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Summary

This paper considers a generalisation of the queueing system MjG/l,
where customers arriving at empty and non-empty queues have different
service time distributions. The characteristic function (c.f.) of the stationary
waiting time distribution and the probability generating function (p.g.f.)
of the queue size are obtained. The busy period distribution is found; the
results are generalised to an Erlangian inter-arrival distribution; the time-
dependent problem is considered, and finally a special case of server absen-
teeism is discussed.

1. Introduction

Let us consider the following generalisation of the queueing system
G//G/1. In a single server system customers arrive at the instants r1, T2, • • •,
such that tn = rn — rn_1(« 2j 1), t0 = 0, are independently and identically
distributed random variables with common distribution functions (d.f.'s)
A(x), finite expectations a = E(tn) = $™xdA{x) and c.f.'s oc(0) = ]^LeiBx

dA (x) (^(8) ^ 0). If the w-th arrival joins a non-empty queue let his service
time be sn, while if he joins an empty queue let it be rn\ sn and rn(n 5: 1)
are sequences of independently and identically distributed random variables
with common d.f.'s B(x) and D(x) respectively, finite but non-zero expecta-
tions b = E(sn) = ffxdB(x) and d = E(rn) = ^xdD{x), and c.f.'s
y,(d) = l^eif)xdB{x) and £(6) == J~ eiOxdD(x). Let wn be the time the «-th
arrival waits before commencing service, then

!

U>n + Un ^n + "„ > 0, Wn > 0
c B cn > 0, wn = 0

0 otherwise,
where un = sn — tn+l and cn = rn — tn+1; {un} and {cn} are independently
and identically distributed random variables with the d.f.'s
(2) U(x) = J~B(* + y)dA{y), C{x) = j~D{x + y)dA(y),
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with expectations E(un) = b — a, E(cn) = d — a respectively, E(\un\) < oo,
c.f.'s

f°° eie*dU(x) = a(-0)y>(0), f°° ei9"dC{z) = oc(-
J—oo J—oo

This queueing system may arise in several ways, such as a machine
shutting down when no items remain to be serviced, and the service mecha-
nism is different for the first item of a group. It is useful in obtaining some
results in priority queueing, and in the traffic model considered by Yeo
and Weesakul [7] (see also § 5).

Finch [2] has considered a process which differs from ours only when the
w-th arrival joins an empty queue; the customer then waits for a time vn

before commencing a service of length sn, instead of receiving an immediate
service of length rn. If we put D[x) = $%B(x — y)dV(y), where V(x) is the
d.f. of the {vn}, then we can compare results obtained by the two processes
[see § 6].

For the GljG/l system it is known [5] that a unique stationary waiting
time distribution exists if and only if E(u) = b — a < 0. Finch [2] has
shown for his process that this is the stationarity condition, and it is also a
necessary and sufficient condition for the existence of a stationary distribu-
tion for our process. The proof extends Lindley's [5] argument in a similar
manner to that in [2], and will not be given here. The condition is independ-
ent of the service time distribution for a customer joining a non-empty
queue; we may intuitively expect this, for regardless of the non-zero finite
size of the service time for a customer finding the queue empty, the waiting
time must eventually reduce to zero again with probability unity if E(u) < 0,
and may build up indefinitely if E(u) ^ 0.

2. The Waiting time

Let Wn(x) = Pr{wn ^x\w 0 = wo(y)(O ^ y < oo)} be the waiting time d.f.
for the «-th arrival; Wn(x) = 0 for x < 0 by definition, and when i ^ O w e
have for E(u) < 0, which we assume to be true throughout unless otherwise
stated, that W(x) = limn_0OWn(a;) exists as a d.f. independently of the
initial distribution W0(y). We shall now prove the following theorem by
two methods; the first is similar to Theorem 2 of [2], while the second is an
extension of Takacs' work [6],

THEOREM 1: If A{x) == 1 — e~Xx{x ^ 0), then the c.f. <p(d) for the sta-
tionary waiting time distribution is given by

W(0){i6 - XV{B)

x -
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where the probability W(0) that a customer arrives to find the queue
empty is

(4) W{0) = (1 — Xb){l - Xb + Xd)~l.

PROOF (a). From equation (1) we can write

Pr{wn+1 ^ x) = Pr{wn > 0, wn + un g x} + Pr{wn = Q,cn^x} x^O,

from which we immediately obtain

(5) Wn+1(x) = J*^ Wn{x-y)dU(y) - Wn(0){U(x) - C(x)} x > 0.

As W(x) exists as a d.f. we have

(6) W{x) = j^W{x-y)dU{y) - W{0){U{x) - C{x)} x ^ 0.

Following [5] and [2] we define a function W*(x) by

(7) W*{x) = j " ^ W{x - y)dU(y) - oo < x < oo.

When x < 0 we have

W*(x) = f* W{x - y) f°° dB(y
J y=—CO J « = 0

(8)

where C = W*(0) = ^W(- y)dU{y).

Now for x ^ O w e have from (6) and (7) that

(9) W*(x) = W{x) + W{0){U(x) - C{x)}

so that

W*(0) = W(O){1 + £7(0) - C(0)} = W (̂0){l + y(«) - C(*A)}.

We take Fourier transforms in (6) and (7), and using (8), obtain

= X{X + iB)

= f° eiexdW*(x) + [°° eie*dW(x) - W10)
J— oo JO—

X + id)-1 W*{0) + <p(d) - W{0)

X{X + id)~->-
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equation (3) follows from these relations and (4) is obtained from (3) by the
limiting process 0 ->- 0.

PROOF (b). Let us for the moment consider the time-dependent problem.
For a Poisson process with parameter X, we have for small time 6t> 0 that
during a period of length 8t the probability of (i) no arrival is 1 — Xdt + o(3t),
(ii) one arrival is Xdt + o(8t), and (iii) more than one arrival is o(dt). For the
waiting time d.f. W(u, x, t) = W(x, t) at time t, given that there is a waiting
time u Sg 0 at time zero, we have for x Sj 0,

W(x, t + dt) = (1 - X6t)W{x + 8t, t) + Xdtj* W{x - y, t)dB{y)

+ X8tW{0, t){D(x) - B{x)} + o{8t).

Let W'(x, t) = {d\dx)W(x, t) be a right-hand derivative of W(x, t); this
exists for all x 5: 0. From (10) by letting bt -> 0 we obtain

(11) i W(x, t) --^W(x, t) = -XW(x, t)+X rW{x-y,
ct ox Jo

{D{x) — B(x)} x^0.

As t -> oo we have, for Xb < 1, that {djdt)W(x, t) -> 0 and

(12) W'(x)=XW{x)-XJ*W{x-y)dB{y)+XW(O){B(x)-D(x)} x^O.

Taking Fourier transforms in (12) and noting that $™eidxW'(x)dx =
— W(0) + <p(d) we readily obtain (3) and hence (4).

The moments of the waiting time distribution may be found from (3);
the mean waiting time is

We see that proof (b) is simpler than proof (a) as it is not necessary to
introduce an artificial function such as W*{x). We may extend the second
method to the time-dependent case, while we may use the first for the case
of an Erlangian inter-arrival distribution.

Taking Fourier transforms in (11) yields the further partial differential
equation

p
- <p(6, t) = (-id-X + XW{d))<p{d, t) + i6W(0, t) - Xy>(d)

which has the solution

cp(Q, t) = e(-A-e+A^W)t+»e« + j * {idW(0, t - r)

- Xy>{6)
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This may be inverted to give (see Gani and Prabhu [3])

W{x, t) =K{x + t - u, t) - V W{0, t - r)dK{x + r, r)
(13) </r"0

LULl - y)}dK(y + T, T),

where K{x, t) = J,Zo
e~XtW(n]-)~1Bn{x), Bn{x) being the w-fold convolu-

tion of B(x); I have been unable to obtain W(0, t) explicitly, although
an expression for its c.f. may be found.

For an Erlangian inter-arrival time distribution we make use of Lemma 1
of [1] concerning the roots of (A + iO)k — hky>(d) and obtain

THEOREM 2. When A{x) = 1 — yj£z\\rxre~Xx(r\)-x {k = 1, 2, • • •) we
have, for Xb < k,

(14)

+ *
where

n=0

* - i

and

*-i I -l

n=l J

A - l !

m # n

0M(O ^ « ^ A — 1) being the k roots of (A + »0)* — Afcv>(0) in the upper half
plane ./(0) ^ 0.

The proof generalises that of Theorem 1 and parallels that in [1] much
as our proof (a) of Theorem 1 parallels that of Theorem 2 of [2]. The algebra
in our case is more unwieldy, mainly because we need to integrate over
[0, oo) a function, i.e. (U(x) — C(x))ei6x, which extends over the whole
range (— oo, oo), whereas in [1] there is a function which extends over
[0, oo).
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3. The Queue size

Let Qn{m)(n = 0, 1, 2, • • •) be the probability that the w-th arrival finds
n customers in the queue, and Rn(m)(n = 0, 1, 2, • • •) be the probability
that when he departs there are n customers in the queue. As in [2] we may
show that the limiting distributions Qn = ]imm_ooQn(m) and Rn = limm_0O

Rn{m) both exist and are equal. We shall now prove

THEOREM 3. If A(x) = 1 — ^^Xrxr(r\)-1e-Xx{k = 1, 2, • • •) then the
p.g.f. R(z) = 2£o#»zn(l*l ^ 1) is given, for Xb < k, by

r=nk '•

(16) R(z) = R0{k(z) - zk*(z)}{k{z) - z}~\

where

*(*) = 5 Kzn, K = f
n-0 JC

o o /*t
. . . V ' V » * «. 7 * I
Jb^ f « t X fc* ?n £>v I

n-0 JO r-n* T\

PROOF. We readily see that the limiting distribution satisfies the equations

(18) Rn = Rn+1k0 + Rnk± H + Rxkn + Rok*, n = 0, 1, 2, • • •

When we multiply (18) by zn and sum we readily obtain (16), and (17) by
considering the limit ]imz_tl_0R(z).

When k = 1 the results are considerably simplified with k (z) = y>(iX (1 —z)),
k*(z) = £(iX(l - z)), k'(\) = Xb, k*'{l) = Xd, and Ro is given by (4).

The average number of customers in the stationary queue, obtained by
differentiation from (14), is

= R0{2k*'(l) + **"(!)}
U 2(1-*'(1))

4. The busy period

The distribution of the busy period, i.e. the time from the arrival of a
customer at an empty queue until the next time the server is free, may be
obtained by a slight extension of the work by Takacs [6] for the Af/G/1
system. If there is a waiting time of x > 0 in the queue at time zero then the
d.f. .F(a;, t) to the time the queue empties for the first time has the c.f.
0(x, 8) given by Kendall [4] as

0(x, 6) = «—»<»>,

where TJ(8) is the unique solution with ?j(0) = 0 of the functional equation
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(19) 17(6) = A - id - hp(iti(B)).

As a customer joining an empty queue has d.f. D(x) we have that the c.f.
y(6) of the busy period distribution is

( 2 Q )

= £(•>?(«))•

The moments of this distribution may readily be found by differentiation e.g.

- 1 / ( 0 ) = d{l -Xb)'1

(1 -

5. Gases of server absenteeism

We now consider another generalisation of the M/Gjl queueing system
which for stationary distributions is a special case of our previous problem.
Whenever a departing customer leaves the queue empty the server departs
from the counter for a time which has d.f. G(x), expectation g < oo and
c.f. f (0). When he returns to find at least one customer waiting he commen-
ces serving immediately; however, when he returns to find the queue still
empty we consider two cases: (i) he departs again for a time with d.f. G(x),
and continues to do so until he returns to find a waiting customer, whom he
serves at once, and (ii) he remains until a customer arrives, when he begins
serving immediately. From the time the server is first occupied customers
have a service time d.f. B(x) with expectation b < oo and c.f. y>(6). If we
were to consider service beginning only when the server actually commences
to serve a customer then model (i) can be solved by the method of Finch [2].
However, we take the case where a customer commences service immediately
he reaches the head of the queue. This is similar to a problem which has
arisen in road traffic theory (see Yeo and Weesakul [7]), where we wish to
find the delay to vehicles on a minor road when they arrive at an inter-
section at which they must yield right of way to vehicles on a major road.
The vehicles on the minor road are assumed to arrive in a Poisson process,
while the distribution of major road vehicles may be more general; the
length of time a vehicle waits from reaching the head of a queue to crossing
depends on whether there were any other vehicles waiting when it arrived.

We require to find c.f. #(0) of the d.f. L(x) of the time from the arrival of
a customer at an empty queue to the return of the server. For obtaining
stationary distributions we can integrate over the possible times of arrival
of a customer after the departure of the last customer of the previous busy
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period. Considering only the first server absentee period we obtain for the
c.f. Xi(0) °f the distribution of the time to the return of the server as

(21)

which is an improper distribution with Xifi) = 1 — f (— iX) = 1 — g0

being the probability that no customers arrive while the server is absent.
For the case where the server departs whenever there are no customers
waiting we have

So + go
(22) A{£(0) - g0}

while for case (ii) where the server departs only once at the end of a busy
period we have

A + id

Once the server actually begins serving the time to completion of service
is the same as for customers joining a non-empty queue (although this may
be generalised as is necessary for some traffic models) so that

(24) 3(6) = V(O)X(B)

may be taken as the service time c.f. for customers arriving at an empty
queue. The stationary waiting time and queue size distributions may now be
obtained from the results of the previous sections.

6. Comparison with Finch [2]

As a special case of our process we put D(x) = l%B(x — y)dV(y). The
distribution of Rn(Qn) is identical to that in [2], but the waiting time distri-
bution differs, as Finch considers {vn} as part of the waiting time while we
have it as part of the service time. However, the delay caused, i.e. waiting
time plus service time, is the same in both cases.

As an example suppose A (x) = 1 — e~Xx, B(x) = 1 — e"^, V(x) = 1 — e~"x

so that D(x) = 1 — (/a — v^i/ue-i"* — ve~vx). We obtain by inverting (3)
that

W(x) = 1 - AV
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with W(0) = vfi~x{ji — X)(v + X)-1, while Finch obtains

W(x) = 1 - e-<»-^ - < " - * > ( ' - * > e->* x > o.
/«(A + v - /«) (̂A + »--//)
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