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Abstract. We show that if («,) is a one-parameter subgroup of SL (n, R) consisting
of unipotent matrices, then for any e > 0 there exists a compact subset K of
SL(n, R)/SL(n, Z) such that the following holds: for any geSL(n, R) either
m{{te[0, T]|u,g SL(n,Z)eK})>(l-e)T for all large T(m being the Lebesgue
measure) or there exists a non-trivial (g~lu,g) -invariant subspace defined by rational
equations.

Similar results are deduced for orbits of unipotent flows on other homogeneous
spaces. We also conclude that if G is a connected semisimple Lie group and F is
a lattice in G then there exists a compact subset D of G such that for any closed
connected unipotent subgroup U, which is not contained in any proper closed
subgroup of G, we have G = DT U. The decomposition is applied to get results on
Diophantine approximation.

0. Introduction
Let (w() be a one-parameter subgroup in SL (n, R) consisting of unipotent matrices.
In [3], strengthening a result of G. A. Margulis [10], it was proved that for any
x€ SL («, R)/SL (n, Z) there exists a compact set K such that the set {t >0 | upc e K}
has positive lower density. Recently while studying density of orbits of horospherical
flows (cf. [7]) the author found that in certain contexts it is necessary to know
whether the compact set K can be chosen so that the above assertion holds
(simultaneously) for all x such that the (u,)-orbit of x is not contained in a proper
closed subset of the form HxF/F, where F = SL (n, 2) and H is a closed subgroup.

On the other hand in [6] it was proved that if G is a simple Lie group of R-rank
1 and F is a lattice in G then given e > 0 and a unipotent one-parameter subgroup
(wr) there exists a compact subset K of G/F such that for any xeG/T whose
(u,)-orbit is unbounded the lower density of {t>0\u,xe K} exceeds (1 - e ) . This
raises the question of whether a similar stronger assertion about the lower density
is possible in the above-mentioned case (and more generally for all arithmetic
lattices).

. The answers to both the questions turn out to be in the affirmative; namely, we
have the following.

(3.1) THEOREM. Let neN and e >0 be given. Then there exists a compact subset K
of SL (n, R)/SL {n, Z) such that for any unipotent one-parameter subgroup («,) and
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geSL(n, R) either

m({t€[O,T]\utgSL(n,Z)eK})>(l-e)T,

for all large T (m being the Lebesgue measure), or there exists a {g~1u,g)-invariant

proper subspace Wof R" defined over Q (by linear equations with rational coefficients').

It is easy to see that in the latter case there exists a proper closed subgroup H such
that HgT is closed and contains the (w,)-orbit of gT.

The result readily generalizes to arithmetic lattices in algebraic R-groups and
then, in the light of the results in [6], to all lattices in semisimple Lie groups (cf.
theorem 3.5). A particular consequence of theorem 3.1 is that any (u,)-orbit which
does not intersect K is contained in a closed orbit of a proper closed subgroup H.
We generalize this qualitative aspect to any connected unipotent subgroup, of any
connected semisimple group G, acting on G/T, where F is any lattice in G (cf.
theorem 3.7). That yields the following decomposition theorem.

(3.9) THEOREM. Let G be a connected semisimple Lie group and Ybea (not necessarily
cocompact) lattice in G. Then there exists a compact subset D of G such that the
following holds: if U is a closed connected unipotent subgroup which is not contained
in any proper closed subgroup H such that HT is closed and H nT is a lattice in H
thenG = DTU=UTDl.

In terms of G this means that for any 'generic' U as above all the elements of G
are within a fixed maximum distance from the set UT (with respect to a left invariant
metric); the set UT is actually expected to be dense (cf. conjecture II in [5]). In
[7] we obtain a complete description of the closures of orbits of 'horospherical
flows' verifying, in particular (the analogue of) conjecture II of [5] for that case;
the proof makes crucial use of theorem 3.9 (cf. § 3 for some details). On the other
hand, even in the general case the theorem enables us to make asymptotic comparison
of G-orbits and F-orbits in certain linear actions yielding a result which has the
flavour of a result on Diophantine approximation with matrix argument (cf. theorem
4.1). In particular the result enables us to obtain an abstract proof of proposition
3.2 in [8] which was obtained using classical results on Diophantine approximation
together with certain special constructions (cf. corollary 4.2). We also give an
application to conjugacy classes of unipotent elements in semisimple Lie groups
(cf. corollary 4.3).

In view of the Mahler criterion theorem 3.1 is equivalent to theorem 2.1 whose
proof is the subject of § 2. The proof of theorem 2.1 is in spirit very much similar
to that of theorem 2.1 in [3]. However, unfortunately, it seems hard to explain to,
and more so to convince, the reader the places where the latter is to be modified.
I have therefore included a complete proof of theorem 2.1. An effort is also made
to improve the exposition over that of the latter.

1. Preliminaries
Let R" be the n- dimensional Euclidean space equipped with the usual inner product
( , ). For any non-zero discrete subgroup A of R" we denote by AR the vector
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subspace spanned by A, and by d(A) the volume of the torus AR/A (or equivalently,
that of a fundamental domain for A in AR) with respect to the inner product obtained
by restriction of ( , ) to AR. As a convention we set d({0}) = 0. We note the following
(cf. [3, lemmas 1.1 and 1.5]).

(1.1) LEMMA. Let (U,),GR be a one-parameter group of unipotent matrices in SL (n, U).
For any discrete subgroup A, d2(u,A) is a polynomial in t of degree at most 2n2.
Further, the function v defined for all teU by

v(t) = sup {d(A)~'d(M,A) | A any discrete subgroup of R}

is continuous.

Let A be a lattice in W. A subgroup A of A is said to be complete (in A) if A n AR = A.
The set of all complete non-zero subgroups of A is denoted by 5^(A). We equip
5^(A) with the partial order given by the inclusion relation. For any totally ordered
subset (possibly empty) S put

B(5) = {Ae^ (A) |A^S and Su{A} is a

totally ordered subset of #"(A)}.

Let || • || be the norm corresponding to the inner product ( , ). The following lemma
gives a lower bound for the norms of the non-zero elements of a lattice A in terms
of the values of d on its subgroups.

(1.2) LEMMA. Let a, /3 and 0 be given positive real numbers. Let A be a lattice in R"
and S be a totally ordered subset of #"(A). Suppose that

(i) a<d(A)</3 for all Ae S; and
(ii) d(A)>0 for all Ae B(S).

Then \\z\\ >min {a, 0, p~la, /T '0} for all ze A - ( 0 ) .

Proof. Let z e A - ( O ) and let (z) denote the subspace spanned by z. If z is contained
in every element of S (which includes the case when S is empty) then A = A n (z) e
B(S) u S and hence ||z|| > d(A) > min {a, 0}. Now suppose that z is not contained
in some element of 5 and let A be the largest such element. Then A' = A n (AR + (z))
is contained in B(S)u S so that d(A')>min{a, 0}. It is easy to see by an explicit
construction of fundamental domains that d(A'):s ||z||d(A). Hence | |z| |>
/3"1 min {a, 6}, which proves the lemma.

As in [10] and [3] we also need the following lemmas on values of non-negative
real-valued polynomials (cf. [3] for proofs). We denote by SPt the space of non-
negative polynomials on R of degree at most /.

(1.3) LEMMA. For any fe> 1 and leN there exist constants e^k, I) and e2{k, I) such
that the following holds: Let c>0 and 0 < t, < t2. If P e 3"t is such that P(t)<cfor
all t 6 [ r 1 ; t 2 ] and P(t2) = c then there exists j , 0 < 7 < / such that P(t)e
[c£l(k, I), ce2(k, 1)] for all *e [r, +Jk^+1(*2-ra), tl + k2j+2(t2- r,)].

(1.4) LEMMA. For any k> 1 and / eN there exists a constant e(k, I) such that the
following holds: Let c > 0 and 0<tx<t2. If Pe0>, is such that P(t)>c for some

https://doi.org/10.1017/S0143385700003382 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003382


170 S. G. Dani

f e[f,, t2] and P(t2)<ce(k, I) then there exists te[t2, h +k(t2-h)~\ such that P(t) =
ce(k, I).

2. Orbits of lattices
This section is devoted to the proof of the following theorem.

(2.1) THEOREM. Let neN and e>0 be given. Then there exists S>0 such that for
any unipotent one-parameter subgroup (u,) in SL (n, U) and any lattice A in U" with

= l the following holds: either

for all large T or there exists a (u()-invariant proper non-zero subspace W of R" such
that WnA is a lattice in W.

It is evident that the two possibilities in the conclusion are not mutually exclusive.
In fact, we shall also prove the following:

(2.2) THEOREM. Let neN, e>0 and a lattice A in W be given. Then there exists
8>0 such that for any unipotent one-parameter subgroup (u,) in SL (n, U)

m({te[0,T]\u,AnBs = (0)})>(l-e)T

for all large T.

For convenience, the proof is divided into several steps. Let n e N and e > 0, as in
the theorems be fixed. We also fix two constants h and k such that 1 < h< k and

(2.3) (l-OC-'-k'T^l-e).

Let

(2.4) fc, = l + («-l)fc-(4"2+2)

and

(2.5) o- = sup{f|K(s)<V2forall se[-t,t]},

where v is the function given in lemma 1.1; observe that o->0. Also in the sequel
for brevity we shall write ex(k), e2{k) and e(fc,) for the constants e,(fc, In2), e2(K 2n2)
and e(fc,, 2«2) respectively, the latter being given by lemmas 1.3 and 1.4; (though
we have also fixed k and fcj it would be convenient, in understanding the proof,
not to suppress them from the notation).

(2.6) PROPOSITION. Let A be a lattice in R" and (u,) be a unipotent one-parameter
subgroup in SL(n,R). Let S be a totally ordered subset of Hf(A). Let a, seU and
6 > 0 be such that for any A e B(S) there exists t € [a, s] such that d2(u,A) > 6. Then
at least one of the following holds: either

(i) there exists s'> s such that d2(u,A)> (j)0e(fci) for all Ae B(S) andte[s,s'); or
(ii) there exist a', s'e[s + o-,a + h(s-a)] such that (s'-s) = k{a'-s) and the

following conditions are satisfied:
(a) for any AeB(S) there exists te[s, a'] such that d2(u,A)>(\)6e(ki); and
(b) there exists Aoe B(S) such that

OeikJeM < d2(u,Ao) =£

for all t e [a1, s'] = [a1, s + k(a'-s)]
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Proof. Put

First suppose that "£ is empty. Consider the set

E={te[s, a + ho(s-a)]\d2(u,A)>(l)ee(kl) for all Ae

If £ = [s, a + / i(s-a)] then we are through. Otherwise let s' =
inf{fe[s, a + h(s-a)]\t£E}. Then there exists AeB(S) such that d2(usA) =
G)0e(fc,) (cf. [3, lemma 1.6]). Hence s'> s and [s, s') is contained in E, which shows
that condition (i) holds.

Next suppose that <# is non-empty. It is easy to see that % is a finite set (cf. [3,
lemma 1.2]). Since for a n y A e ^ c B(S) there exists te [a, s] such that d2(w,A)> 6
and d2(MsA)<(5)0e(fc,)< 0e(fci), by lemma 1.4 the set H(A) defined by

tf (A) = {f e [s, a + k,{s - a)] | d2(u,A) = «*(*,)}

is non-empty. For Ae ̂  let t(A) = inf {tG H(A)} and put

y = sup{f(A)|Ae<£}.

Since <# is finite there exists Ao e <€ such that y = t( Ao). Observe that _y is the smallest
number such that for any A e ^ there exists te[s,y] for which d2(u,A)s 0e(fc,).
We also note that since d2(usAo)<(i)0e(fci) and d2(n,,Ao) = 0e(fci), y>s + (T.

Since d2(wrA0) < 0e(fci) for all t e [s, y] and d2(uybo) = 0e(fci), by lemma 1.3 there
exists ;', 0<j<2n2 such that d2(MrAo)e[0e(fc1)e1(fe), fle^^fc)] for all te

; -5)] . Put

0 ' - s ) and s' = s + fcy+2(j;-s).
Then s + o-<y <a'<s'^s + k4"2+2(ki-l)(s-a) = a + h(s-a). Also evidently
(5'-s) = Jlc(a'-s).

Observe that condition (ii(b)) holds automatically because of our choice of a'
and s'. Condition (ii(a)) follows from the fact that while for A e <£ there exists
' £ [ s , y ] c [s, a'] such that d2(u,&)>$e(kl) because of the choice of y, for Ae
B(S)-<€ we have d2(usA)>(^)de(k1) by the definition of %. This proves the
proposition.

Let R = (0, oo) x (0, oo) x (1, oo) and let ip: R -> R be the map defined by

<M0, o, 0) = ((£)*£(*,), min {a, ee(k,)ei(fc)}, max {A ^(fc^^lfc)})

for all 0 and a in (0, oo) and /3 > 1. We next prove the following.

(2.7) PROPOSITION. Let A be a lattice in W and let («,) be a unipotent one-parameter
subgroup of SL («, IR). Let S be a totally ordered subset of if {A) of cardinality p. Let
{0,a,B)eR and for i = 0 , 1 , . . . , n let (6h at, B,) = <A"((0, a, B)) (in particular, 60 = 6,
ao = a and /Jo = /3). Let

Sp= min min{)3rla,)(3)j8r1^e(k,)}.
0sisn-p

Let a, beU be such that the following conditions are satisfied:
(a) for any Ae B(S) there exists te[a, b] such that d2(w,A)> 6; and
(b) for any AeS, a <d2(u,&)<B for all te[b, a + k(b-a)].
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Then

b,a + k(b-a)]\\\u,z\\>8pforallzeA-(0)})

Proof. We proceed by induction on (n-p): If p = n then by condition (b) and
lemma 1.2 ||M,Z|| >ft~xa >5 P for all te[b, a + k(b-a)] and hence our contention
evidently holds. Now suppose that the proposition holds for all totally ordered
subsets of cardinality p +1 (for all possible values of 0, a, /3, a and b) and let 5 be
a totally ordered subset of Sf{A) of cardinality p satisfying the hypothesis of the
proposition (for certain values of 0, a, /3, a and b). Put

X = {te[b,a + k(b-a)]\\\u,z\\>8p for all zeA-(O)}.

We shall first show that for any se[b, a + kh~l(b-a)] there exists s' in [b,a +
k(b-a)] such that either s'>s and [s, s ' ) c X o r s ' > s + (r and

(2.8) m(X n [s, s']) > (1 - k'1)^1 - k'l)"-p-l(s'-s).

Let s as above be given. Then the conditions of proposition 2.6 are satisfied for the
above values of a, s and 0. Hence one of the conclusions in that proposition must
hold. Suppose that (i) holds for some s'> s; in that case, in view of condition (b)
in the hypothesis and lemma 1.2 we get that for all t e [s, s']n[b,a + k(b - a)],

for all z e A - (0) so that t s X, thus proving the claim. Next suppose that conclusion
(ii) holds: Let a', s' and Ao be as in that conclusion. Note that we have

5 + o- < s'< a + h(s - a) < a + k(b - a).

Now let S' = Su{A0}. Since AoeB(S), S' is a totally ordered subset of cardinality
p +1. We observe that the conditions of the proposition under discussion are satisfied
for S' for 0j, a,, /?,, 5 and a' in the place of 0, a, p, a and b respectively: condition
(a) follows from conclusion (ii(a)) of proposition 2.6 and condition (b) follows
from conclusion (ii(b)) of that proposition together with condition (b) as in the
hypothesis which is satisfied by 5. Since S' has cardinality p +1, by our induction
hypothesis the contention of the proposition holds for S' for the appropriate values
of the constants. Since for any i > 0,

^{0U au /?,) = i/,i+\0, a, j8) = («,+„ ai+1, j8l+I),

the conclusion may be stated as follows: if 8p = minlsisn-pmin{PT1ai,

(D/Jr^fc.)} and
X' = {te[a',s + k(a'-s)]\\\ulz\\>8p for all zeA-(O)}

then

(2.9) m(X')>(h-l-k-l)n-p-\k-l)(a'-s).

Clearly X' is contained in X n [s, s']. Hence (2.9) together with the fact (from
proposition 2.6) that ( s ' - s ) = k(a'-s) implies (2.8).

We define a finite sequence s0, su ... sr in [b, a + k(b — a)] as follows: Let so = b
and suppose that for some JSrO, s0, su...,Si have been chosen. If s,£
[b, a + kh~\b-a)] then we choose r=i, thus terminating the sequence. If ste
[b, a + kh~\b-a)] then by the above argument there exists si+i € [b, a + k(b - a)]
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such that
m(X n U, sl+1]) > (1 - k-'Kh-1 - lc-1)"--1^ - s,)

and either sf+, >s,- + tr or [s,,s1+1)cX and [sb s') is not contained in X for any
s'> si+i. Observe that for any i, s,+2 - s, > o- so that the sequence necessarily termin-
ates; that is, there exists reN such that sr£[b, a + kh'^b-a)].

Now we have

[m(Xn[sosm])
r=0

since sr& a + kh (b — a) and s0 = b.
Proof of theorem 2.1. We choose and fix positive numbers 0, a and /? satisfying the
conditions a</8, J 3 > 1 and 0 s 1. For i = 0 , 1 , . . . , n let (0f, aj; /3f) = iA'((0, «, £))
and let

5 = ominnmin{/3r1ai,(i))3r10,e(fc1)}.

We note that 5 > 0. Let A be a lattice in R" such that d(A) = 1 and (u,) be a unipotent
one-parameter subgroup in SL (n, R). First suppose that there exists bo>0 such that
for all A e 5̂ (A) there exists t e [0, b0] such that d2(«(A) > 0. Then the conditions of
proposition 2.7 are satisfied if we choose S as the empty subset, a = 0 and b > b0.
Choosing b = Tk~l we conclude from the proposition that for all I > kb0

m{{t 6 [0, T] 11| u,z|| s* 5 for all z e A - (0)}) > (fc - 1X/T1 - jr1)"*"1 T.

In view of (2.3), namely by our choice of h and k, the above inequality proves that
the first possibility as in the conclusion of the theorem holds.

Next suppose that there does not exist any bo^0 for which the above mentioned
condition is satisfied. It is easy to see that the set / = {Ae 5^(A)| d2(A) < 0} is finite.
If the condition is not to be satisfied for any b0 then there must exist A e / such
that d2(u,A)< 0 for all <>0. Since d2(u,A) is a polynomial in t the last condition
implies that d2(n,A) is constant. We note that since d2(A) < 0 s 1 = d2(A), in par-
ticular, A is a proper subgroup of A; further since A is complete in A it is of rank
q < n. Let Xi, x2 , . . . , xq be a free set of generators of A. There exists a norm || • ||
on f\qW such that

II la \
\ X i A %2 A * * * A Xq )

for all t (cf. [3, lemma 1.4]). Since d2(w,A) is constant this means that the
(A9 w,)-orbit of X! A x2 A • • • AX, is bounded. Since («,) is a unipotent one-parameter
subgroup, so is ( A ' "<) and therefore every bounded orbit of (A* «() consists of a
fixed point; that is, we have (A* Mr)(*i A - > > A X , ) = X 1 A I - - A X , for all t. This implies
that the subspace W ofW spanned by x u . . . , xq is invariant under (w,). Also clearly
WnA — A is a lattice in W. This proves the theorem.

Proof of theorem 2.2. In this case we choose 0 so that for the given lattice A we
have d2(A)> 6 for all Ae Sf(A). Existence of such a 0 follows from lemma 1.4 in
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[3]. The theorem then follows from the same argument as in the first part of the
above proof of theorem 2.1.

3. Orbits of unipotent flows
Using the well-known Mahler criterion (cf. [12, corollary 10.9]) theorem 2.1 can be
reinterpreted as follows.

(3.1) THEOREM. Let neN and e>0 be given. Then there exists a compact subset K
of SL(n, R)/SL (n, Z) such that for any unipotent one-parameter subgroup (u,) in
SL (n, R) and any g e SL («, R) the following holds: either for the point x = g SL (n, Z)
we have

m({te[0,T]\u,xeK})>(l-e)T,

for all large T or there exists a proper non-zero subspace W of W defined over Q
{defined by linear equations with rational coefficients) which is invariant under g'lu,g
for all t e K.

Proof. SL (n, R)/SL («, Z) can be identified canonically with the space of lattices A
in R" for which d(A) = l via the (well-defined) map g SL(n,Z)*->g(Z") for all
g G SL (n, R). Let S > 0 be as in theorem 2.1 for the given values of n and e. By the
Mahler criterion, under the above correspondence the set of lattices A with d(A) = 1,
which do not contain any non-zero element from Bs correspond to a compact subset,
say K, of SL (n, R)/SL (n, Z). Hence by theorem 2.1 for any given unipotent one-
parameter subgroup (u,) and any element ge SL («, R) either

m({te[0, T]|n,gSL(n,Z)eK})> (l-e)T,

for all large T or there exists a proper non-zero (u,)-invariant subspace W such
that Wng(Z") is a lattice in W. In the latter case g~\W) is a (g-1u,g)-invariant
subspace in which g~1(W-0nZ"isa lattice; but any subspace of W intersecting Z"
in a lattice is defined by linear equations with rational coefficients.

Similarly theorem 2.2 implies the following.

(3.2) THEOREM. Let neN, e > 0 and xeSL(n,R)/SL(n,Z) be given. Then there
exists a compact subset K of SL(«, M)/SL(n, Z) such that for any unipotent one-
parameter subgroup (u,) in SL(n, R)

m({te[0,T]\u,xeK})>(l-e)T
for all large T.

These theorems can easily be generalized to arithmetic lattices in algebraic groups.

(3.3) THEOREM. Let G be the group of U-elements of a Zariski-connected semisimple
algebraic group G defined over Q and F be an arithmetic lattice in G. Then given
e > 0 there exists a compact subset C ofG/T such that for any unipotent one-parameter
subgroup (ut) and geG the following holds: either

m({te[O,T]\utgTeC})>(l-e)T

for all large T or there exists a proper algebraic subgroup H defined over Q such that
g~lu,geHRforallteR.
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Proof. Without loss of generality we may assume that G is simple over Q; that is,
there exists no normal algebraic subgroup defined over Q. Further clearly we may
also assume F = Gz. Let p: G -» GL(V) be a non-trivial irreducible representation of
G defined over Q. Then p induces a natural map p: G/Gz-»SL(n, R)/SL(n, Z),
where n is the dimension of V. It is well known that p is a proper map. Let K be
a compact subset of SL(n, R)/SL(n, Z) such that the contention of theorem 3.2
holds for the given e > 0 and n as above. Put C = p~~x{K). Since p is proper C is
a compact subset. Then, since (p(w,)) is a unipotent one-parameter subgroup of
SL(n,U), for any geG theorem 3.2 implies that either m({te[0, T]\u,gTe C})>
(1 - e)T for all large T or there exists a proper non-zero subspace W of V defined
over Q which is invariant under p(g~lu,g) for all teU. Suppose the latter holds.
Let H = {/ieG|p(fc)(W) = W}. Then H is a subgroup of G defined over Q and
g^UtgeHn for all (eR. Since W is proper and non-zero and p is irreducible we
conclude that H is a proper subgroup, thus proving the theorem.

We would like to generalize theorem 3.3 to all (not necessarily arithmetic) lattices
in semisimple Lie groups. For this purpose we first formulate a Lie group theoretic
variant of the second possibility in that theorem.

(3.4) PROPOSITION. Let G be the connected component of the identity in the group of
U-elements of a semisimple algebraic group G defined over Q. Let F be an arithmetic
lattice in G and let U be a subgroup of G consisting of unipotent elements. Then the
following conditions are equivalent:

(a) There exists a proper algebraic subgroup H of G defined over Q such that U
is contained in HR.

(b) There exists a proper closed connected subgroup HofG such that U is contained
in H, HT is closed and H n F is a lattice in H.

Proof. (a)=>(b) Let H' be the intersection of the kernels of characters of H into
GL(1) which are defined over Q. Since U consists of unipotent elements U is
contained in Hn. Since H' does not admit any non-trivial character defined over Q,
by a theorem of Borel and Harish-Chandra (cf. [1, theorem 13.1]) HR n F is a lattice
in HR. Also by a well-known result (cf. [5, lemma 2.2], for instance) HRF is closed.
Now if H is the connected component of the identity in HR then it has finite index
in the latter and hence in view of the above, HF is closed and H n F is a lattice in
H. Further, H contains U as it contains all the unipotent elements in HR.

(b)=^(a) Let H be the Zariski closure of H n F . Since F is arithmetic H is an
algebraic subgroup defined over Q. Since H n F is a lattice in H, by a version of
Borel's density theorem all unipotent elements in H are contained in the Zariski
closure of H n F (cf. [4, corollary 4.2], for instance). In particular, 1/<=HR. We
claim that H is proper. Suppose otherwise; then in particular H itself must be
Zariski-dense in G. Therefore the (solvable) radical of H is a normal subgroup of
GR. Since G is semisimple the radical must hence be trivial. Therefore H must be
semisimple. But any semisimple Lie subalgebra is algebraic (cf. [2, Ch. II, theorem
15]) and this implies that H must be open in GR. But this contradicts the hypothesis
that H is a proper subgroup of G. Hence (b)=P(a).
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We note that in the proposition if U is connected then in (b) we may drop the
connectedness condition for H, as the connected component of the identity in H
has the desired properties.

Now let G be any connected semisimple Lie group. An element u e G is said to
be unipotent if Ad u is unipotent and a subgroup U is said to be unipotent if it
consists only of unipotent elements. If G is the connected component of the identity
in GR, where G is an algebraic group defined over IR then the above notion of a
unipotent subgroup U coincides with the usual notion in algebraic groups if either
G has trivial centre or U is connected.

(3.5) THEOREM. Let G be a connected semisimple Lie group and Y be a lattice in G.
Then given e > 0 there exists a compact subset CofG/T such that for any unipotent
one-parameter subgroup («,) and geG the following holds: either

(3.6) m({t€[O,T]\u,greC})>(l-e)T

for all large T or there exists a proper closed subgroup HofG such that HY is closed,
H nY is a lattice in H and g~lu,g e H for all t e R.

Further, there exists a countable family & of proper closed subgroups ofG depending
only on Y (and not on (u,) or g or e) such that if there exists a subgroup H satisfying
the above conditions {for some (w,) and g as above) then we can choose one such
from the family S1.

Proof. If Z is the centre of G then ZY is closed and ZY/Y is finite (cf. [12, corollary
5.17]). In view of this, replacing G by G/Z if necessary, we may assume that G
has trivial centre. Similarly we may also assume that G has no non-trivial compact
normal subgroup.

There exist closed connected normal subgroups Gu G2,..., Gr, r> 1, of G such
that G=GX- G2 Gr (direct product) and for i = 1, 2 , . . . , r, Yt = T n G, is an
irreducible lattice in Gt (cf. [12, theorem 5.22]). Thus G/Y is. a quotient in a natural
way of YlGj/Yj. In view of this it is enough to prove the theorem for irreducible
lattices F,- in the connected semisimple groups G,. In other words; we may assume
F to be irreducible. Then by Margulis's arithmeticity theorem (cf. [11]) one of the
following (not mutually exclusive) conditions holds: either (a) G/Y is compact or
(b) G is of R-rank 1 or (c) G has the structure of the connected component of the
identity in the group of R-elements of an algebraic group defined over Q and Y is
an arithmetic lattice. The contention of the theorem is obvious if condition (a) holds
and follows from theorem 3.3 and proposition 3.4 if condition (c) holds; we also
note that the class of algebraic subgroup H defined over Q is countable.

A proof of the theorem in the remaining case, namely when G is a simple Lie
group of R-rank 1, is essentially contained in [6]. Theorem 0.2 in [6] differs from
the present theorem only in the following two ways: (i) The statement of the former
does not emphasize that the compact set may be chosen independently of the
unipotent one-parameter subgroup. A scrutiny of the proof will however show that
the choice of the compact set is indeed independent of the unipotent one-parameter
subgroup, (ii) The former gives boundedness of the (w,)-orbit of gY as the alternative
to validity of (3.6). The proof actually shows that (3.6) holds unless for some a e R
and ere 1, u,gYeX(cr, s) for all t> a; (notation as in [6] and s as chosen in § 3 of
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that paper). Suppose the latter condition holds. Then by lemma 2.4 in [6] there
exists y e F such that {p{u,gy)v\t> a} is a bounded subset. Since (p(w,)) is a
unipotent one-parameter subgroup any bounded orbit consists only of a fixed point;
thus p(w,) must fix p{gy)v. This implies that (g"1"^) is contained in the isotropy
subgroup of p(y)v, which is yo-~\KnZ) • Ncry~l; we note that K is a compact
subgroup. Since (g^ug) consists of unipotent elements it must actually be contained
in ya~lNay~\ But, by choice, N is such that F n a'1 No- is a cocompact lattice in
a^No: Therefore H = ya^Ncry'1 has the desired properties. It is also clear that
H comes from a fixed countable family (depending only on F) since in the above
expression for H, N is fixed, cr varies in a finite set 2, and y varies in F which is
countable.

(3.7) Remark. Let the notation be as in theorem 3.5. If the R-rank of G is 1 then
the subgroup H as in the second possible conclusion can also be chosen to be a
maximal horospherical subgroup intersecting F in a lattice; this is obvious from the
above proof.

Theorem 3.5 has a purely qualitative aspect: if ge G is such that {u,gF|f eR} is
totally outside C then the latter condition must hold. Though this seems rather
special it has certain interesting consequences. We first generalize the assertion to
all connected unipotent subgroups.

(3.8) THEOREM. Let G be a connected semisimple Lie group and F be a lattice in G.
Then there exists a compact subset C of G/T such that for any closed connected
unipotent subgroup U of G and any geG either Cn C/gF/F is non-empty or g~lUg
is contained in a proper closed subgroup H such that HF is closed and H n F is a
lattice in H.

Proof. Let 0e (0,1) be arbitrary and let C and & be the compact subset of G/T
and the family of closed subgroups given by theorem 3.5. Let U be a closed connected
unipotent subgroup and ge G be such that C n UgT/Y is empty. Then by theorem
3.5 for any (unipotent) one-parameter subgroup X = (u,) in U there exists a closed
subgroup H(X)e & such that g~lXg is contained in H(X), H(X)T is closed and
H(X)nT is a lattice in H(X). Since U is a connected nilpotent Lie group every
element of U is contained in a one-parameter subgroup of U (since the exponential
map is surjective). Hence the last observation implies that g~l Ug is contained in
U H(X), where the union is over all one-parameter subgroups. Since a connected
Lie group cannot be expressed as a union of countably many proper closed subgroups
and since each H(X) belongs to 9, which is a countable family, it follows that
there exists a one-parameter subgroup X of U such that g~lUg is contained in
H(X). Since H{X)Y is closed and H ( X ) n F is a lattice in H(X) this proves the
theorem.

(3.9) THEOREM. Let G be a connected semisimple Lie group and F be a lattice in G.
Then there exists a compact subset D of G such that the following holds: if U is a
closed connected unipotent subgroup which is not contained in any closed subgroup H
such that HT is closed and H n F is a lattice in H then G=DTU= UYD'\
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Proof. Let C be a compact subset of G/Y as in the conclusion in theorem 3.8. Let
D be a compact subset of G such that DY/Y — C. Let U be as in the statement of
the theorem and let ge G be arbitrary. Since g~\gUg~l)g = U is not contained in
any closed subgroup as in theorem 3.8 we deduce that CngUY/Y is nonempty.
Since C = DY/Y this implies that there exists u e U and y e T such that guy e D.
Hence g e Dy~lu~l e DYU. Since g e G is arbitrary, it follows that G = DYU. Also
G=G1=UYDl.

(3.10) Remark. Let G be the connected component of the identity in GR where G
is a semisimple algebraic group defined over Q and let Y be an arithmetic lattice in
G. Let P = PnG, where P is a proper parabolic subgroup defined over Q. Then
for any unipotent subgroup U of P and any compact subset £>, of G, D^YU is a
proper subset of G. This may be proved by observing that the conclusion of theorem
4.1 below does not hold for a Q-representation of G on a vector space V defined
over Q, if we choose v to be a rational vector such that the one-dimensional subspace
spanned by v is P-invariant (cf. [1, proposition 7.8]). In view of proposition 3.4
this shows that the condition on U in theorem 3.9 is not redundant.

Let G and T be as above. For go£G the subgroup U = {ue G\gJ
0ugoJ^e asj-*oo},

where e is the identity in G, is called the (contracting) horospherical subgroup
corresponding to g0. It is well-known that horospherical subgroups are closed
connected unipotent subgroups. In [7] we prove that if g0 e G is a semisimple
element in G (that is, Ad g0 is semisimple) acting ergodically on G/T (with respect
to the G- invariant probability measure) and U is the corresponding horospherical
subgroup then for geG, UgT/T is dense in G/Y whenever there exists a sequence
{«,} in g~lUg such that the sequence glujY has a convergent subsequence. By
theorem 3.9 the latter is indeed the case whenever g~lUg is not contained in a
closed subgroup H such that HY is closed, which, in fact, is also a necessary
condition for UgY/Y to be dense. Thus every non-dense orbit of U is contained in
a closed orbit of a proper closed subgroup, with some further work we are then
able to show that the closure of any orbit of U is actually the orbit of a closed
connected subgroup containing U - in particular, a homogeneous space - thus
verifying (analogue of) conjecture II in [5] for horospherical subgroups. The result
generalizes the well-known theorem on minimality of ergodic horospherical flows
on compact homogeneous spaces G/Y.

Earlier in [8] we had proved the homogeneity of the closure of orbits in a very
special case, viz. G = SL («, R), Y = SL (n, Z) and U the subgroup consisting of all
elements fixing (under the natural action) eu..., en_,, where {eu . . . , en} is the
standard basis of W. In that case the role of theorem 3.9 was played by a result
involving Diophantine approximation. Indeed, theorem 3.9 can also be interpreted
as a result on Diophantine approximation. We shall do this in the next section. We
conclude the present section with the following remarks.

(3.11) Remark. Let G and Y be as in theorem 3.7 and let U be a not necessarily
connected unipotent subgroup. Then still one can assert the existence of a compact
set C depending on U such that for any geG either Gn UgY/Y is non-empty or
g~1Ug is contained in a proper closed connected subgroup H such that HY is
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closed. This may be deduced from theorem 3.8 using the fact that if Z is the centre
of G then UZ is a cocompact subgroup of U'Z for a suitable closed connected
unipotent subgroup U' (we could choose U' to be the unique subgroup such that
U'Z/Z is the Zariski closure of UZ/Z in G/Z (which is the adjoint group of G).
However, it is not clear whether C can be chosen independent of U.

(3.12) Remark. The quantitative aspect of theorem 3.5 can also be generalized along
the lines of [3] to all unipotent subgroups. In particular it can be proved that given
e>0 there exists a compact subset K such that if U is a connected unipotent
subgroup and IT is an ergodic [/-invariant measure then either n(K) > 1 - e or there
exists a closed subgroup H as in theorem 3.5 and such that v is supported on
HY/Y. As in remark 3.11 this also implies an analogous result for all not necessarily
connected, unipotent subgroups if we allow K to depend on the subgroup. We
shall, however, not go into the details of proofs of these assertions.

4. Diophantine approximation
Let G be a connected Lie group acting as a group of linear transformations of a
real vector space V of dimension n. Let Y be a lattice in G. Given ve V-(0) we
ask whether there exists a sequence {%} in Y such that yjV-*0, or equivalently
whether ||yv\\ < e, where || || is a certain norm on V, admits a solution y e Y for an
arbitrary e > 0. If G = GR where G is an algebraic group denned over Q and Y = Gz

then solving the above inequality is equivalent to finding for any e > 0 solutions
xu ..., xn of the Diophantine inequality ||x • v\\ < e with the additional condition
that x , , . . . , xn form the rows of an element of Gz. More generally, the above question
may be viewed as a question of Diophantine approximation with the argument in
a discrete group of matrices (rather than integers).

Propositions 3.2 and 3.3 in [8] provide satisfactory answers to the question in the
particular cases of p-fold product action of SL(H, Z) on (W)p for l < p < n-\ and
Sp(2n, Z) on (U2n)p for 1 </?<n. For instance, the former implies that given £,,
£2, • • •, Zp £ R", P & 1, there exists a sequence {y}} in SL (n, Z) such that -y,£ -» 0 for
all i = 1,2,... ,p if and only if the subspace spanned by f u . . . , $p does not contain
any non-zero rational vector. The proofs of the theorems are based on classical
results on Diophantine approximation of values of linear forms. Here we use theorem
3.9 to obtain a sufficient condition for affirmative answer for the general question
and deduce the above-mentioned particular case. We also give an application to
conjugacy classes of unipotent elements.

(4.1) THEOREM. Let G, Y and Vbe as above. Let ve V-(0) be such that:
(i) there exists a sequence {gj} in G such that gjV-*0; and

(ii) the isotropy subgroup of v, namely the subgroup {g € G \ gv = v}, contains a
connected unipotent subgroup U which is not contained in any closed subgroup H such
that HY is closed and HnY is a lattice in H.
Then there exists a sequence {y,} in Y such that -y,i;-»0.

Proof. By theorem 3.9 there exists a sequence {dj} in a compact set D, {y}} in Y and
{uj} in U such that g, = d^Uj. Let || || be a norm on V (making it a normed vector
space). Then in view of the boundedness of {dj} there exists a constant M > 0 such
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that ||d71w|| < Af||w|| for all we V andjefU Hence

M l = II Wll = \\d;lgjv\\^M\\gjv\\^0,
as j -* oo, since by hypothesis gjv -* 0. Thus yp -* 0.

(4.2) COROLLARY. Let p>\ and £ , , . . . , $p e R". Then there exists a sequence {%}
in SL(«, Z) such that •y,^I-*0 as j -» oo for all i = 1,2,. . . , p if and only if the subspace
spanned by £ , , . . . , £p does not contain any non-zero rational vector.

Proof. If x = Y.Pi=1 A,£ is a non-zero rational vector then {y(x)|yeSL(n, Z)} is a
discrete set not containing zero, so that the simultaneous convergence cannot hold.
Now suppose that the subspace spanned by & , . . . , fp does not contain any non-zero
rational vector. There is no loss of generality in assuming that gu . . . , gp are linearly
independent and (by including more vectors if necessary) that p = n — 1. Let G =
SL (n, R) and U be the isotropy subgroup of (f, £,_,) under the (n - l)-fold
product action. U is a connected unipotent subgroup conjugate to the subgroup
Uo = {g e G|g(e() = e, for all J = 1 ,2 , . . . , « -1} , e , , . . . , en being the standard basis
of R". Since SL(/i,Z) is a lattice in SL(n, R) (cf. [12, corollary 10.5]) and the
SL(n,R)-orbit of (£ , , . . . , £n_i) contains zero in its closure, by theorem 4.1 there
exists a sequence {%} in SL (n, Z) such that %•(£i,..., £n_i) -» 0 unless U is contained
in a proper closed subgroup H such that H SL (n, Z) is closed. Suppose the latter
condition holds. From the way we found the subgroup H, in the particular case of
the lattice SL(n, Z) in SL(w, R) it is clear that there exists a proper non-zero
H- invariant subspace W of R" which is defined by linear equations with rational
coefficients (cf. theorem 3.1 and the proof of theorem 3.8); actually even if we
choose to forget how we arrived at H, it is possible to conclude the existence of
such an invariant subspace W from the above data using certain results in algebraic
groups. We shall however not go into the details of this. The subspace W is in
particular invariant under U. However, it is easy to see that any proper L/-invariant
subspace consists of fixed points; this need only be proved for Uo which is a
conjugate of U. Hence, in particular, U must fix a non-zero rational point. However,
evidently the space spanned by £,, £2» • • •, &.-i is precisely the set of points fixed
by U. Hence the latter must contain a non-zero rational vector - this contradicts
the hypothesis; hence the corollary.

Proposition 3.2 in [8] actually shows that if & , . . . , fn_i€R" span a (n -1) -
dimensional subspace not containing a non-zero rational vector then there exist
sequences -y, in SL (n, Z) and A, in R+ such that for all i = 1,2,..., n -1, %£, -» 0
and A/ty-6 -» rjj where 77,,... ,t]n-x are linearly independent vectors in W. The latter
kind of condition can be incorporated in theorem 4.1 if we can choose the sequence
{gj} in G as in the hypothesis of the theorem to be contained in the normalizer of
the unipotent subgroup U; this is indeed true in the special case.

One can also deduce an analogue of corollary 4.2 in the case of Sp (2n, Z) as in
[8]. This, however, seems to involve considerably more work. We shall not go into
the details since in any case this (as also corollary 4.2) follows from the stronger
results in [7]. In either case the isotropy subgroups contain horospherical subgroups
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to which results of [7] are applicable. We shall next give an application in which
the isotropy subgroup in question does not in general, contain a horospherical
subgroup.

(4.3) COROLLARY. Let G be a connected semisimple Lie group with trivial centre and
Y be a lattice in G. Let u be a unipotent element in G. Suppose that u is not contained
in a closed subgroup H such that HY is closed. Then the closure of the conjugacy class
{yuy~l | y e F} contains the identity element.

Proof. Let p be the Lie algebra of G and consider the adjoint action of G on p.
The unipotent element u can be expressed as exp X for some nilpotent element
Xep. Since G is semisimple, by the Jacobson-Morosov lemma (cf. [9, Ch. Ill,
theorem 17]) there exists Yep such that Ad (expjY)(X)-*0. The unipotent one-
parameter subgroup (exp tX) fixes X under the adjoint action and it is not contained
in any closed subgroup H such that HY is closed. Hence by theorem 4.1 there exists
a sequence {-y,} in F such that Ad "ty(X)-»0; in other words, yjUyj'-» the identity.

(4.4) Remark. Let G and F be as above. If G/T is compact, condition (ii) in theorem
4.1 is not needed in the proof; in that case the above argument then implies that
for any unipotent element u the conjugacy class \yuy~1 \y&T} has the identity in
its closure. If G/F is non-compact, however, one cannot expect such an assertion
since in that case F itself contains (rion-trivial) unipotent elements; the conjugacy
class of such an element would be discrete. Similarly if u is any unipotent element
such that the one-parameter subgroup containing u intersects F non-trivially then
{yuy~*\yeY} is discrete. The author is unable at this stage to characterize the set
of unipotent elements u for which the closure of the {yuy~1\yeY} contains the
identity and whether this is true whenever the set is non-discrete. Note that since
all the unipotent elements contained in proper closed subgroups H such that HY
is closed are contained in a fixed countable family of proper closed subgroups
(denned by algebraic subgroups denned over Q if F is arithmetic), corollary 4.3
answers the question for a generic unipotent element. This is in contrast with the
fact that for a non-unipotent element of G the conjugacy class is always bounded
away from the identity since the set of its eigenvalues is invariant under conjugation.
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