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Symmetric Union Diagrams and Refined
Spin Models

Carlo Collari and Paolo Lisca

Abstract. An open question akin to the slice-ribbon conjecture asks whether every ribbon knot can
be represented as a symmetric union. Next to this basic existence question sits the question of unique-
ness of such representations. Eisermann and Lamm investigated the latter question by introducing a
notion of symmetric equivalence among symmetric union diagrams and showing that non-equivalent
diagrams can be detected using a reûned version of the Jones polynomial. We prove that every topo-
logical spin model gives rise tomany eòective invariants of symmetric equivalence,which can be used
to distinguish inûnitely many Reidemeister equivalent but symmetrically non-equivalent symmetric
union diagrams. We also show that such invariants are not equivalent to the reûned Jones polynomial
and we use them to provide a partial answer to a question le� open by Eisermann and Lamm.

1 Introduction

1.1 Symmetric Diagrams and Symmetric Equivalences

Let ρ∶R2 → R2 be the re�ection given by ρ(x , y) = (−x , y). he map ρ ûxes point-
wise the subset B = {0} × R ⊂ R2, which will be called the axis. Two diagrams D,
D′ ⊂ R2 will be considered identical if there is an orientation-preserving diòeomor-
phism h∶R2 → R2 such that h ○ ρ = ρ ○ h and h(D) = D′.
An oriented link diagram D ⊂ R2 is symmetric if ρ(D) = D̄, where D̄ is the ori-

ented diagram obtained from D by reversing the orientation and switching all the
crossings on the axis. A symmetric diagram D is a symmetric union if ρ sends each
component cD of D to itself in an orientation-reversing fashion, implying that cD
crosses the axis perpendicularly in exactly two non–crossing points. Figure 1 shows
two unoriented symmetric union diagrams of the amphicheiral knot 89. he two di-
agrams are obtained from each other by switching all the crossings on the axis, which
amounts to re�ecting across the plane of the page and then applying a 3-dimensional
1800 rotation around the axis. Eisermann and Lamm [3, §2.4] observed that with
each symmetric diagram one can associate a singular link L ⊂ R3 with some extra
data. his is done by converting each crossing on the axis into a double point be-
longing to the plane E = {x = 0} ⊂ R3 and by encoding the over-under crossing
information by a sign attached to the double point according to the rules of Figure 2.
he resulting singular link with signs, transverse to E and invariant under re�ection
with respect to E, iswhatwe call a symmetric singular link. We say that two symmetric

Received by the editors June 23, 2018; revised October 29, 2018.

he ûrst authorwas partially supported by an Indamgrant, and hosted by the IMT inToulouse, during
the early stages of this paper.

AMS subject classiûcation: 57M27, 57M25.

Canad. Math. Bull. Vol. 62 (3), 2019 pp. 451–468

Published online on Cambridge Core March 25, 2019.

https://doi.org/10.4153/S0008439518000115 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000115


C. Collari and P. Lisca

Figure 1: (Colour online) Symmetric union diagrams of the knot 89 .

Figure 2: (Colour online) How to turn a crossing on the axis into a signed double point.

Figure 3: (Colour online) Representative symmetric Reidemeister moves.

diagrams are strongly symmetrically equivalent if their associated symmetric singular
links can be connected via a smooth family of symmetric singular links. Eisermann
and Lamm [3, heorem 2.12] showed that symmetric diagrams satisfy a symmetric
version of the Reidemeister theorem, where the symmetric analogues of the Reide-
meister moves relating two symmetric diagrams are deûned as follows.
A symmetric Reidemeister move oò the axis is an ordinary Reidemeister move car-

ried out, away from the axis B, together with its mirror-symmetric counterpart with
respect to B. A symmetric Reidemeister move on the axis is one of the moves S2(h),
S2(±), S3(o±), S3(u±), and S4(±±), some of which are illustrated in Figure 3
(see [3, §2.3] for the complete list). It is understood that these moves admit variants
obtained by turning the corresponding pictures upside down, mirroring or rotating
them around the axis. With our present terminology, Eisermann and Lamm proved
the following.
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Figure 4: (Colour online) Symmetric union diagrams of 89 (le�) and 1042 (center and right).

Figure 5: Extramoves S1(−) and S2(v).

heorem 1.1 (Symmetric Reidemeister heorem [3,heorem 2.12]) Two symmetric
diagrams are strongly symmetrically equivalent if and only if they can be obtained from
each other via a ûnite sequence of symmetric Reidemeister moves.1

Eisermann and Lamm showed [3, Example 6.8] that the two symmetric union di-
agrams of the knot 89 given in Figure 1 are strongly symmetrically equivalent. On
the other hand, they also consider another symmetric union diagram for the knot 89,
i.e., the le�-most diagram of Figure 4, as well as the center and right-most diagrams
in Figure 4,which are two symmetric union diagrams for the knot 1042. he two sym-
metric union diagrams of 1042 in Figure 4 are not strongly symmetrically equivalent,
because the associated symmetric singular links have diòerent numbers of double
points (four and two). Similarly, the symmetric union diagram of 89 from Figure 4
is not strongly symmetrically equivalent to the diagram of the same knot obtained by
switching all the crossings on the axis, because the two diagrams have diòerent num-
bers of signed crossings on the axis. (Note that both diagrams represent 89 because
they clearly represent mirror equivalent knots, and 89 is amphicheiral).

hese examples show that the notion of strong symmetric equivalence is not a very
subtle one, but Eisermann and Lamm considered two extramoves on symmetric di-
agrams, which they called S1(±) and S2(v). Some examples of the extra moves are
illustrated in Figure 5.

1Eisermann and Lamm stated only one of the two implications of heorem 1.1, but they used a ter-
minology slightly diòerent from ours and they included themoves S1 and S2(v) of Figure 5 among their
symmetric Reidemeister moves. It can be easily checked that in our terminology and for the set ofmoves
of Figure 3,heorem 2.12 from [3] is equivalent to heorem 1.1 (see [3, Remark 2.13]).
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Deûnitions 1.2 Two oriented, symmetric diagrams that can be obtained from each
other via a ûnite sequence of symmetric Reidemester (or sR) moves and S1 moves
will be called symmetrically equivalent. If they can be obtained from each other us-
ing sR moves, S1 moves, and S2(v) moves, we will say that the diagrams are weakly
symmetrically equivalent.

he notions of symmetric equivalence introduced with Deûnitions 1.2 are more
subtle than strong symmetric equivalence: for instance, it is not obvious whether the
two symmetric diagrams of 89 and 1042 described above are symmetrically equivalent
(weakly or not).

1.2 Eisermann and Lamm’s Refined Jones Polynomial and Its Applications

With each oriented link diagram D ⊂ R2 transverse to B = {0} ×R, Eisermann and
Lamm associated an invariant of weak symmetric equivalence W(D) taking values
in the quotient ûeld Z(XA, XB) of the ring of Laurent polynomials in the variables
XA and XB with integer coeõcients. he invariant is deûned by setting W(D) =
(−X−3

A )wA(D)(−X−3
B )wB(D)⟨D⟩, where wA(D) and wB(D) are, respectively, the sum

of crossing signs oò and on the axis, and ⟨D⟩ is a reûned Kauòman bracket speciûed
by the skein relation

⟨ ⟩ = XA ⟨ ⟩ + X−1
A ⟨ ⟩

for crossings oò the axis, the skein relations

for crossings on the axis, and taking the value

⟨C⟩ = (−X2
A − X−2

A )n−m(−X2
B − X−2

B )m−1

on a collection C of n circles intersecting the axis B in 2m points.
It turns out [3, Propostion 1.8] that when D is a symmetric union knot diagram,

the invariant W(D) is an honest Laurent polynomial. Using theW-polynomial, Eis-
ermann and Lamm showed in [3] that the diagram for 89 in Figure 4 is not weakly
symmetrically equivalent to the one obtained by switching crossings on the axis, and
they exhibit an inûnite family of pairs of symmetric union 2-bridge knot diagrams
(Dn ,D′n) such that Dn and D′n are Reidemeister equivalent but not weakly symmet-
rically equivalent for n = 3 and n ≥ 5. he diagrams D4 and D′4, representing the knot
1042, are those shown in Figure 4. hey have the sameW-polynomial, so the question
of their (weak) symmetric equivalence was le� unanswered.

1.3 Results and Contents of the Paper

Our main result is heorem 2.5, stating that (i) every topological spin model [6] gives
rise to inûnitely many invariants of symmetric equivalence and (ii) such invariants
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satisfying a certain extra condition are in fact invariants of weak symmetric equiva-
lence. As we point out in Remark 2.4, each topological spin model gives rise in this
way to at least four (essentially equivalent) invariants ofweak symmetric equivalence.

We give the following three applications ofheorem 2.5.
(1) Let D1042 (respectively, D′1042

) be the central (respectively the right-most) sym-
metric union diagram of Figure 4. We prove that D1042 and D′1042

are not symmetri-
cally equivalent, providing a partial answer to a question le� open by Eisermann and
Lamm [3, §6.4].

(2) Let D89 be the le�-most diagram of Figure 4, and let D′89
be the diagram ob-

tained from D89 by switching all the crossings on the axis. As we explained in the
paragraph immediately followingheorem 1.1, the two diagrams D89 andD′89

areRei-
demeister equivalent. We useheorem 2.4 to prove that D89 and D′89

are not weakly
symmetrically equivalent.

(3) We apply a gluing formula in conjunction with heorem 2.5 to construct, for
each n ≥ 1, symmetrically non-equivalent symmetric union diagrams of the con-
nected sum of n copies of 1042, as well as weakly symmetrically non-equivalent sym-
metric union diagrams of the connected sum of n copies of 89.

Section 2 contains the necessary backgroundmaterial and the statement ofheo-
rem 2.5. Section 3 contains the proof ofheorem 2.5. Section 4 contains three appli-
cations ofheorem 2.5, and Section 5 the proof of the gluing formula.

2 Spin Models and Their Refinements

2.1 Spin Models

We recall the theory of topological spin models for links in S3 as introduced in [6].
Let X = {1, 2, . . . , n}, n ≥ 2, denote by MatX(C) the space of square n × n com-
plex matrices whose rows and columns are indexed by elements of the set X, and
let d ∈ {±

√
n}. Given a symmetric, complex matrix W+ ∈ MatX(C) with non-zero

entries, let W− ∈ MatX(C) be thematrix uniquely determined by the equation

(2.1) W+ ○W− = J ,

where ○ is the Hadamard, i.e., entry-wise, product and J is the all-1 matrix. Deûne,
for eachmatrix A ∈ MatX(C)with non-zero entries and a, b ∈ X, the vector YAab ∈ CX

by setting

YAab(x) ∶=
A(x , a)
A(x , b) ∈ C, x ∈ X .

hen the pair M = (W+ , d) is a spin model if the following equations hold:

(2.2) W+YW+

ab = dW−(a, b)YW+

ab for every a, b ∈ X .

Observe that, since YW+

aa is the all-1 vector for each a ∈ X, taking b = a in equa-
tion (2.2) gives

(2.3)
1
d ∑x∈X

W+(y, x) =W−(a, a) for every y, a ∈ X.
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In particular,W−(a, a) and therefore themodulus

αW =W+(a, a) = 1/W−(a, a) ∈ C

of the spin model, are independent of a ∈ X.

Examples 2.1 (1) Let n ≥ 2 be an integer and d ∈ {±
√

n}. Let ξ ∈ C ∖ {0} be
one of the four complex numbers such that d = −ξ2 − ξ−2. hen, setting W+

Potts =
(−ξ−3)I + ξ(J − I), the pair (W+

Potts , d) is the well-known Potts model introduced
in [6].

(2) Let d =
√
5, ω = e2πi/5, and

W+
pent =

⎛
⎜⎜⎜⎜⎜
⎝

1 ω ω−1 ω−1 ω
ω 1 ω ω−1 ω−1

ω−1 ω 1 ω ω−1

ω−1 ω−1 ω 1 ω
ω ω−1 ω−1 ω 1

⎞
⎟⎟⎟⎟⎟
⎠

.

hen (W+
pent , d) is one of the spin models studied in [4] andmentioned in [6,7]. We

shall call it the pentagonal model, like the rescaled version (−iW+
pent ,−

√
5) considered

in [1].

A spin model M = (W+ , d) deûnes a link invariant as follows. Let D ⊂ R2 be
a connected diagram of an oriented link. Let ΓD be the planar, signed medial graph
associated with the black regions of any chequerboard colouring of R2 ∖ D. Let Γ0

D ,
Γ1
D be the sets of vertices, respectively, edges of ΓD , and let N = ∣Γ0

D ∣. Given e ∈ Γ1,
we denote by ve and we (in any order) the vertices of e. Deûne the partition function
ZM(D) ∈ C by

ZM(D) = d−N ∑
σ ∶Γ0

D→X
∏
e∈Γ1

D

W s(e)(σ(ve), σ(we)),

where the sum is taken over the set of all maps σ from Γ0
D to X, and s(e) ∈ {+,−}

is the sign of the edge e. Let the normalized partition function IM(D) be IM(D) ∶=
α−w(D)W ZM(D), where w(D) is the writhe of D. When D is not connected, we deûne
both ZM(D) and IM(D) as the product of the values of ZM and, respectively, IM , on
its connected components.

heorem 2.2 ([6]) Let M = (W+ , d) be a spin model and D ⊂ R2 a connected,
oriented link diagram. hen we have the following.
(i) IM(D) is independent of the choice of colouring,
(ii) IM(D) = IM(D′) for every link diagram D′ Reidemeister equivalent to D.

2.2 Refined Spin Models

Our idea is to reûne the deûnition of a topological spin model by taking into account
the presence of the axis, in the spirit of the reûned Jones polynomial of Subsection 1.2.
Let D ⊂ R2 be an oriented link diagram transverse to the axis B = {0} × R. Since B
goes through some of the crossings of D, for any choice of a chequerboard colouring
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of R2 ∖ D, the corresponding medial graph ΓD acquires some distinguished edges.
We will assign suitably chosen weights to such distinguished edges.

Let X = {1, . . . , n} with n ≥ 2, and let (W+ , d) be a spin model with W+ ∈
MatX(C). Recall from Subsection 2.1 that the matrix W+ determines the vectors
YW
ab ∈ CX , a, b ∈ X. Nomura [8] showed that the set NW ⊂ MatX(C) ofmatrices that

have the vectors YW
ab as eigenvectors is a commutative algebra with respect to both

the ordinary matrix product and the Hadamard product. Sometimes NW is called
theNomura algebra. Clearly, equation (2.2) impliesW+ ∈ NW . Letψ∶NW →MatX(C)
be themap deûned by requiring that, for each A ∈ NW , thematrix ψ(A) satisûes

AYW+

ab = ψ(A)(a, b)YW+

ab for every a, b ∈ X .

We will use the following facts: (1) NW is closed under transposition and (2) NW
is self-dual, which means that ψ induces a linear isomorphism ψ∶NW → NW and
ψ2 = nτ, where τ∶NW → NW is the transposition map. For these facts, as well as
for more information about the Nomura algebra, we refer the reader to [5]. Observe
that equation (2.2) is equivalent to the equality W− = ψ(W+)/d, hence W− ∈ NW .
More generally, given any matrix A+ ∈ NW , we can deûne A− ∶= ψ(A+)/d ∈ NW .
hen it follows from ψ2 = nτ and d2 = n that A+ = ψ(A−)/d. In the same way as
equation (2.3) we deduce, for every y, a ∈ X,

(2.4)
1
d ∑x∈X

A+(y, x) = A−(a, a), 1
d ∑x∈X

A−(y, x) = A+(a, a).

In particular, the complex numbers αA+ ∶= A+(a, a) and αA− ∶= A−(a, a) are inde-
pendent of a ∈ X.

Deûnitions 2.3 A reûned spin model is a triple (W+ ,V+ , d) such that

• (W+ , d) is a spin model;
• V+ is a symmetricmatrix belonging to the Nomura algebra NW ;
• αV+ ⋅ αV− ≠ 0.

A reûned spin model of type II is a reûned spin model (W+ ,V+ , d) such that V+ is a
type II matrix, i.e., such that V+ ○ V− = J.

Remark 2.4 Every spin model (W+ , d) admits a reûnement (W+ ,V+ , d) of type
II. Indeed, by deûnition I ∈ NW , therefore J = ψ(I) ∈ NW . hus, if ξ ∈ C ∖ {0}
is one of the four complex numbers such that d = −ξ2 − ξ−2, the symmetric type II
matrix (−ξ−3)I + ξ(J − I) ∈ NW can be chosen as V+. In other words, each spin
model (W+ , d) admits four type II reûnements of the form (W+ ,V+

Potts , d), where
V+

Potts = (−ξ−3)I+ ξ(J− I). Note that (V+
Potts , d) is a Pottsmodel. Reûned spinmodels

of the form (W+ ,V+
Potts , d) will be referred to as Potts-reûned spin models.

Let M̂ = (W+ ,V+ , d) be a reûned spin model, D an oriented, symmetric link
diagram, and c a chequerboard colouring of R2 ∖ D. Let ΓD be the planar, signed
medial graph associated with the black regions of c. he set Γ1

D of the edges of ΓD
contains the set Γ1

B of edges corresponding to crossings on the axis. We deûne the
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partition function ZM̂(D, c) by the formula

ZM̂(D, c) ∶= d−N ∑
σ ∶Γ0

D→X
∏
e∈Γ1

B

V s(e)(σ(ve), σ(we))

× ∏
e∈Γ1

D∖Γ1
B

W s(e)(σ(ve), σ(we)),

where s(e) ∈ {+,−} is the sign of the edge e, and the normalized partition function
IM̂(D, c) by IM̂(D, c) ∶= α−pB(D)

V+ α−nB(D)
V− ZM̂(D, c),where pB(D) and nB(D) denote,

respectively, the numbers of positive and negative crossings on the axis. As in the case
of the ordinary spin models, when D is not connected we deûne both ZM̂(D, c) and
IM̂(D, c) as the product of the values of ZM̂ and, respectively, IM̂ on its connected
components with the induced colourings.

We are ready to state our main result. Its proof will be given in the next section.

heorem 2.5 Let M̂ be a reûned spin model and let D i ⊂ R2, i = 1, 2 be two oriented,
symmetrically equivalent symmetric (with respect to the axis B) union diagrams. hen,
for any choice of chequerboard colourings c i of R2 ∖ D i , we have

(2.5) IM̂(D1 , c1) = IM̂(D2 , c2).
Moreover, if M̂ is of type II, then (2.5) holds if D1 and D2 are weakly symmetrically
equivalent.

3 Proof of Theorem 2.5

hroughout Section 3 we denote by M̂ a ûxed reûned spin model (W+ ,V+ , d) and
by M, its underlying spin model (W+ , d).

3.1 Invariance Under the sR and the S2(h) Moves

Proposition 3.1 Let M̂ be a reûned spin model and (D, c) and (D′ , c′) two coloured
and oriented symmetric link diagrams. If (D′ , c′) is obtained from (D, c) by applying
either an S2(h) move or a symmetric Reidemeister move oò the axis, then IM̂(D, c) =
IM̂(D′ , c′).

Proof An S2(h)-move does not change the edges of the medial graph ΓD corre-
sponding to crossings on the axis. herefore the equality IM̂(D′ , c′) = IM̂(D, c) holds
for the same reason as the equality IM(D) = IM(D′) [1,6]. A similar argument applies
for a symmetric Reidemeister move oò the axis. ∎

3.2 Invariance Under the S3 and the S2(±) Moves

Suppose that themedial graphs ΓD and ΓD′ of two coloured, oriented, symmetric link
diagrams (D, c) and (D′ , c′) appear locally as in Figure 6 and coincide elsewhere.
he dashed arrows represent edges corresponding to crossings on the axis; let us
ignore the vertex labels for themoment. hen we claim that the equality IM̂(D, c) =
IM̂(D′ , c′) holds for each reûned spin model M̂. As explained in Subsection 2.1,
we have ψ(V+) = dV− if and only if V+YW+

ab = dV−(a, b)YW+

ab for every a, b ∈ X.
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Figure 6: he directedmedial graphs ΓD (le�) and ΓD′ (right).

Figure 7: All the star-triangle identities in graphical form.

More explicitly, for each a, b, c ∈ X
(3.1) ∑

x∈X
V+(x , c)W+(x , a)W−(b, x) = dV−(a, b)W+(c, a)W−(b, c).

As the labels in Figure 6 show, equation (3.1) guarantees that the diòerent local con-
tributions to the normalized partition functions for D and D′ coincide. Note that,
although the three vertices labelled a, b, and c are drawn as if they were distinct, the
equality IM̂(D, c) = IM̂(D′ , c′) still holds if two of them coincide.
All possible instances of locally diòerent medial graphs with the same normalized

partition functions are displayed in Figure 7, where ε1 , ε2 ∈ {±}. We will make use of
them in Subsections 3.2 and 3.4. he previous remark about the vertices labelled a,
b, and c applies. Following standard terminology, we shall call star-triangle identities
the identities in Figure 7. he reason why such identities hold is the following. As
explained in Subsection 2.2, the equality ψ(V+) = dV− implies that ψ(V−) = dV+,
which is equivalent to saying thatV−YW+

ab = dV+(a, b)YW+

ab for every a, b ∈ X. More-
over, since YW+

ab = YW−

ba for every a, b ∈ X, we also have V+YW−

ab = dV−(a, b)YW−

ab
and V−YW−

ab = dV+(a, b)YW−

ab for every a, b ∈ X. One can now easily check that
these equations imply the identities of Figure 7.

he following remark will be used in Subsection 3.4.

Remark 3.2 he algebraic identities represented by the graphs of Figure 7 hold for
the normalized partition function (deûned in the obviousway) of any signed graph Γ
with some distinguished edges. In particular, Γ does not need to be themedial graph
of a diagram transverse to the axis.

Proposition 3.3 Let M̂ be a reûned spin model and (D, c), (D′ , c′) two coloured,
oriented symmetric union link diagrams. If (D′ , c′) is obtained from (D, c) by applying
a symmetricReidemeistermove of type S3(o±) or S3(u±), then IM̂(D, c) = IM̂(D′ , c′).

Proof he possible local changes of a coloured symmetric union diagram are ob-
tained from the one shown in Figure 8 bymirroring the picture or rotating it by 1800
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Figure 8: (Colour online) Local changes induced by S3 moves.

Figure 9: (Colour online) Independence of IM̂ from the choice of colouring.

around the x, y, or z axes. It is a straightforward exercise to check that all the changes
of the corresponding medial graphs are included among the ones described by
Figure 7. his immediately implies the statement. ∎

Corollary 3.4 Let M̂ be a reûned spin model and D an oriented, symmetric union
link diagram. Given distinct colourings c and c′, we have

IM̂(D, c) = IM̂(D, c′).

Proof he proof we give is similar in spirit to the proof of [6, Proposition 2.14].
Since D is a symmetric union diagram, at least one strand of D intersects the axis
away from the crossings. Applying a sequence of symmetric Reidemeister moves,
S2(h) moves, and S3 moves, we can shi� that strand downwards without changing
IM̂ . Hence, we assume without loss of generality that (D, c) looks like the coloured
diagram shown in the bottom le� picture in Figure 9. Note that the medial graph
of (D, c) coincides with the medial graph of the top diagram in Figure 9. Another
sequence of symmetric Reidemeister moves, S2(h) and S3 moves as suggested in the
bottom pictures of Figure 9 turns (D, c), without altering IM̂ , into the bottom right
diagram of Figure 9, which has the samemedial graph as (D, c′). ∎
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Figure 10: (Colour online) Coloured diagrams andmedial graphs diòering by an S2(−)move.

In view of Corollary 3.4, henceforthwe shall omit the colouring from the notation
for the normalized partition function of symmetric union diagrams.

Proposition 3.5 Let D and D′ be two oriented, symmetric union link diagrams. If D′
is obtained from D by applying a symmetric Reidemeistermove of type S2(+) or S2(−),
then IM̂(D′) = IM̂(D).

Proof ByCorollary 3.4, it suõces to prove the statement for any choice of colouring.
he case of an S2(−) move is illustrated in Figure 10. he statement follows immedi-
ately from equation (2.1). he case of an S2(+) is similar and le� to the reader. ∎

3.3 Invariance Under the S1 Moves

Proposition 3.6 Let M̂ be a reûned spin model and let D, D′ be two oriented, sym-
metric union link diagrams. If D′ is obtained from D by applying an S1 move, then
IM̂(D′) = IM̂(D).

Proof As in the proof of Proposition 3.3, the local change of a symmetric union
diagram due to a move of type S1(−) is given, up to symmetries, by the le�-hand
portion of Figure 5. In view of Corollary 3.4, the choice of colouring is irrelevant,
so we make that choice so that the corresponding local change of medial graphs is
the one given by Figure 11. Suppose that ΓD′ is locally given by the le�-hand side of
Figure 11, denote by v0 the vertex labelled a and by e0 the dashed edge connecting v0 to
the vertex labelled x. Let N = ∣Γ0

D ∣ be the number of vertices of ΓD so that ∣Γ0
D′ ∣ = N+1.

By the deûnition of the partition function we have

ZM̂(D′) = d−N−1 ∑
σ ∶Γ0

D′
→X
∏
e∈Γ1

B

V s(e)(σ(ve), σ(we))

× ∏
e∈Γ1

D′
∖Γ1

B

W s(e)(σ(ve), σ(we))

= d−N ∑
σ ∶Γ0

D→X
[ 1
d ∑x∈X

V+(σ(v0), x)] ∏
e∈Γ1

B∖{e0}
V s(e)(σ(ve), σ(we))

× ∏
e∈Γ1

D∖Γ1
B

W s(e)(σ(ve), σ(we))

= αV−ZM̂(D),
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Figure 11: Local change due to an S1 move.

Figure 12: (Colour online) he choice of colouring for the S4 move.

where the last equality is due to the fact that 1
d ∑x∈X V+(a, x) = αV− for each a ∈ X,

which follows from (2.4). he equality IM̂(D′) = IM̂(D) now follows immediately
from pB(D′) = pB(D) and nB(D′) = nB(D) + 1. he argument for an S1(+) move is
similar and le� to the reader. ∎

3.4 Invariance Under the S4 Moves

In view of the results of Subsections 3.1, 3.2, and 3.3, the following concludes the proof
of the ûrst part ofheorem 2.5.

Proposition 3.7 Let M̂ be a reûned spin model, and let D, D′ be two oriented, sym-
metric union link diagrams. If D′ is obtained from D by applying an S4 move, then
IM̂(D′) = IM̂(D).

Proof ByCorollary 3.4we can choose an arbitrary colouring. We choose the conûg-
uration of Figure 12. here are a number of possible cases, depending on the types of
crossings on the axis andwhether the two top strands go over or under the two bottom
strands. As illustrated in Figure 12, we now consider all conûgurations of crossings
on the axis simultaneously and we assume that the two top strands go over the two
bottom strands. It is easy to check that the graphs Γ1 and Γ2 associated with the dia-
grams of Figure 12 are locally as in Figure 13,where ε1 , ε2 ∈ {+,−}. Aswe now explain,
Figure 14 contains the proof that the graphs Γ1 and Γ2 have equal invariants IM̂ . In-
deed, the upper part of Figure 14 describes the application to Γ2 of two star-triangle
identities from Figure 7, resulting in the graph Γ′2. Note that, in view of Remark 3.2,
we do not need to keep track of the axis but only of the graphs and their distinguished
edges. Equation (2.1) allows us to cancel the two edges of Γ′2 connecting the vertices
t and y, obtaining the graph Γ′′2 . he lower part of Figure 14 shows how two more
star-triangle identities can be applied to Γ′′2 to obtain the graph Γ′1 . A�er two more
edge cancellations we get graph Γ1. Observe that the vertices labelled a and b, as well
as those labelled c and d, are drawn as if they were distinct, but the proof goes through
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Figure 13: Local change of themedial graph under an S4 move.

Figure 14: Invariance of IM̂ under the S4 move.

if they coincide. his concludes the argument in the cases when the two top strands
go over the two bottom strands. he argument for the other cases is essentially the
same, and therefore omitted. ∎

3.5 Invariance Under the S2(v) Moves

he following result concludes the proof of the second part ofheorem 2.5.

Proposition 3.8 Let M̂ be a reûned spinmodel of type II and letD, D′ be two oriented,
symmetric union link diagrams. If D′ is obtained from D by applying an S2(v) move,
then IM̂(D′) = IM̂(D).

Proof he proof is very simple. Suppose that D and D′ are the diagrams shown on
the right-hand side of Figure 5, with D′ having two more crossings on the axis. It is
clear that we can choose the colourings so that Γ0

D′ = Γ0
D and ΓD′ has two more edges

on the axis with opposite signs, connecting the same two vertices. he fact that M̂ is
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of type II implies that ZM̂(D′) = ZM̂(D) and the fact that the two extra crossings of
D′ have opposite signs gives IM̂(D′) = IM̂(D). ∎

4 Applications

4.1 Refined Potts Models and the 1042 Diagrams

Consider a Potts model M = (W+
Potts , d) as in Example 2.11 for n = 3. Recall that

W+
Potts = (−ξ−3)I + ξ(J − I), where d = −

√
3 = −ξ2 − ξ−2. By Remark 2.4 we have

I, J ∈ NW . herefore, anymatrix of the formV+
a ,b = aI+b(J−I), a, b ∈ C is symmetric

and belongs to NW . Since ψ(I) = J and therefore ψ(J) = ψ2(I) = nI, we have

Ψ(V+
a ,b) = (a + 2b)I + (a − b)(J − I) = dV− .

Hence, if a(a + 2b) ≠ 0, we have a reûned spin model of the form M̂a ,b =
(W+

Potts ,V+
a ,b , d). Let D1042 (respectively, D′1042

) be the central (respectively, right-
most) symmetric union diagram of Figure 4. A Sage [9] computation gives

IM̂a ,b
(D1042) = d

a3 + 6a2b + 2b3

a(a + 2b)2 and IM̂a ,b
(D′1042

) = d 3a
a + 2b

.

Clearly, for inûnitely many choices of (a, b) with a(a + 2b) ≠ 0, we have

IM̂a ,b
(D1042) ≠ IM̂a ,b

(D′1042
),

and, applying heorem 2.5, we conclude that D1042 and D′1042
are not symmetrically

equivalent. his gives a partial answer to the question le� open by Eisermann and
Lamm and described at the end of Subsection 1.2.2

4.2 Refined Pentagonal Models and the 89 Diagrams

Now we consider the pentagonal spin model of Example 2.12. We want to deûne a
reûned spin model of the form M̂pent = (W+

pent ,V+ , d), where

W+
pent = I + ωA1 + ω4A2 , ω = e2πi/5 , d =

√
5

and

A1 =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

, A2 =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

⎞
⎟⎟⎟⎟⎟
⎠

.

It is easy to check that both A1 and A2 belong to the Nomura algebra NW . If we let
V+ = aI + bA1 + cA2 ∈ NW , we need to check for which a, b, c ∈ C we have αV+ ⋅ αV−
≠ 0. Clearly αV+ = a and, since V+YW+

aa = a+2b+2c, we have αV− = (a+2b+2c)/d.
2All the reûned spin models of type II that we were able to use had normalized partition functions

that took the same values on D1042 and D
′

1042 . However, we do not know how relevant this information is
for the question whether D1042 and D

′

1042 are weakly symmetrically equivalent. In fact, on the one hand,
we could not perform a large amount of calculations because their intensity grew very quickly with the
size ofmodel. On the other hand, at the time of writing there is no general classiûcation of spin models;
therefore some newly discovered spin model could work in the future.
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herefore, M̂pent = (W+
pent ,V+ , d) is a reûned spin model for every a, b, c ∈ C such

that a(a + 2b + 2c) ≠ 0. Let D89 be the le�-most diagram of Figure 4 and D′89
the

diagram obtained from D89 by switching all the crossings on the axis. A computation
with Sage [9] yields

IM̂pent
(D89) = d[a(a2 + 2ab + 2ac + 2b2 + 2c2) + (d − 1)(b3 + c3)

− (d + 1)bc(b + c)]/a2(a + 2b + 2c)
and

IM̂pent
(D′89

) = d[a2(a + 6b + 6c) + 2(d + 1)a(b2 + c2) + (3 − d)(b3 + c3)
+ 4(1 − d)abc + (d − 1)bc(b + c)]/a(a + 2b + 2c)2 .

In particular,

IM̂pent
(D89)a=1,c=−b = d(4b2 + 1) ≠ IM̂pent

(D′89
)a=1,c=−b = 40b2 + d ,

which, by heorem 2.5, implies that the diagrams D89 and D′89
are not symmetrically

equivalent. In fact, ifwe choose ξ ∈ C such that ξ2 = (1−d)/2 andwe set b = c = ξ ∈ C
and a = −ξ−3, we have d = −ξ2 − ξ−2 and we obtain a Potts-reûned spin model (see
Remark 2.4). Substituting these values of a, b, and c we get

IM̂pent
(D89)a=−ξ−3 ,b=c=ξ = −5d + 10 ≠ IM̂pent

(D′89
)a=−ξ−3 ,b=c=ξ = −5d − 10.

his shows that D89 and D′89
are not weakly symmetrically equivalent.

4.3 Infinitely Many Symmetrically Inequivalent Diagrams

Eisermann and Lamm [2, §2.5] deûned the connected sum between two symmetric
union diagrams D and D′ by putting D above D′ along the axis B and then symmet-
rically joining a strand of D transverse to B to a strand of D′ transverse to B. hey
showed that this results in an associative operation that iswell deûned onweakly sym-
metric equivalence classes and denoted the connected sum of the symmetric union
diagrams D and D′ by D#D′. Up to applying S3 and S2(h) moves, one may always
assume that the strands of D of D′ used for the operation are, respectively, at the very
bottomofD and at the very top ofD′ (see [2, Figure 17]). Proposition 4.1 below,whose
proof will be provided in Section 5, allows us to establish heorem 4.2 below, which
easily implies the existence of inûnitelymany pairs of symmetrically inequivalent, but
Reidemeister equivalent symmetric union diagrams.

We need onemore deûnition before we can state Proposition 4.1. View a complex
n × n matrix A ∈ MatX(C) as a map A∶X × X → C with X = {1, . . . , n}, and let
t∶X → X be the shi� map given by t(a) = a + 1 mod n for each a ∈ X. We say that a
reûned spin model M̂ = (W+ ,V+ , d) is translation-invariant if

W±(t(a), t(b)) =W±(a, b) and V±(t(a), t(b)) = V±(a, b)
for each a, b ∈ X.

Proposition 4.1 Let M̂ be a translation-invariant, reûned spin model and let D, D1,
and D2 be oriented, symmetric union link diagrams. Suppose that ΓD = ΓD1 ∪ ΓD2 ,
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where ΓD1 and ΓD2 are subgraphs of ΓD intersecting in a single vertex v0. hen IM̂(D) =
1
d IM̂(D1)IM̂(D2).

heorem 4.2 Let D, D′ be Reidemeister equivalent, oriented symmetric union link
diagrams. If IM̂(D) ≠ IM̂(D′) for some translation-invariant reûned spin model M̂,
then for inûnitely many k ≥ 1 the connected sums

#kD = D# (k times)⋅ ⋅ ⋅ #D and #kD′ = D′# (k times)⋅ ⋅ ⋅ #D′

are Reidemeister equivalent, but not symmetrically equivalent. If M̂ is of type II, then
#kD and #kD′ are notweakly symmetrically equivalent. Moreover, the same conclusions
hold for each k ≥ 1 if either IM̂(D) = λIM̂(D′) or IM̂(D′) = λIM̂(D), where λ ∈ R≥0.

Proof Proposition 4.1 applies to triples of the form D = D1#D2, D1, D2, where the
connected sum is performed using a bottom transverse strand of D1 and a top trans-
verse strand of D2, as explained above. Hence, for each k ≥ 1 we have

IM̂(#kD) = 1
dk−1 IM̂(D)k , and IM̂(#kD′) = 1

dk−1 IM̂(D′)k .

herefore, the equality IM̂(#kD) = IM̂(#kD′) implies IM̂(D) = ζIM̂(D′) with ζ k = 1,
and the statement follows easily. ∎

Corollary 4.3 Let D1042 , D′1042
, D89 , and D′89

be the symmetric union diagrams con-
sidered in Subsections 4.1 and 4.2. hen, for each k ≥ 1, the symmetric union dia-
grams #kD1042 and #kD′1042

are Reidemeister equivalent, but not symmetrically equiva-
lent,while #kD89 and #kD′89

are Reidemeister, but notweakly symmetrically equivalent.

Proof Let M̂a ,b be the reûned spin model deûned in Subsection 4.1. By the calcula-
tions given there we have

IM̂1,0
(D1042) = −

√
3 and IM̂1,0

(D′1042
) = −3

√
3.

Since the Potts model is translation invariant, applying heorem 4.2 we obtain that,
for each k ≥ 1, the diagrams #kD1042 and #kD′1042

are not symmetrically equivalent.
Similarly, by the results of Subsection 4.2, if ξ2 = (1 −

√
5)/2 we have

IM̂pent
(D89)a=−ξ−3 ,b=c=ξ = 10 − 5

√
5,

IM̂pent
(D′89

)a=−ξ−3 ,b=c=ξ = −10 − 5
√
5.

As before, since the pentagonal model is translation invariant, we may apply heo-
rem 4.2. herefore, for each k ≥ 1 the diagrams #kD89 and #kD′89

are not weakly
symmetrically equivalent. ∎

5 Proof of Proposition 4.1

Recall from Section 2 that if M̂ = (W+ ,V+ , d) is a reûned spinmodel, the normalized
partition function of a symmetric union diagram D takes the form

IM̂(D) = α−pB(D)
V+ α−nB(D)

V− d−NZM̂(D),
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where N = ∣Γ0
D ∣ and

ZM̂(D) = d−N ∑
σ ∶Γ0

D→X
∏
e∈Γ1

B

V s(e)(σ(ve), σ(we)) ∏
e∈Γ1

D∖Γ1
B

W s(e)(σ(ve), σ(we)).

Here we are omitting the colouring from the notation because of Corollary 3.4. Fix a
vertex v0 ∈ Γ0

D and an element a ∈ X. Deûne

RM̂(D, v0; a) ∶= ∑
σ ∣σ(v0)=a

∏
e∈Γ1

B

V s(e)(σ(ve), σ(we))

× ∏
e∈Γ1

D∖Γ1
B

W s(e)(σ(ve), σ(we)).

hen we have ZM̂(D) = d−N ∑a∈X RM̂(D, v0; a).

Lemma 5.1 If M̂ = (W+ ,V+ , d) is a translation-invariant reûned spin model,
ZM̂(D) = nd−NRM̂(D, v0; a) for each v0 ∈ Γ0

D and a ∈ X.

Proof It suõces to show that RM̂(D, v0; a) = RM̂(D, v0; t(a)) for each a ∈ X,where
t(a) = a + 1 mod n. Let

w(σ , e) =
⎧⎪⎪⎨⎪⎪⎩

W s(e)(σ(ve), σ(we)) if e is oò the axis,
V s(e)(σ(ve), σ(we)) if e is on the axis,

where s(e) ∈ {+,−} is the sign of e. Since the spin model is translation-invariant,

∑
σ ∣σ(v0)=a

∏
e
w(σ , e) = ∑

σ ∣t○σ(v0)=t(a)
∏
e
w(t ○ σ , e) = ∑

σ ∣σ(v0)=t(a)
∏
e
w(σ , e),

which implies the required identity. ∎

Clearly RM̂(D, v0; a) = RM̂(D1 , v0; a)RM̂(D2 , v0; a) for each a ∈ X. Let N = ∣Γ0
D ∣,

N1 = ∣Γ0
D1
∣, and N2 = ∣Γ0

D2
∣. hen we have N = N1 + N2 − 1. Now choose any x0 ∈ X.

Since d2 = n, pB(D) = pB(D1)+ pB(D2), and nB(D) = nB(D1)+ nB(D2), in view of
Lemma 5.1 we have

dIM̂(D) = α−pB(D)
V+ α−nB(D)

V− d−N+1ZM̂(D)

= nB l
−pB(D)
V+ α−nB(D)

V− d−N+1RM̂(D, v0; x0)

= d−N1α−pB(D1)
V+ α−nB(D1)

V− nRM̂(D1 , v0; x0)

× d−N2α−pB(D2)
V+ α−nB(D2)

V− nRM̂(D2 , v0; x0)
= IM̂(D1)IM̂(D2).

his concludes the proof of Proposition 4.1.

Acknowledgements Author C.C. wishes to thank Francesco Costantino and the
IMT for their hospitality. he authors are grateful to the anonymous referee for help-
ful comments and suggestions.

467

https://doi.org/10.4153/S0008439518000115 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439518000115


C. Collari and P. Lisca

References

[1] Pierre de laHarpe, Spin models for link polynomials, strongly regular graphs and Jaeger’s
Higman-Sims model. Paciûc J. Math. 162(1994), no. 1, 57–96.

[2] Michael Eisermann and Christoph Lamm, Equivalence of symmetric union diagrams. J. Knot
heory Ramiûcations 16(2007), no. 07, 879–898. https://doi.org/10.1142/S0218216507005555.

[3] Michael Eisermann and Christoph Lamm, A reûned Jones polynomial for symmetric unions. Osaka
J. Math. 48(2011), no. 2, 333–370.

[4] DavidM. Goldschmidt and Vaughan F. R. Jones,Metaplectic link invariants. Geom. Dedicata
31(1989), no. 2, 165–191. https://doi.org/10.1007/BF00147477.

[5] François Jaeger,Makoto Matsumoto, and Kazumasa Nomura, Bose-Mesner Algebras Related to
Type II Matrices and Spin Models. J. Algebraic Combin. 8(1998), no. 1, 39–72.
https://doi.org/10.1023/A:1008691327727.

[6] Vaughan Jones, On knot invariants related to some statistical mechanical models. Paciûc J. Math.
137(1989), no. 2, 311–334.

[7] Vaughan F. R. Jones, On a certain value of the Kauòman polynomial. Commun. Math. Phys.
125(1989), no. 3, 459–467.

[8] Kazumasa Nomura, An algebra associated with a spin model. J. Algebraic Combin. 6(1997), no. 1,
53–58. https://doi.org/10.1023/A:1008644201287.

[9] he Sage Developers, SageMath, the SageMathematics So�ware System (Version 8.0),
http://www.sagemath.org (2017).

Mathematical Sciences, Durham University, UK
e-mail : carlo.collari.math@gmail.com

Department ofMathematics, University of Pisa, Italy
e-mail : paolo.lisca@unipi.it

468

https://doi.org/10.4153/S0008439518000115 Published online by Cambridge University Press

https://doi.org/10.1142/S0218216507005555
https://doi.org/10.1007/BF00147477
https://doi.org/10.1023/A:1008691327727
https://doi.org/10.1023/A:1008644201287
http://www.sagemath.org
mailto:carlo.collari.math@gmail.com
mailto:paolo.lisca@unipi.it
https://doi.org/10.4153/S0008439518000115



