). (41)

For every node u in T∞, let Tu be the subtree of T∞ rooted at u. Let Mn =m(Tn). Letting Eux
denote the event thatm(Tu)≤ x, we have

P{Mn ≤ x} ≤ P {τ (Tn, βn) 
= τ (T∞, βn)} + P

⎧⎨
⎩
⋂

u∈Sαn

Eux

⎫⎬
⎭

+ P

{
max
u∈Sαn

h(Tu)≥ βn − αn

}
. (42)

We already pointed out that P {τ (Tn, βn) 
= τ (T∞, βn)} = o(1); we bound the other two
terms by

P

⎧⎨
⎩
⋂

u∈Sαn

Eux

⎫⎬
⎭+ P

{
max
u∈Sαn

h(Tu)≥ βn − αn

}

≤ P

{
|Sαn | ≤

σ 2αn
2

}
+ P

{
|Sαn | ≥

σ 23αn
2

}

+ P {m(T)≤ x}σ 2αn/2 + 2σ 2

2
αnP

{
h(T)≥ βn − αn

}
, (43)

where T is an unconditional Bienaymé–Galton–Watson tree. Now, Sαn/(σ 2αn)→ 1 in probability
by the law of large numbers, as the expected number of children of any node on the spine of T∞
is σ 2 + 1. So, the first two terms of (43) tend to zero. Next, we see that

P {m(T)≤ x}σ 2αn/2 = (1− P {m(T)> x})σ 2αn/2 ≤ exp
(
−f ′(1− q)x/2+o(x) σ

2αn
2

)
, (44)
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Figure 4. The proof uses Kesten’s infinite tree T∞ for both bounds.

which tends to zero if x= (1− ε) log n/ log
(
1/f ′(1− q)

)
. For the final term, we have, by

Kolmogorov’s theorem (see, e.g. [20] or [2])
3σ 2αn

2
P
{
h(T)> βn − αn

}∼ 3σ 2

2
· 2αn
σ 2(βn − αn)

∼ 3αn
βn
∼ 3

log n
, (45)

which goes to zero. We have shown that

P

{
Mn < (1− ε)

log n
log
(
1/f ′(1− q)

)
}
→ 0 (46)

for all ε > 0.
For the upper bound we will again work with T∞, truncated to level βn, but also require some

further auxiliary definitions. Let u∗ denote the unique node on the spine of T∞ at distance αn
from the root of Tn and let T∗n be its subtree in Tn (the setup is illustrated in Figure 4). Let S be the
set of children of nodes on the spine at distance ≤ αn from the root. We then define

M′n =max
u∈S ρ(u) and M′′n =max

u∈S m(Tu).

Next, we let S∗ denote the set of nodes u on the spine with the property that all of u’s non-spine
children have an odd peel number. In particular, let Yn be the maximal number of consecutive
nodes on the spine that are in S∗. Lastly, we let Y∗n denote the number of consecutive nodes on
the spine, starting at the parent of u∗, whose non-spine children all have an odd peel number.
Assuming that τ (Tn, βn)= τ (T∞, βn), we have the inequality

m(Tn)≤max
(
m(T∗n), ρ(u∗)+ Y∗n ,M′n + Yn,M′′n

)≤max
(
m(T∗n)+ Y∗n , 2M′n, 2Yn,M′′n

)
. (47)

To explain this, we note that nodes in S∗ have a peel number that is at most one more than
the peel numbers of their children on the spine. Nodes on the spine that are not in S∗ have a
peel number that is at most one more than the maximum peel number of any of their non-spine
children (and this is bounded from above byM′n).

Let ε > 0 be given and let x= (1+ ε) log n/ log
(
1/f ′(1− q)

)
. We have

P {m(Tn)≥ x} ≤ P {τ (Tn, βn) 
= τ (T∞, βn)} + P

{
max
u∈S h(Tu)≥ βn − αn

}
+ P

{
Y∗n ≥

√
log n

}

+ P {Yn ≥ x/2} + P
{
M′n ≥ x/2

}+ P
{
M′′n ≥ x

}+ P

{
m(T∗n)≥ x−√log n} .

(48)
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As noted in our proof of the lower bound, the first two terms are o(1), so we have reduced our
task to showing that the latter five terms are also o(1).

Let ζ be the offspring distribution of nodes on the spine (recall that P{ζ = i} = ipi). For a node
on the spine, the probability that it is in S∗ is

E
{
(1− q)ζ−1

}=∑
i≥0

ipi(1− q)i−1 = f ′(1− q). (49)

Thus, Y∗n is a geometric random variable with parameter 1− f ′(1− q), and hence

P

{
Y∗n ≥

√
log n

}
= o(1). (50)

Also, Yn is bounded from above in distribution by the maximum of αn independent
Geo

(
f ′(1− q)

)
random variables, so that

P{Yn ≥ x/2} ≤ αnf ′(1− q)x/2 = o(1). (51)
Next,

P{M′n ≥ x/2} ≤E {|S|} P{R≥ x/2} = σ 2αnf ′(1− q)x/2+o(x) = o(1) (52)
and

P{M′′n ≥ x} ≤E {|S|} P{M ≥ x} = σ 2αnf ′(1− q)x/2+o(x) = o(1). (53)
This leaves us with the final term of (48). Observe that |T∗n | = n− αn −∑u∈S |Tu|, which is at

most n−maxu∈S |Tu|. Thus,
P

{
|T∗n | ≥ n− n

log5 n

}
≤ P

{
max
u∈S |Tu| ≤ n

log5 n

}

=E

{
P

{
|T| ≤ n

log5 n

}|S| }

≤ P

{
|S| ≤ σ 2αn

2

}
+
(
1− P

{
|T|> n

log5 n

})σ 2αn/2
. (54)

Since, as noted earlier, |S|/(σ 2αn)→ 1 in probability and since P {|T| ≥ n} =�(1/
√
n), we

have

P

{
|T∗n | ≥ n− n

log5 n

}
≤ o(1)+ exp

(
−�

(
log5/2 n√

n

)
σ 2

2
αn

)

≤ o(1)+ exp
(
−�

(√
log n

))
, (55)

which is o(1). So

P

{
m(T∗n)≥ x−√log n}≤ max

1≤k≤n−n/ log5 n
P

{
m(T∗n)≥ x−√log n∣∣∣ |T∗n | = k

}

+ P

{
|T∗n | ≥ n− n

log5 n

}
. (56)

Noting that given |T∗n | = k, T∗n is again a Bienaymé–Galton–Watson tree and letting Fk be the
event that there exists a node v ∈ Tn with |Tv| ≤ k andm(Tv)≥ x−√log n, we see that

P

{
m(T∗n)≥ x−√log n∣∣∣ |T∗n | = k

}
≤ P

{
Fn−n/ log5 n

}
. (57)

Now define t(v) to be the subtree of v in the shifted preorder degree sequence
ξv, ξv+1, . . . , ξn, ξ1, . . . ξv−1. Let ρ(v) be the peel number of the root v of t(v) and let Gvx denote
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the event that ρ(v)≥ x−√log n and |t(v)| ≤ n/ log5 n. We have

P{Mn ≥ x} ≤ P

{⋃
v∈Tn

Gvx
}
+ o(1). (58)

Note that maxv∈Tn;|t(v)|≤n/ log5 n ρ(v), is invariant under the cyclic shift of the preorder degree
sequence. This rotational invariance, by Dwass’ device [11], shows that

P

⎧⎨
⎩
⋃
v∈Tn

Gvx

⎫⎬
⎭= P

{⋃
v∈Tn Gvx,

∑
1≤i≤n (ξi − 1)=−1}

P
{∑

1≤i≤n (ξi − 1)=−1} , (59)

where on the right-hand side, all probabilities are with respect to an i.i.d. sequence ξ1, . . . , ξn. We
bound (59) from above by

P

⎧⎨
⎩
⋃
v∈Tn

Gvx

⎫⎬
⎭≤ n · P

{
ρ(1)≥ x−√log n, |t(1)| ≤ n/ log5 n,

∑n
i=1 (ξi − 1)=−1}

P
{∑n

i=1 (ξi − 1)=−1} . (60)

By conditioning on the size of t(1), we obtain the further bound

P

⎧⎨
⎩
⋃
v∈Tn

Gvx

⎫⎬
⎭≤ n · P

{
ρ(1)≥ x−√log n} · supn/ log5 n≤k≤n P

{∑k
i=1 (ξi − 1)= 0

}
P
{∑n

i=1 (ξi − 1)=−1} .

By Kolchin’s estimate [19], the fraction is �(1), therefore,

P

⎧⎨
⎩
⋃
v∈Tn

Gvx

⎫⎬
⎭≤ nf ′(1− q)x+o(x),

which goes to 0 if x= (1+ ε) log n/ log
(
1− f ′(1− q)

)
. �

If, instead of removing leaves and parents at each step, we only remove leaves, then it is clear
that the number of rounds needed to delete all nodes is simply the height of the tree. The height
of random binary trees was studied by P. Flajolet and A. Odlyzko, who showed that in this case,
Hn/
√
n converges in law to a theta distribution [12]. Earlier, it was shown by N. G. de Bruijn, D.

E. Knuth, and S. O. Rice that the expected height of a random planted plane tree is
√

πn+O(1).
It is interesting that deleting only leaves from Tn at each step requires �

(√
n
)
rounds of deletion,

but deleting leaves and their parents causes the number of rounds to decrease to �( log n).

Examples. We apply Theorem 8 to calculate explicit asymptotics of the maximum peel number
for the various families of trees mentioned earlier.

i.) Flajolet’s t-ary trees:We have f ′(1− q)= 1− q and thusMn/ log n→ 1/ log (1/(1− q)) in
probability. As t gets large, q approaches 1− 1/t, so that the limit ofMn/ log n is approxi-
mately 1/ log t for large t. For the case of full binary trees when t= 2, recall that q= 2−√2
and thusMn/ log n→−1/ log (

√
2− 1) in probability.

ii.) Cayley trees: In this case, f ′(1− q)= e−q and hence Mn/ log n→ 1/q in probability; we
know from earlier that q=W(1), so 1/q≈ 1.763223.

iii.) Planted plane trees:We calculate f ′(1− q)= 1/(q+ 1)2. Recalling that q= 1/ϕ where ϕ =
(
√
5− 1)/2 is the golden ratio, we have in probabilityMn/ log n→ 1/ϕ2 ≈ 0.381966.

iv.) Motzkin trees: The derivative f ′(1− q)= (3− 2q)/3 and substituting q= 3−√6 we get
Mn/ log n→ 1/( log 3− log (2

√
6− 3))≈ 2.186769.
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v.) Binomial trees: In this case, we have f ′(1− q)= (1− q/d)d−1. As d→∞, it is clear to see
that Mn/ log n→ 1/W(1) in probability, matching the earlier calculation for Cayley trees
above. For the special case d= 2 of Catalan trees, we have f ′(1− q)= 1− q/2 and thus
Mn/ log n→−1/ log (

√
3− 1). This constant is greater than that we obtain for full binary

trees above, which is consistent with intuitive reasoning about the maximal peel numbers
of these trees.

6. Distribution of the leaf-height
We now repeat the treatment given in Section 4, but this time for the distribution (�i)i≥0, where
for each i≥ 0, �i denotes the probability that the root of an unconditional Bienaymé–Galton–
Watson tree has leaf-height equal to i. Observe that �0 is exactly the probability p0 that the root
has no children and in general, for a node u with children 	u the leaf-height λ(u) is

λ(u)=
⎧⎨
⎩ 0, if u is a leaf;

minv∈	u λ(v)+ 1, otherwise.
(61)

We define �+i and �−i analogously to r+i and r−i :

�+i =
∑
j≥i

�j and �−i =
i∑

j=0
�j ; (62)

since (�i)i≥0 defines a distribution, �+i+1 + �−i = 1 for every i≥ 0. Letting Ei be the event that all
the children of the root have leaf-height at least i, we have, for i≥ 1, �i = P{Ei−1} − P{Ei}. We can
then compute

�1 = 1−E
{
(1− �0)ξ

}= 1− f (1− �0)= 1− f (1− p0). (63)
and, in general, for i≥ 1,

�i+1 = P{Ei} − P{Ei+1}
=E

{
(�+i )

ξ
}−E

{
(�+i+1)

ξ
}

= f (�+i )− f (�+i+1)
= f (1− �−i−1)− f (1− �−i ). (64)

By convexity of f , we see that �i is nonincreasing, and this formula provides a fast method to
compute the �i recursively. The following lemma describes the behaviour of �i as i gets large.

Lemma 9. Let T be a Bienaymé–Galton–Watson tree with offspring distribution ξ ∼ (pi)i≥0.
If p1 
= 0, then �i = (p1 + o(1))i. Otherwise if p1 = 0 and κ =min{i> 1:pi 
= 0}, then

log �i =�(κ i) (65)
as i→∞.

Proof. The recursive formula above is our starting point. Expanding f as a power series, for i≥ 1
we have, by our choice of κ ,

�i+1 =
∞∑
j=0

pj
(
(�+i )

j − (�+i+1)
j)

= 0+ p1(�+i − �+i+1)+
∑
j≥κ

pj
(
(�+i )

j − (�+i+1)
j)
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= p1�i + pκ�i
(
(�+i )

κ−1 + (�+i )
κ−2(�+i+1)

1 + · · · + (�+i+1)
κ−1)+∑

j>κ

pj
(
(�+i )

j − (�+i+1)
j) .

≤ p1�i + κpκ�i(�+i )
κ−1 +

∑
j>κ

jpj�i(�+i )
j−1

≤ p1�i + �i(�+1 )
κ−1(∑

j≥κ

jpj
)

= p1�i + �i(1− p0)κ−1(1− p1). (66)

Letting α = p1 + (1− p1)(1− p0)κ−1 < 1, we have �i+1 ≤ �iα. Hence �i+1 ≤ �1αi and therefore
�i→ 0 as i→∞.

Let ε > 0 and pick nε large enough such that �+i ≤ ε for all i≥ nε . When p1 
= 0, we have �ip1 ≤
�i+1 ≤ �i(p1 + εκ−1), so we immediately conclude that �i =

(
p1 + o(1)

)i. If p1 = 0, then

�i+1 ≤ κpκ�i(�+i )
κ−1 +

∑
j>κ

jpj�i(�+i )
κ−1(�+i )

j−κ

≤ κpκ�i(�+i )
κ−1(1+∑

j>κ

jpjεj−κ
)

≤ κpκ�i(�+i )
κ−1
(
1+ ε

1− ε

)

≤ κpκ�i(�i)κ−1
( ∞∑

j=0
αj
)κ−1( 1

1− ε

)

= κpκ

(1− α)κ−1(1− ε)
�i

κ . (67)

From this and the fact that �i→ 0, we see that for some positive constants c1, c2 < 1, and c3,

�i ≤ c1c2κ i−c3 (68)
for all i≥ c3. We also have

�i+1 ≥ κpκ�i(�+i )
κ−1 ≥ κpκ�i

k, (69)
so that for some positive constants c′1, c′2 < 1, and c′3,

�i ≥ c′1c′2
κ
i−c′3 (70)

for all i≥ c′3. This proves that log �i =�(κ i).We finish the proof by noting that �+i can be bounded
in a similar manner. �

7. Asymptotics of the leaf-height
In this section, we will describe the asymptotic behaviour of the leaf-height of a tree Tn (recall
that this is the maximum of λ(v), taken over all the nodes v ∈ Tn). The result depends on whether
p1 is zero or nonzero, and we have split this into two lemmas, since both of the proofs are rather
involved.

Lemma 10. Let Ln be the leaf-height of Tn, a conditional Bienaymé–Galton–Watson tree on n nodes
with offspring distribution ξ ∼ (pi)i≥0. If p1 
= 0, then

Ln
log n

→ 1
log (1/p1)

(71)

in probability.
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Proof. Let Yn be the length of the longest string, oriented away from the root, of nodes of degree
one in Tn. Clearly Ln ≥ Yn, so we will first show that for ε > 0,

P
{
Yn < (1− ε) log n/ log (1/p1)

}→ 0.

Now, P{Yn < x} is the probability that a string of 1s appears in the preorder degree sequence
of the tree (ξ1, ξ2, . . . , ξn), given that the sequence is of length n and that the sequence does, in
fact, define a tree; as we have used previously, this latter probability is �(n−3/2), from Dwass [11].
So letting Yn(ξ1, ξ2, . . . , ξn) be the length of the longest subsequence of 1s in the preorder degree
sequence, we have

P{Yn < x} =�(n−3/2)P {Yn(ξ1, ξ2, . . . , ξn)< x} . (72)

We divide the sequence into n/x subsequences of length x each and let Ei be the event that the
ith subsequence does not consist only of 1s. Then

P {Yn(ξ1, ξ2, . . . , ξn)< x} = P

⎧⎨
⎩

n/2⋃
i=1

Ei

⎫⎬
⎭= P{Ei}n/2. (73)

Since P{Ei} = 1− p1x for all i,

P {Yn(ξ1, ξ2, . . . , ξn)< x} = (1− p1x)n/x ≤ exp
(
−np1

x

x

)
. (74)

When x= (1− ε) log n/ log (1/p1), this is equal to exp (− nε/x), so

P
{
Ln < (1− ε) log n/ log (1/p1)

}≤ P
{
Yn < (1− ε) log n/ log (1/p1)

}≤�(n3/2)e−�(nε/ log n),
(75)

which goes to 0 as n→∞.
To tackle the upper bound, it will be helpful for us to reorder the degrees into level (also called

breadth-first) ordering and to consider the following random variable. Arrange the level-order
degree sequence ξ1, ξ2, . . . , ξn in a cycle, and let Zn be the longest string of consecutive nonzero
numbers in this cyclic ordering. Clearly the probability that no sub-cycle of length x of this order-
ing consists only of zeroes is at most n(1− p0)x. So letting A be the event that (ξ1, ξ2, . . . , ξn)
defines a tree, we can crudely bound P{Zn ≥ x} by

P{Zn ≥ x} = P{Zn ≥ x, A}
P{A} ≤�(n3/2)n(1− p0)x =�(n5/2)(1− p0)x, (76)

which goes to zero if c> (5/2)/ log
(
1/(1− p0)

)
and x is set to c log n. By symmetry, if Zn is the

longest string of nonzeros in the preorder listing, then the same result holds, that is,

P

{
Zn ≥ 3 log n

log
(
1/(1− p0)

)
}
→ 0. (77)

Note that Ln ≤ Zn. Now for 1≤�≤ n let Ln(ξ1, ξ2, . . . , ξ�) be the smallest leaf depth if we
start constructing a tree using degrees ξ1, ξ2, . . . , ξ�, in preorder. Two situations can occur: either
ξ1, ξ2, . . . , ξ� defines at least one tree in a possible forest or ξ1, ξ2, . . . , ξ� defines an incomplete
tree. In the former case, Ln(ξ1, ξ2, . . . , ξ�) is the leaf-height of the first completed tree; in the
latter, set Ln(ξ1, ξ2, . . . , ξ�)= 0. Note that if Zn ≤�, then Ln(ξ1, ξ2, . . . , ξ�)≤�. For a sequence
ξ1, ξ2, . . . , ξn of degrees, we define

Lni = Ln(ξi, ξi+1 . . . , ξi+�−i), (78)
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where addition in the indices is taken modulo n. If Zn ≤�, note that Ln ≤max1≤i≤n Lni. So we
have

P{Ln > x} ≤ P{Ln > x, Zn ≤�} + P{Zn > �}

≤ P

{
max
1≤i≤n Lni > x, Zn ≤�

}
+ P{Zn > �}

≤ P

{
max
1≤i≤n Lni > x

}
+ P{Zn > �}. (79)

The second term is o(1) if we pick c> (5/2)/ log
(
1/(1− p0)

)
as before and set �= c log n. In

the first term, the maximum is invariant under rotations of (ξ1, ξ2, . . . , ξn), so we use may use a
version of the cycle lemma [11], obtaining

P

{
max
1≤i≤n Lni > x

}
= P

{
max1≤i≤n Lni > x,

∑n
i=1 ξi = n− 1

}
P
{∑n

i=1 ξi = n− 1
}

≤
P

{
max1≤i≤n Lni > x,

∑n
i=�+1 ξi = n− 1−∑�

i=1 ξi
}

�(n−1/2)

≤O(n3/2) sup
�

P

{
Ln1 > x,

n∑
i=�+1

ξi = �

}

=O(n3/2) · P{Ln1 > x} · sup
�

P

{ n∑
i=�+1

ξi = �

}
. (80)

Rogozin’s inequality [24] tells us that

sup
�

P

{ n∑
i=�+1

ξi = �

}
≤ γ√

1−�
· 1√

n−�
, (81)

where γ is a universal constant and �= supj pj. So if L(T) is the leaf-height of the root of an
unconditional Bienaymé–Galton–Watson tree, then

P{Ln > x} ≤O(n)P{Ln1 > x} ≤O(n)P{L(T)> x} ≤O(n)�+x ≤O(n)
(
p1 + o(1)

)x , (82)

which goes to 0 when x= (1+ ε) log n/ log (1/p1). �
The next lemma handles the other case, in which p1 is zero.

Lemma 11. Let Ln be the leaf-height of Tn, a conditional Bienaymé–Galton–Watson tree on n nodes
with offspring distribution ξ ∼ (pi)i≥0. Let κ =min{i> 1:pi 
= 0}. If p1 = 0, then

Ln
log log n

→ 1
log κ

(83)

in probability.

Proof. Let ε > 0,A be the event that (ξ1, ξ2, . . . , ξn) forms a tree and let Ln(ξ1, ξ2, . . . , ξn) be as in
the previous lemma. If L(T) is the leaf-height of the root of an unconditional Bienaymé–Galton–
Watson tree T, we have, by the cycle lemma,
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Figure 5. The construction in the lower bound. Note that none of the unconditional trees in T∗n reach level n1/3.

P{Ln ≥ x} = P {Ln(ξ1, ξ2, . . . , ξn)≥ x, A}
P{A}

≤�(n3/2)P {Ln(ξ1, ξ2, . . . , ξn)≥ x}
≤�(n3/2)nP{L(T)≥ x}
≤�(n5/2)c1cκ

x−c3
2 , (84)

for some positive constants c1, c2 < 1, and c3. When x= (1+ ε) logκ log n, this is
�(n5/2)c�(( log n)1+ε )

2 , which goes to 0 as n→∞.
Let T∞ be Kesten’s infinite tree. Our proof of the lower bound, which the reader may find easier

to follow by consulting the illustration in Figure 5, uses the fact that

P
{
τ (T∞, n1/3) 
= τ (Tn, n1/3)

}→ 0 (85)

as n→∞. LetU be the set of all unconditional Bienaymé–Galton–Watson treesT rooted less than
n1/4 of the way down the spine. Let h(T) denote the height of an unconditional Bienaymé–Galton–
Watson tree; the probability that one of these trees has height greater than n1/3/2 is bounded
above by

E {|U|} P {h(T)> n1/3
}≤ σ 2n1/4

(
2+ o(1)
σ 2n1/3/2

)
∼ 4

n1/12
, (86)

which goes to 0. Here we used the fact that E{ζ } = σ 2 + 1 and applied Kolmogorov’s result (see
[20] and [2]) about the height of a Bienaymé–Galton–Watson tree. If all the heights above are
at most n1/3/2, then T∗n , the tree obtained by taking the spine up to level n1/4 and all hanging
unconditional trees up to that point, is a subtree of τ (T∞, n1/3), since n1/4 + n1/3/2< n1/3.

For every tree t ∈U, let Et be the event that the leaf-height of the root of t is less than x and let
ET be the same event for an unconditional Bienaymé–Galton–Watson tree (since each t in U is
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such a tree, there is no real moral distinction between these events). We have

P{Ln < x} ≤ P
{
τ (T∞) 
= (Tn, n1/3)

}+ P
{
T∗n 
= (Tn, n1/3)

}+ P

{⋂
t∈U

Et

}

≤ o(1)+E

{
P{ET}|U|

}

≤ o(1)+E

{(
1− c′1 · c′κ

x−c′3
2

)|U|}

≤ o(1)+E

{(
1− c′1 · c′κ

x−c′3
2

)n1/4σ 2/2
}
+ P

{
|U|< n1/4σ 2

2

}
, (87)

for some c′1, c′2, c′3 positive, c′2 < 1. Take x= (1− ε) logκ log n. Letting ζ1, ζ2, . . . , ζn be indepen-
dent and distributed as ζ , we find that

P{Ln < x} ≤ o(1)+ exp
(
−�(n1/4e−�(( log n)1−ε ))

)
+ P

⎧⎨
⎩

n1/4∑
i=1

(ζi − 1)<
n1/4σ 2

2

⎫⎬
⎭ . (88)

Since E{ζ − 1} = σ 2, by the law of large numbers, this entire expression is o(1). �
It is important to note that the node with maximum leaf-height in a tree usually is not the root.

We have the following result for the distribution of the leaf-height of the root of a conditional
Bienaymé–Galton–Watson tree Tn.

Lemma 12. Let L′n denote the leaf-height of the root of Tn, a conditional Bienaymé–Galton–Watson
tree of size n, and offspring distribution ξ . Let f be the generating function of this distribution. Then
the probability distribution of L′n is given by

lim
n→∞ P{L′n = i} =

i−1∏
j=0

f ′(�+j ). (89)

Proof. For a node v on the spine of Kesten’s infinite tree T∞, letH∗ be the leaf-height of the spine
child of v, and H(1),H(2), . . . ,H(ζ − 1) be the leaf-heights of the ζ − 1 independent uncondi-
tional Bienaymé–Galton–Watson trees spawned by v. Then the leaf-height of a node v on the
spine is

1+ min
w∈	v

λ(w)= 1+min (H(1),H(2), . . . ,H(ζ − 1)) . (90)

This defines a Markov chain on the positive integers that proceeds up the spine. The state H∗
(which is just a positive integer indicating the leaf-height of the node on the spine) is taken to the
state

1+min
(
H∗,H(1),H(2), . . . ,H(ζ − 1)

)
(91)

in one step of the Markov chain; here all Hi have distribution (�i)i≥0. Let H∗∗ be the limit sta-
tionary random variable of this Markov chain. That the limit exists and that the chain is positive
recurrent follows from the fact that at each step, there is a positive probability that the next state
is 1. This happens when ζ > 1 and one of H(i) is 0. In fact, H∗∗ is the unique solution of the
distributional identity

H∗∗ L= 1+min
(
H∗∗,H(1),H(2), . . . ,H(ζ − 1)

)
. (92)
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Broutin, Devroye, and Fraiman showed that under a coalescence condition (satisfied here), the
limit of the root value of Tn tends in distribution to the stationary random variable for Kesten’s
spinal Markov chain [7]. Thus L′n→H∗∗ in distribution.

We can describe the distribution ofH∗∗more explicitly. For convenience, let �∗∗i = P{H∗∗ = i}.
For i≥ 1,

�∗∗i = P{Hj ≥ i+ 1 for all 1≤ j≤ ζ − 1}P{H∗∗ ≥ i− 1}. (93)

This means that

�∗∗i = �∗∗i−1E
{
(�+i−1)

ζ−1}= �∗∗i−1
∑
j≥1

jpj(�+i−1)
j−1, (94)

and we can rewrite this in terms of the generating function f (s) of ξ as

�∗∗i = �∗∗i−1f ′(�+i−1)= �∗∗0
i−1∏
j=0

f ′(�+j )=
i−1∏
j=0

f ′(�+j ), (95)

proving the lemma. �
Lastly, we can obtain a random variable by taking the leaf-height of a node chosen uniformly

at random from Tn. Its distribution is asymptotically the same as the leaf-height of the root of an
unconditional Bienaymé–Galton–Watson tree.

Lemma 13. Let L′′n be a random variable obtained by taking the leaf-height of a node chosen
uniformly at random from a conditional Bienaymé–Galton–Watson tree Tn. We have

lim
n→∞ P{L′′n = i} = �i (96)

for all i≥ 0.

Proof. By Aldous’s theorem [1], if T∗n denotes the subtree of Tn rooted at a uniformly selected
random node, then for all trees t,

lim
n→∞ P{T∗n = t} = P{T = t}, (97)

where T is the unconditional Bienaymé–Galton–Watson tree. The result is immediate. �
Examples. We now apply Lemmas 10 and 11 to compute the maximum leaf-height (asymptot-
ically in probability) for common families of trees. These results, along with the independence
numbers and maximum peel numbers we computed earlier, are collected in Table 1. In the table,
W denotes the Lambert function and ϕ = (

√
5− 1)/2 is the golden ratio.

i) Flajolet’s t-ary trees: For t≥ 2, we have p1 = 0 here and κ = t, so we have Ln/ log log n→
1/ log t in probability, by Lemma 13.

ii) Cayley trees: In this case, p1 = 1/e, so Lemma 12 gives us Ln/ log n→ 1 in probability.
iii) Planted plane trees: For these trees, p1 = 1/4, so we have Ln/ log n→ 1/ log 4 in probabil-

ity, by Lemma 12.
iv) Motzkin trees: This family has p1 = 1/3 and Ln/ logn→ 1/ log 3 in probability.
v) Binomial trees: For a parameter d≥ 2, we have p1 = (1− 1/d)d−1, which means

that Łn/ log n→ 1/((1− d) log (1− 1/d)) in probability. As d→∞, the denominator
approaches 1, which gives the same leaf-height as the case of Cayley trees. In the special
case when d= 2, we have the Catalan trees, for which p1 = 1/2 and Ln/ log n→ 1/ log 2 in
probability.
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Table 1. Asymptotic values of parameters for certain families of trees

Family In Mn Ln

Full binary (2−√2)n log n
log (1/(

√
2−1)) log2 log n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Uni{0,2})
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Flajolet t-ary
(
1− 1+ot→∞(1)

t

)
n ∼t→∞ logt n logt log n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(p0 = 1− 1/t; pt = 1/t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cayley W(1)n log n/W(1) log n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Poi(1))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Planted plane n
ϕ

log n
ϕ2

log4 n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Geo(1/2))
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Motzkin (3−√6)n log n
log 3−log (2√6−3) log3 n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Uni{0,1,2})
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Catalan (4− 2√3)n log n
log (1/(

√
3−1)) log2 n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Bin(2,1/2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Binomial ∼d→∞ W(1)n ∼d→∞ log n
W(1)

log n
(d−1) log (1/(1−1/d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Bin(d,1/d))

8. Further directions
The definition of the peel number and our characterisation of its asymptotic growth fully describes
the running time of Algorithm I, mentioned in the introduction, which computes the layered
independent set. It would be interesting to consider the runtime of the more general Algorithm P,
described in Section 3. To this end, we define higher-order peel numbers as follows. Algorithm
P generates an (r+ 1)-path vertex cover by repeatedly deleting subtrees with height exactly r
(and marking their roots). If a node u is deleted in the mth iteration of the loop and is at
depth i of the subtree that is deleted, then its peel number of order r (or rth order peel num-
ber) is mk− i. Note that the loop counter m should start at 1 and we have 0≤ i≤ r. By this
definition, the peel number we studied in this paper is simply the first-order peel number. To
determine the runtime of Algorithm P, one should in principle be able to approach the higher
order peel numbers in the same way we approached the case r= 1 in Sections 4 and 5. However,
even in this case one had to handle the even and odd cases separately, and we anticipate that the
analysis of higher-order peel numbers will require careful reasoning with respect to congruence
modulo r+ 1.
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