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With the growing attention on large-scale educational testing and assessment, the ability to process
substantial volumes of response data becomes crucial. Current estimation methods within item response
theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale
data, leading to reduced computational speed. This study introduces a novel “divide- and-conquer” parallel
algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational
speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from
segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein
posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality
under certain regularity assumptions. Practical validation is demonstrated using real-world data from the
Programme for International Student Assessment. Ultimately, this research proposes a transformative
approach to managing educational big data, offering a scalable, efficient, and precise alternative that
promises to redefine traditional practices in educational assessments.

Key words: large-scale testing, item response theory, divide-and-conquer strategy, distributed Bayesian
inference, Wasserstein posterior.

Large-scale educational testing and assessments have gained global attention, engaging edu-
cators, researchers, and policymakers worldwide. This interest arises from significant changes
in organized assessments over the last fifty years, resulting in rich and extensive educational
big datasets. One significant example is the Programme for International Student Assessment
(PISA), conducted by OECD. PISA collects data every three years from 15-year-olds worldwide
to measure students’ abilities in applying their knowledge and skills in reading, mathematics,
and science to solve real-world problems. PISA 2018 collected data from 606,627 students who
answered 82 mathematics cognitive items (OECD, 2021) . While not every student responds to
each question, after eliminating the responses of students who did not answer any of the items, the
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sample size still remains as high as 267,889. Furthermore, large-scale educational assessments
conducted by individuals or schools are also notable. For example, to study the ”critical period”
in Second Language Acquisition, Hartshorne et al. (2018) administered a grammar test through
social media to English-native and non-native speakers (Wu et al., 2020) . The test consists of 95
binary items and was completed by 669,498 participants without missing data. Other large-scale
testing like the National Assessment of Educational Progress (NAEP; van Rijn et al. (2016)) and
the Trends in International Mathematics and Science Study (TIMSS; Martin and Kelly (1996))
belong to this landscape. Clearly, these extensive educational response datasets share a common
characteristic: big data and large sample sizes. Note that “big data” and “large sample size” in
this paper refer to high number of individuals rather than a large number of items. Therefore,
conducting a sound analysis of these large response data holds significant value for educational
evaluation and item quality assessment.

Leveraging these big datasets presents a unique opportunity and a challenge. It enables
researchers and educators to gain insights into student performance on an unprecedented scale,
thereby allowing more informed decision-making regarding educational policies and teaching
strategies. Moreover, it facilitates a deeper grasp of student learning processes, capturing not just
final answers but the methods used to reach them. However, analyzing such datasets is complex. It
requires robust statisticalmethodologies and the computational capacity to process the educational
big data. Thus, ongoing investment in innovative methods and computational tools is crucial to
harness the full potential of these large-scale educational datasets.

Item response theory (IRT; van der Linden and Hambleton (1997)) is a powerful tool for
test design, analysis, and scoring. It employs a probabilistic model to explain the relationship
between an individual’s latent ability and the probability of correctly answering a particular item
on a test. This theory is particularly relevant in the context of large-scale educational assessments.
For example, IRT models are applied to analyze the collected data for PISA test (Embretson &
Reise, 2000) . The analysis offers insights into the mathematical abilities, reading comprehension,
and scientific literacy of students from various countries.

Accurate parameter estimation is a fundamental requirement for applying IRT models. Com-
monly employedmethods for estimating parameters in IRT includemarginal maximum likelihood
estimation via expectation maximization algorithm (MMLE-EM; Bock and Aitkin (1981); Baker
and Kim (2004); Schilling and Bock (2005)) and Bayesian Markov chain Monte Carlo (MCMC)
methods, such as the Metropolis–Hastings (MH; Metropolis et al. (1953); Hastings (1970)) and
Gibbs algorithms (Béguin & Glas, 2001; Fox, 2010; Culpepper, 2016) . The MMLE-EM algo-
rithm, despite being frequently utilized in various IRT models, possesses significant limitations.
One primary concern is the requirement of these algorithms to perform high-dimensional numer-
ical integration for parameter estimation. This is an inherently complex process that is computa-
tionally intensive. The issue is further compounded when the number of quadrature points needed
for integration grows exponentially as the number of latent variables increases linearly (Jiang
& Templin, 2019) . To circumvent these limitations, MCMC algorithms, based on posterior sam-
pling, have been widely applied to estimate parameters in various complex IRT models. This
approach significantly reduces the complexity of parameter estimation and improves computa-
tional efficiency.

However, parameter estimation in IRT models using MCMC methods is not without limi-
tations either. MCMC methods often have difficulty with big data because of the following two
reasons. Firstly, there are challenges related to data storage; when the dataset is too large, it
becomes impractical for a single computer to store and process it. Secondly, computational time
is a concern; applying MCMC methods in settings with big data can be highly time-consuming,
as it typically involves numerous iterations, each of which requires several passes over the entire
dataset (Xue & Liang, 2019; Srivastava & Xu, 2021; Shyamalkumar & Srivastava, 2022) .
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Researchers have been actively addressing the challenges of using MCMC methods with
big data. One approach involves approximating posterior analyses, such as variational Bayesian
(Hoffman et al., 2013; Tan & Nott, 2014; Lee &Wand, 2016) , Laplace/Gaussian approximations
(Rue et al., 2009) , and expectation propagation techniques (Vehtari et al., 2020). Although these
methods can generate useful posterior mean estimates for big data, most of them often underesti-
mate the posterior variance and lack theoretical guarantees for quantifying posterior uncertainty
(Giordano, 2018) . The second approach focuses on approximating MCMC transition kernels
with subsampling methods or easier-to-sample alternatives, without needing to pass through full
a dataset (Korattikara et al., 2014; Alquier et al., 2016; Quiroz et al., 2019) . This approach,
though promising, requires careful parameter tuning; only with correctly tuned parameters can
the algorithm produce reliable posterior uncertainty estimates.

The third approach involves the divide-and-conquer (D&C) strategy, which comprises three
stages: initially, the full dataset is partitioned into multiple subsets; subsequently, the sampling
algorithm is implemented in parallel on all these subsets to derive posterior samples; and finally,
the posterior samples collected from each subset are combined in a specific manner to conduct
accurate posterior inference on the full dataset. Several techniques exist within stage 3, with the
main difference being how the posterior draws from different subsets are merged (Minsker et al.,
2014; Neiswanger et al., 2014; Scott et al., 2016) . Currently, the most advanced merging method
is theWasserstein posterior (WASP) method. Srivastava et al. (2015, 2018) first introducedWASP
method, which amalgamates the posterior distribution of subsets by leveraging the Wasserstein
barycenter—a concept representing the geometric center for probability measures (Agueh &
Carlier, 2011) . Although the method offers extensive applicability and theoretical guarantees, its
implementation, which requires computing theWasserstein barycenter, can be highly complex and
resource-intensive. In response, Li et al. (2017) proposed a computationally more straightforward
posterior interval estimation algorithm (PIE) that estimates the WASP quantile by averaging the
quantiles derived from each subset draw. However, PIE has been criticized for its effectiveness
only with one-dimensional parameters.

More recently, the “double-parallel” Monte Carlo (DPMC) method was suggested by Xue
and Liang (2019). This approach mainly relies on the mixture distribution derived from the com-
mon center of the subset draws to approximate the full data posterior. However, the assumption
of asymptotic normality in DPMC can be challenging to validate in practical scenarios as it
implies that the covariance matrices of the subset posterior distributions are identical. Álvarez et
al. (2016) argued that the computation of the Wasserstein barycenter could be simplified by solv-
ing a fixed-point equation on a positive definite matrix space if the subsets posterior distribution
pertains to the same location-scatter (LS) family of distributions. Building off this idea, Srivas-
tava and Xu (2021) proposed the LS-WASP algorithm for distributed Bayesian inference in linear
mixed-effects models. The LS-WASP algorithm not only preserves the computational simplicity
of the PIE and DPMC algorithms, but also delivers asymptoticMonte Carlo and statistical guaran-
tees. Subsequently, Shyamalkumar and Srivastava (2022) as well as Wang and Srivastava (2023)
extended this algorithm to generalized linear models and hidden Markov models, respectively.

Despite extensive research into addressing the challenges of applying MCMC methods to
mid-sized data, the difficulty of estimating the parameters of the IRT models using the MCMC
algorithm remains in the presence of big data. This study presents the location-scatter Wasser-
stein posterior (LS-WASP) algorithm, a divide-and-conquer-based strategy, to tackle the big data
challenge. This divide-and-conquer algorithm, anchored in the LS-WASP concept, transforms
parameters drawn from subset posteriors into draws from WASP via a straightforward recenter-
ing and rescaling operation.Not only is this algorithmcutting-edge for scalableBayesian inference
applications, but it also presents a simple computation with asymptotic theoretical guarantees.
This study applied the LS-WASP algorithm to the two-parameter logistic (2PL; Birnbaum, (1957))
model and the multidimensional two-parameter logistic (M2PL; Reckase (1972, 2009)) model,
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confirming its utility and feasibility within the educational and psychometrics field. When deal-
ing with large-scale response data, the LS-WASP algorithm not only accurately estimates each
parameter of the IRT models but also substantially accelerates computational speed, supported
by asymptotic Monte Carlo and statistical guarantees.

The organizations of this paper are as follows. Section1 provides a brief introduction to the
2PL and M2PL models. Section 2 provides a detailed description of the preliminary preparations
and the specific implementation process of the LS-WASP algorithm within the IRT framework.
Section3 presents the specific theoretical assumptions and the asymptotic statistical properties,
and Monte Carlo guarantees under these assumptions. Section4 presents the simulation studies
of the LS-WASP algorithm in the 2PL and M2PL models. In Sect. 5, two examples are provided
to show the application of the LS-WASP algorithm in IRT models. Finally, Sect. 6 concludes the
paper with a brief summary and discussion.

1. Models

1.1. Unidimensional Two-Parameter Logistic Model

The unidimensional IRT model establishes a basic structure for illustrating the interaction
between individuals and items by postulating a single latent trait dimension. Presume a test is
composed of J binary response items, with each assessing a unidimensional latent trait, θ . Let
y = [

yi j
]
n×J be an n × J matrix representing the responses of n examinees to J items, where

yi j = 1
(
yi j = 0

)
if the i th examinee answers the j th item correctly (wrong), for i = 1, ..., n

and j = 1, ..., J . The correct response probability of the two-parameter logistic (2PL) model is
expressed as follows:

P
(
yi j = 1

∣∣θi , a j , b j
) = exp

{
a j (θi − b j )

}

1 + exp
{
a j (θi − b j )

} , (1)

where θi is the ability parameter of the examinee, for i = 1, · · · , n; a j is the discrimination
parameter for the item; and b j is the difficulty parameter for the item, for j = 1, · · · , J .

1.2. Multidimensional Two-Parameter Logistic Model

Multidimensional item response theory (MIRT) models (Ackerman, 1996; Béguin & Glas,
2001) , as an extension of unidimensional IRT models, are extensively applied to illustrate the
relationships between test items andmultiple latent traits in psychological and educational assess-
ments (Reckase, 2009) . Subsequently, we present the multidimensional two-parameter logistic
(M2PL) model, a prevalent model within the domain of MIRT. Consider a test comprising of
J items, which is designed to assess Q latant traits among n examinees. Denote the observed
responses to the J items for all n examinees as y = [

yi j
]
n×J . Here, yi j = 1 indicates that exam-

inee i answers item j correctly, while yi j = 0 indicates a wrong response. For each examinee i

(i = 1, ..., n), let θ i = (
θi1, ..., θi Q

)T denote the latent traits being measured, with Q dimensions.
The correct response probability of the M2PL model is expressed as follows:

P(yi j = 1
∣∣θ i , a j , b j ) =

exp
(
aTj θ i − b j

)

1 + exp
(
aTj θ i − b j

) , (2)
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where the discrimination and difficulty parameters are a j = (
a j1, ..., a jQ

)T and b j , respectively.
a jq �= 0 indicates that item j is associated with latent trait q.

Due to the overparametrization that allows for the rotation of discrimination parameters
(a j1, ..., a jQ), it is necessary to address the model identification in advance. Usually, two
approaches are employed to ensure model identification. The first approach constrains all abil-
ity parameters to follow a multivariate normal distribution with the mean of zero vector and
covariance matrix of an identity matrix, respectively, and introducing the constrains a jq = 0, for
j = 1, · · · , Q − 1, q = j + 1, · · · , Q. The second approach constrains the item parameters by
setting Q item parameters b j to zero. Furthermore, for each j = 1, · · · , Q and q = 1, · · · , Q,
constraints are imposed on a jq such that it equals to 1 if j = q, and it is set to zero if j �= q.
Meanwhile, the ability parameters are freely estimated. Both approaches effectively guarantee
a unique solution for parameter estimation, as emphasized by Béguin & Glas (2001). Similarly,
factor analysis models often constrain factor loadings to achieve model identifiability. Please see
chapter 5 of Skrondal and Rabe-Hesketh (2004) for details. In this paper, we adopt the second
approach, constraining item parameters.

2. The Location-Scatter Wasserstein Posterior (LS-WASP) Algorithm with a
Divide-and-Conquer-Based Strategy

2.1. Preliminaries

This section introduces fundamental concepts, definitions, and theorems used in the LS-
WASP algorithm, which serves as the foundation for the theoretical properties of the LS-WASP
algorithm in Sect. 3. Next, several concepts and definitions related to the Wasserstein space are
introduced. The Wasserstein space of order 2 on R

p is defined as:

P2(R
p) =

{
ν ∈ P(Rp) :

∫
‖x‖22ν (dx) < ∞

}
,

where P(Rp) is the set of Borel probability measures on R
p and ‖ · ‖2 represents the Euclidean

metric. The L2-Wasserstein distance given by (μ, ν) ∈ P2(R
p) can be defined as:

W2(μ, ν) =
(
inf

{∫
‖x − y‖22dπ(x, y), π ∈ P2(R

p × R
p) with marginals μ, ν

}) 1
2

.

Definition 1. (Wasserstein barycenter) Given ν1, · · · , νK in P2(R
p) and denoting wk as the

weight tied to νk , their Wasserstein barycenter can be expressed as:

ν̃ = arg min
ν∈P2(Rp)

K∑

k=1

wk

2
W 2

2 (ν, νk). (3)

Note that
∑K

k=1 wk = 1 and all w1, · · · , wK > 0.

The Wasserstein barycenter exhibits important properties that render it a useful tool across
different domains. First, the barycenter provides an effective measure of central tendency, repre-
senting a compromise between the multiple probability measures. Second, according to Agueh
and Carlier (2011), the Wasserstein barycenter exists uniquely and optimally, as it minimizes the
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sum of the squared Wasserstein distances to the individual measures. This implies that it provides
the most accurate approximation under the Wasserstein metric. In practice, these properties allow
the Wasserstein barycenter to aggregate complex, multi-modal distributions, thereby playing a
critical role in applications such as optimal transport, machine learning, and computer vision,
to name a few. When applying this idea to IRT model estimation, νk is the kth subset posterior,
and ν̃ is the Wasserstein posterior (WASP) which replaces the full data posterior for inference.
Nonetheless, the computation of theWasserstein barycenter poses a significant challenge, prompt-
ing ongoing research into effective algorithms and computational strategies. Álvarez-Esteban et
al. (2016) argued that when ν1, · · · , νK belong to the same location-scatter family, the computa-
tion of the Wasserstein barycenter can be simplified to solving a fixed-point equation in the space
of positive definite matrices. The definition of the location-scatter family is as follows.

Definition 2. (Location-scatter family) Consider a random vector U that conforms to the prob-
ability law G ∈ P2(R

p), such that its expectation E(U) is zero and its variance Var(U) equals
the identity matrix of dimensions p × p. Let L denote the probability distribution of a random
variableW , andMp×p

+ represent the collection of p× p positive definite matrices. We define the

family F(G) = {L(�
1
2U + μ) : � ∈ Mp×p

+ ,μ ∈ R
p}, composed of probability laws formed

by positive definite affine transformations derived from G, as a location-scatter family. Here, �
1
2

denotes the symmetric square root of �.

The location-scatter family offers a flexible and efficient method to generate a plethora of
probability measures from a base measure. By adjusting the location parameterμ and the positive
definite matrix �, we can effectively shift and scale the original measure, generating a com-
prehensive family of measures. This flexibility finds widespread use in statistical modeling and
analysis. For instance, in multivariate analysis, the location-scatter family allows for the modeling
of diverse and complex data distributions. Moreover, in machine learning, location-scatter fami-
lies can help construct flexible probabilistic models that can adapt to the specific characteristics
of the data. For additional details, please refer to the study by Álvarez-Esteban et al. (2016). Next,
Theorem 1 provides a simplified process of the Wasserstein barycenter under the assumption of
location-scatter family.

Theorem 1. Suppose ν1, · · · , νK ∈ F(G) for a certain G, where μk and Bk denote the mean
vector and covariance matrix of νk(k = 1, · · · , K ), respectively. Under general conditions, the
Wasserstein barycenter of ν1, · · · , νK withweightsw1, · · · , wK , indicated as ν̃, is also an element
of F(G). Its mean vector μ̃ is the weighted average of μk values, i.e., μ̃ = ∑K

k=1 wkμk , and
the covariance matrix B̃ corresponds to the fixed-point of the sequence {�t }∞t=0, which can be
expressed as follows:

�t+1 = �
− 1

2
t

{
K∑

k=1

wk

(
�

1
2
t Bk�

1
2
t

) 1
2
}2

�
− 1

2
t , t = 0, 1, 2, . . . ,+∞, (4)

where �0 is set as the unit array.

Theorem 1 reveals a fundamental and appealing property of the location-scatter family.When
the probability measures ν1, · · · , νK belong to the same location-scatter family F(G), their
Wasserstein barycenter, denoted by ν̃, also belongs to the same family under general assump-
tions. This powerful result provides a direct and efficient computational route to determine the
Wasserstein barycenter of a collection of measures within a location-scatter family, bypassing the
need for solving the potentially complex Wasserstein barycenter problem directly. The theorem
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also provides explicit analytical forms for the mean vector μ̃ and covariance matrix B̃ of the
barycenter ν̃. Specifically, the mean vector μ̃ is the weighted average of the mean vectors μk
of the individual measures νk , while the covariance matrix B̃ is given by the fixed-point of the
iteratively defined sequence {�t }∞t=0. Please refer to Álvarez-Esteban et al. (2016) for the proof
of Theorem 1.

2.2. Implementation of the LS-WASP Algorithm within the IRT Framework

Consider an item response dataset comprising n examinees and J items from a large-scale
testing, the detailed stages of the LS-WASP algorithm to approximate the posterior of the 2PL
model are as follows:

Stage 1: Partitioning of the Full Data
Divide the full data set y into K disjoint subsets y(1), · · · , y(K ) through random subsampling.

Specifically, let sk be the number of examinees in subset k, ensuring that
∑K

k=1 sk = n, where n
is the total number of examinees. The 2PL model for subset k is given by:

p(k)
i j = P

(
y(k)
i j = 1

∣∣∣θ(k)
i , a(k)

j , b(k)
j

)
=

exp
{
a(k)
j

(
θ

(k)
i − b(k)

j

)}

1 + exp
{
a(k)
j

(
θ

(k)
i − b(k)

j

)} . (5)

Here, y(k)
i j represents the response data for subset k. p(k)

i j is the probability that the i th examinee in

subset k answers the j th item correctly. θ(k)
i represents the ability parameter of the i th examinee

in subset k. The parameters a(k)
j and b(k)

j refer to the discrimination and difficulty parameters for
the j th item in subset k, respectively (i = 1, · · · , sk , j = 1, · · · , J , k = 1, · · · , K ).

Note that we partition the examinees into different subsets, but the items remain the same
across all subsets. This means that even though each subset has distinct individuals, they respond
to the same items. In this case, our divide-and-conquer approach primarily focuses on the item
parameters: discrimination and difficulty. The identifiability constraints in each subset are set to
be consistent with those of the full dataset, so that the estimated item parameters from different
subsets are put on the same scale.

Stage 2: Parallel Sampling of Each Subset using Modified Likelihood method
Denote the parameter of item j as η j = (a j , b j ). p(η j ) is the prior distribution of η j , and

�k(η j ) is the likelihood of η j on subset k. Consequently, the conditional posterior of η j on subset
k is given by:

π(η j

∣
∣∣ y(k) ) =

{
�k(η j )

}n/sk p(η j )∫
{�k(η j )}n/sk p(η j )dη j

, k = 1, · · · , K , j = 1, · · · , J. (6)

Here, the likelihood has been raised to the power of n/sk . This adjustment, known as the stochastic
approximation strategy, was proposed by Minsker et al. (2014; 2017) to ensure that the variance
of the subset posterior roughly matches the variance of the full data posterior.

While the LS-WASP algorithm can be applied to any sampling technique in MCMC, this
paper chooses the Gibbs sampling algorithm based on the Pólya-Gamma distribution (PG-Gibbs)
(Jiang & Templin, 2019; Balamuta & Culpepper, 2022; Jimenez et al., 2023) for subset posterior
sampling. The reasons for this choice are as follows. First, the M-H algorithm, though a common
choice for Markov chain generation, introduces potential inefficiency because the acceptance rate
of each MC draw is only between 20% and 40%. Additionally, applying the traditional Gibbs
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sampling algorithm to logistic regression also presents considerable challenges. Specifically, this
function, which forms the basis for logistic regression, leads to non-standard and highly intricate
posterior distributions, which often lacks straightforward analytical forms. However, the PG-
Gibbs sampler not only adeptly addresses this challenge by providing a full conditional posterior
distribution that allows for comprehensive analytical manipulation, but also provides essential
theoretical support such as ergodicity (Choi & Hobert, 2013; Polson et al., 2013) . Finally,
Balamuta and Culpepper (2022) showcased that the application of the Pólya-gamma formulation
to the logit link function outperforms the traditional probit link in computational speed. Notably,
they also highlighted its exceptional proficiency when dealing with large-scale test data, making
it a compelling choice for research involving substantial datasets. As a result, these combined
factors substantially motivate our decision to utilize the PG-Gibbs algorithm.

Therefore, when the discrimination parameters and difficulty parameters are independent,
the modified posterior density of subset k (k = 1, · · · , K ) based on PG-Gibbs algorithm for the
discrimination parameter a j and difficulty parameter b j is given by:

f
(
a(k)
j |θ (k), b(k),ω(k), y(k)

)

∝ f
(
a(k)
j

)
exp

{
− n

sk
· 1
2

[
z(k)a −

(
θ (k) − 1b(k)

j

)
a(k)
j

]T
�

(k)
ab

[
z(k)a −

(
θ (k) − 1b(k)

j

)
a(k)
j

]}
,

(7)

f
(
b(k)
j |θ (k), a(k),ω(k), y(k)

)

∝ f
(
b(k)
j

)
exp

{
− n

sk
· 1
2

(
z(k)b + 1a(k)

j b(k)
j

)T
�

(k)
ab

(
z(k)b + 1a(k)

j b(k)
j

)}
. (8)

The prior distributions of θ(k)
i , a(k)

j and b(k)
j are assumed to follow N (μ

(k)
1 , σ

2(k)
1 ), T N(0,+∞)(μ

(k)
2 ,

σ
2(k)
2 ), and N (μ

(k)
3 , σ

2(k)
3 ), respectively. Subsequently, the basic steps for sampling a subset are

as follows:

(1) Given θ (k), a(k), and b(k), draw augmented variable ωi j from the PG(1, a(k)
j |θ(k)

i − b(k)
j |)

distribution;
(2) Given ω(k), a(k), and b(k), draw θ

(k)
i from a normal distribution N (m(k)

θi
, V (k)

θi
), where

m(k)
θi

= V (k)
θi

(
(a(k))T�θ zθ + μ

(k)
1

σ
2(k)
1

)
, V (k)

θi
=

(
(a(k))T�θ a(k) + 1

σ
2(k)
1

)−1

,

zθ =
(

a(k)
1 b(k)

1 ωi1+κi1
ωi1

, · · · ,
a(k)
J b(k)

J ωi J+κi J
ωi J

)T

,�θ = diag(ωi1, · · · , ωi J ), and κi j = y(k)
i j − 1

2 .

(3) Given ω(k), θ (k), and b(k), draw a(k)
j from a truncated normal distribution T N(0,+∞)

(
m(k)

a j , V (k)
a j

)
, where m(k)

a j = V (k)
a j

(
n
sk

· (θ (k) − 1b(k)
j )T�

(k)
ab z

(k)
a + μ

(k)
2

σ
2(k)
2

)
, V (k)

a j =
(

n
sk

· (θ (k) − 1b(k)
j )T�

(k)
ab (θ (k) − 1b(k)

j ) + 1
σ
2(k)
2

)−1

, z(k)a =
(

κ1 j
ω1 j

, · · · ,
κsk j

ωsk j

)T
, 1 =

(1, · · · , 1)Tsk×1, and �
(k)
ab = diag(ω1 j , · · · , ωsk j );

(4) Givenω(k), θ (k), and a(k), draw b(k)
j from a normal distribution N (m(k)

b j
, V (k)

b j
), wherem(k)

b j
=

V (k)
b j

(
− n

sk
· (1a(k)

j )T�
(k)
ab z

(k)
b + μ

(k)
3

σ
2(k)
3

)
, V (k)

b j
=

(
n
sk

· (1a(k)
j )T�

(k)
ab 1a

(k)
j + 1

σ
2(k)
3

)−1

,

z(k)b =
(

κ1 j−a(k)
j θ

(k)
1 ω1 j

ω1 j
, · · · ,

κsk j−a(k)
j θ

(k)
sk ωsk j

ωsk j

)T

, and �
(k)
ab = diag

(
ω1 j , · · · , ωsk j

)
.
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For more details of the PG-Gibbs algorithm, please see Jiang and Templine (2019). The online
supplementary S1 provides details of the PG-Gibbs algorithm for full data.

Stage 3: Assembling and Integrating Sampled Parameters from Each Subset
Denote the item parameters of the j-th item be η j = (a j , b j ). Assume that π(1), · · · , π(K )

represent the posterior distributions of the K subsets of η j , respectively. Let η
(k,1)
j , · · · , η

(k,M)
j

denote the samples from the kth subset posterior of η
(k)
j , where M is the total number of post-

burn-in iterations. In distributed Bayesian applications for IRTmodel, νk of Definition 1 is the kth
subset posterior distribution π(k). Therefore, the Wasserstein barycenter of π(1), · · · , π(K ) is π̃ ,
which is also known as the Wasserstein posterior (WASP). We use WASP instead of the full data
posterior for parameter inference. Let μ

(k)
η j and �

(k)
η j represent the mean vector and covariance

matrix of the kth subset posterior, respectively. From stage 2, we can obtain the Monte Carlo
estimates of μ

(k)
η j and �

(k)
η j as follows:

μ̂(k)
η j

= 1

M

M∑

m=1

η
(k,m)
j , (9)

�̂
(k)
η j

= 1

M

M∑

m=1

(
η

(k,m)
j − μ̂(k)

η j

) (
η

(k,m)
j − μ̂(k)

η j

)′
. (10)

Therefore, assuming π(1), · · · , π(K ) belong to the same location-scatter family, the estimates
of the mean vector μ̃η j

and covariance matrix �̃η j of the WASP are obtained from Theorem 1 as
follows:

̂̃μη j
=

K∑

k=1

wkμ̂
(k)
η j

, (11)

̂̃�η j = �̂∞, (12)

where

�̂t+1 = �̂
− 1

2
t

{
K∑

k=1

wk
(
�̂t �̂

(k)
η j

) 1
2

}{
K∑

k=1

wk
(
�̂t �̂

(k)
η j

) 1
2

}′
�̂

− 1
2

t , t = 0, 1, 2, . . . ,+∞, (13)

and we set �̂0 = I , where I represents the identity matrix. Note that Eq. (13) is the numerically
stabilized version proposed by Srivastava and Xu (2021) to solve the rank deficiency problem of
�̂t in Eq. (4). Thus, we use the fixed-point iterations in Eq. (13) instead of Eq. (4) for computing
the covariance matrix ̂̃�η j and use the following convergence criterion: |tr(�̂t+1 − �̂t )| < 10−6.
In this study, given the similarities in the sizes of the K subsets s1, · · · , sK , we set the weights
of π(k) to wk = 1

K . However, when the sizes s1, · · · , sK differ substantially, it would be more
appropriate to set theweights aswk = sk/(s1+· · ·+sK ). This approach assigns greater importance
to subsets that containmore samples, thereby reflecting their greater contribution to the overall data
set. Furthermore, adjusting the weights in this manner can ensure a more accurate representation
of the data and potentially improve the robustness of the subsequent analysis.

According to the definition of the location-scatter family, we can obtain the WASP draws
through the following steps for k = 1, · · · , K ,m = 1, · · · , M , j = 1, · · · , J :
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1. Centralize and standardize the kth subset of posterior draws for item j to obtain û(k,m)
j =

(�̂
(k)
η j

)− 1
2 (η

(k,m)
j − μ̂

(k)
η j ). Consequently, û(k,m)

j has a mean vector of zero and a covariance of the
identity matrix.

2. Recentralize and restandardize û(k,m)
j to derive the WASP draws as ̂̃η(k,m)

j = ̂̃μη j
+

(̂̃�η j )
1
2 û(k,m)

j .
In this study, we assume that the prior distributions of the discrimination parameters and

difficulty parameters are independent. Assuming independence simplifies the model estimation
process, making the estimation and inference of parameters more direct and computationally
manageable. This is particularly important in cases of large parameter spaces or data volumes to
ensure the feasibility and efficiency of model estimation. The independent prior is also supported
by many literature (e.g., Wang et al. 2013, 2018). Furthermore, there is often a lack of prior
knowledge about the specific relationship between discrimination and difficulty parameters in
practical applications, with no theoretical or empirical basis to support significant correlation
between these parameters (van der Linden 2007, please see Table 1 in their paper), making the
use of independent prior distributions a prudent choice. Therefore, in this case, we can compute
the mean and variance of each parameter separately. Take the discrimination parameter a j as an

example. The Monte Carlo estimates of μ
(k)
a j and σ

(k)
a j , and the estimates of the mean and variance

of the WASP are shown below:

μ̂(k)
a j

= 1

M

M∑

m=1

a(k,m)
j , σ̂ (k)

a j
= 1

M

M∑

m=1

(a(k,m)
j − μ̂(k)

a j
)2. (14)

̂̃μa j
= 1

K

K∑

k=1

μ̂(k)
a j

, ̂̃σ a j = 
̂∞ =
(
1

K

K∑

k=1

(
σ̂ (k)
a j

) 1
2

)2

. (15)

Note that since the variance ̂̃σ a j is a unidimensional variable (as is the case for the difficulty
parameter), the sequences 
̂t actually reach the fixed point at t = 1, which simplifies the model
estimation process and improves computational efficiency. The process of deriving WASP draws
for the difficulty parameter b follows a similar approach as the discrimination parameter a. The
details of stage 3 of the LS-WASP algorithm for the independent item parameters are given in
Algorithm 1.

Remark 1. By the WASP draws ̂̃a(k,m)
j of parameter a j , we can derive the WASP estimator of a j

as follows:

̂̃a j = 1

KM

K∑

k=1

M∑

m=1

̂̃a(k,m)
j = 1

KM

K∑

k=1

M∑

m=1

(
̂̃μa j

+ (̂̃σ a j )
1
2 û(k,m)

j

)

= ̂̃μa j
+ (̂̃σ a j )

1
2

1

KM

K∑

k=1

M∑

m=1

(̂σ (k)
a j

)−
1
2 (a(k,m)

j − μ̂(k)
a j

) = ̂̃μa j
. (16)

According to Eq. (16), we note that the mean of WASP is essentially the average of the posterior
means across all subsets. Note that our algorithm offers theoretical guarantee (please refer to
Sect. 3 for details). In fact, after partitioning the data, we can only make posterior inferences
on parameters of subsets, rather than on the full dataset’s posterior distribution. However, the
proposed LS-WASP algorithm enables us to combine all posterior distributions from all subsets
to form a new distribution, i.e., the WASP distribution. This WASP effectively approximates the
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Algorithm 1
The details for the stage 3 of LS-WASP Algorithm

1. Input:

• Samples for θ(k,m)
i , a(k,m)

j , and b(k,m)
j are drawn from the kth subset posterior at the stage 2, where i = 1, · · · , sk ,

j = 1, · · · , J , k = 1, · · · , K and m = 1, · · · , M .
• Calculate Monte Carlo estimates of mean vectors and covariance matrices for the subset posterior distributions

and the WASPs of μ̂
(k)
a = (μ̂

(k)
a1 , · · · , μ̂

(k)
aJ )T , �̂

(k)
a = diag(̂σ (k)

a1 , · · · , σ̂
(k)
aJ ), ̂̃μa = (̂̃μa1 , · · · , ̂̃μaJ )T , ̂̃�a =

diag(̂̃σ a1 , · · · , ̂̃σ aJ ), μ̂
(k)
b = (μ̂

(k)
b1

, · · · , μ̂
(k)
bJ

)T , �̂
(k)
b = diag(̂σ (k)

b1
, · · · , σ̂

(k)
bJ

), ̂̃μb = (̂̃μb1 , · · · , ̂̃μbJ )T and
̂̃�b = diag(̂̃σ b1 , · · · , ̂̃σ bJ ) according to Eqs. (14), (15).

2. Do:

• Centralize and standardize the kth subset posterior draws of item parameters as

û(k,m) = (�̂
(k)
a )

− 1
2
(
a(k,m) − μ̂

(k)
a

)
,

q̂(k,m) = (�̂
(k)
b )

− 1
2
(
b(k,m) − μ̂

(k)
b

)
,

where û(k,m) = (̂u(k,m)
1 , · · · , û(k,m)

J )T , a(k,m) = (a(k,m)
1 , · · · , a(k,m)

J )T , q̂(k,m) = (̂q(k,m)
1 , · · · , q̂(k,m)

J )T and

b(k,m) = (b(k,m)
1 , · · · , b(k,m)

J )T .

• Recentralize and restandardize û(k,m) and q̂(k,m) to obtain the WASP draws as

̂̃a(k,m) = ̂̃μa + (̂̃�a)
1
2 û(k,m),

̂̃b
(k,m) = ̂̃μb + (̂̃�b)

1
2 q̂(k,m),

where ̂̃a(k,m) = (̂̃a(k,m)
1 , · · · ,̂̃a(k,m)

J )T and ̂̃b
(k,m) = (̂̃b

(k,m)

1 , · · · ,̂̃b
(k,m)

J )T .

3. Return:

• Assemble and integrate sampled parameters from each subset, ̂̃a(1,1)
, · · · ,̂̃a(1,M)

, · · · ,̂̃a(K ,M) and
̂̃b

(1,1)
, · · · ,̂̃b

(1,M)
, · · · ,̂̃b

(K ,M)
, as an approximation of the WASP.

full data posterior distribution, making it a suitable alternative for diverse analyses and posterior
evaluations instead of the full data posterior.

Remark 2. Note that our algorithmexhibits high computational efficiency. It adopts a “divide-and-
conquer” strategy to split larger datasets into smaller,moremanageable subsets, thereby effectively
reducing the computational and storage burden. Specifically, when the dataset is divided into K
subsets, the effective sample size for each MCMC operation becomes 1

K of the total sample
size; thus, the computation time for each subset approximately becomes 1

K of the total runtime.
Leveraging the capabilities of parallel processing, as well as the simple and efficient merging
operation in the third step of the algorithm, the overall runtime of the algorithm is essentially
consistent with the computation time of a single subset, which is significantly less than traditional
MCMC method that processes the entire dataset at once. Intuitively, the runtime of our algorithm
is with a fraction of the runtime of the full dataset under MCMC method; the more subsets the
data is divided into, the shorter the runtime. This point is validated in the subsequent simulation
studies.
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3. Theoretical Properties

The Bayesian inference using the LS-WASP algorithm involves two types of errors. The first
is the statistical error, originating from using the WASP approximation posterior instead of the
full data posterior. This deviation from the original full data posterior introduces discrepancies,
consequently generating statistical errors. The second type is the Monte Carlo error, which arises
from using Monte Carlo estimates. The inherent randomness in Monte Carlo simulations can
introduce variations and errors, leading to the overall error in the LS-WASP algorithm.

In this section, we discuss the theoretical properties of the LS-WASP algorithm. First, we
present five essential assumptions forming the foundation of our theoretical framework. Each
assumption is outlined and justified for its significance to the overall methodology and its role in
quantifying the errors previously mentioned. Second, we further explore the two sources of errors,
gaining insights into their origins and impacts on the LS-WASP algorithm’s results. Moreover,
it opens up opportunities for potential improvements to reduce these errors and enhance the
algorithm’s precision and robustness.

3.1. Assumptions

For the notation simplicity in the following text, we define η as either the a parameter or the
b parameter, even though η can also represent the set of item parameters, i.e., η = {a, b}. Below
are the key assumptions for establishing the theoretical foundation of the LS-WASP algorithm.

Assumption 1. (Independent and identically distributed data): We assume that the observations
y1, · · · , yn are independent and identically distributed (i.i.d), where yi = (yi1, · · · , yi J )T (i =
1, · · · , n).

Assumption 2. (Location-scatter family): There exist probability distributions G specifying
location-scatter familiesF(G). Both the full data posterior distributionπ of η and subset posterior
distributions π(k)(k = 1, · · · , K ) of η belong to F(G) with Pn

η∗ -probability 1, where Pn
η∗ is the

joint probability distribution of the full data, η∗ ∈ � represents the true value of parameters η,
and � ⊂ R

J is the parameter space.

Assumption 3. (Regularity conditions for Laplace approximation): We denote an open ball of
radius δ centered atη as Bδ(η). Suppose hn(η) = − 1

n

∑n
i=1 log f ( yi |η) is a six times continuously

differentiable real function on� (Kass et al., 1990) . Let η̂n be the maximum likelihood estimate
(MLE) of η, and D2hn(η) be the Hessian matrix of hn(η) at η. There exist positive numbers ε,
N , and ξ and an integer n0 such that for all n ≥ n0:

(a) For every η ∈ Bε (̂ηn) and all 1 ≤ j1, · · · , jd ≤ J with 1 ≤ d ≤ 6, the absolute value
of the dth derivative of the log likelihood |∂ j1,··· , jd hn(η)| < N ;

(b) The determinant of D2hn (̂ηn) is greater than ξ , that is, |D2hn (̂ηn)| > ξ ;
(c) For every δ satisfying 0 < δ < ε, Bδ (̂ηn) ⊆ � and the upper limit as n goes to infinity

of the supremum of hn (̂ηn) − hn(η) over η ∈ � − Bδ (̂ηn) is less than zero, that is,

lim sup
n→∞

sup
η∈�−Bδ (̂ηn)

{hn (̂ηn) − hn(η)} < 0.

Assumption 4. (Disjoint subsets of equal size): The subsets are disjoint, and the number of

subsets K and the sample size of subsets s satisfy the conditions K = o(n
1
2 ), and Ks = n, where

s = s1 = . . . = sK .
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Assumption 5. (Number of iterations): Let M be the number of iterations. M satisfies the con-
ditions n = o(

√
M) and μ̂(k) − μ(k) = Op(M− 1

2 ) and �̂(k) − �(k) = Op(M− 1
2 ) in Pk-

probability(k = 1, · · · , K ), where μ̂(k) = (μ̂
(k)
1 , · · · , μ̂

(k)
J )T with μ̂

(k)
j = 1

M

∑M
m=1 η

(k,m)
j

represents the sample mean of the sequence of η(k) values and �̂(k) = diag(̂σ (k)
1 , · · · , σ̂

(k)
J ) with

σ̂
(k)
j = 1

M

∑M
m=1(η

(k,m)
j − μ̂

(k)
j )2 denotes the sample covariance of the same sequence. Pk is the

probability measure of the posterior draw {η(m)
(k) ,m = 1, · · · , M} on subset k.

Assumptions 1–4 are standard in the divide-and-conquer strategy for Bayesian inference,
which is typically applied to the exponential family (Xue & Liang, 2019; Shyamalkumar &
Srivastava, 2022) . In other words, if Pη∗ belongs to the exponential family, Assumptions 1–4
are valid. Assumption 2 can be used to derive the mean and covariance matrix of the WASP
posterior of item parameters. In fact, in IRT models, given the data y, the full data and subset
posterior distributions of item parameters do not belong to the same location-scatter family.
However, in many divide-and-conquer studies, it is common to approximate the subset posterior
distribution using the same location-scatter family (Srivastava&Xu, 2021) , making Assumption
2 is reasonable. By combining the LS-WASP algorithm with subset parameter sampling, we can
obtain a true WASP approximation under Assumption 2, using the location-scatter family-based
subset posterior distribution. Moreover, when the sample size of each subset is large, we can
demonstrate that the Bernstein–vonMises theorem holds, indicating that substituting the full data
posterior distribution with a true WASP approximation is justifiable. Assumption 3 is a standard
requirement for the posterior expansion based on the Laplace method in the quantization of the
approximation (Kass et al., 1990) . Although Assumption 3 is commonly applied in various
statistical models (e.g., Xue and Liang 2019; Shyamalkumar and Srivastava 2022), our study
exclusively focuses on IRT models. Therefore, we introduce a proposition to verify Assumption
3 (a) and (b) holds specifically for 2PL and M2PL models. This proposition necessitates that the
discrimination parameter a, the difficulty parameter b, and the ability parameter θ are all bounded.
The proposition and its detailed proof are provided in S5.1 of the online supplement. Assumption
3 (c) is a reasonable assumption to ensure the uniqueness of MLE η̂n and has been studied in
the IRT literature (e.g., San Martín 2016). Assumption 4 requires a uniform subset sample size
for simplifying the analysis, although the LS-WASP algorithm can still be applied when subset

sizes vary. In this study, to simplify the calculations, we assume K = o(n
1
2 ), which follows the

assumptions made by Xue and Liang (2019). Assumption 5 is valid when the subset sampling
scheme exhibits geometric ergodicity. With geometric ergodicity, the Markov chain (which the
subsets are based on) mixes quickly, reducing the autocorrelation and, consequently, the Monte
Carlo error. This, in turn, allows for an accurate approximation of the expectation, contributing
to the overall effectiveness and precision of the LS-WASP algorithm. In this study, we adopt the
PG-Gibbs algorithm as the subset sampling scheme. Choi and Hobert (2013) have demonstrated
that the Pólya-Gamma data augmentation strategy exhibits uniform ergodicity.

3.2. Statistical Error

Note that the LS-WASP algorithm introduces a source of error for posterior inference on
parameter η when it uses π̃ to infer parameter η, rather than the true π . The reason it is called
statistical error is due to the absence of any Monte Carlo approximation. Another source of error
is the Monte Carlo error, which is described in detail in subsection 3.3.

To accurately quantify the statistical error, the following specific corollary is necessary. This
corollary provides a mathematical framework for precise computation of the statistical error. The
magnitude and impact of the statistical error on the results may vary depending on factors such
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as the complexity of the model, the nature of the data, and the specifics of the algorithmic imple-
mentation. Therefore, proper management of the statistical error is crucial for the performance
and reliability of the LS-WASP algorithm.

Corollary 1. Consider two probability measures A and B in P2(R
p). Let mA and mB represent

themeans of A and B, and let�A and�B denote the covariancematrices of A and B, respectively.
Under the assumption that �A is nonsingular, the following inequality holds

W 2
2 (A, B) ≥ ‖mA − mB‖22 + tr(�A + �B − 2(�

1
2
A�B�

1
2
A)

1
2 ), (17)

where ‖ · ‖2 denotes the Euclidean distance and tr(·) represents the trace of a matrix. The
equality holds when the map T (x) = (mB − mA) + Dx transports A to B, where D =
�

− 1
2

A (�
1
2
A�B�

1
2
A)

1
2 �

− 1
2

A . Here, D is a positive semi-definite matrix.

For the detailed proof of this corollary, please refer to the proof of Theorem 2.3 in Álvarez-
Esteban et al. (2016). Next, we introduce the notational conventions used to state the theoretical
results. We define the full data posterior, the kth subset posterior, and theWASP approximation of
the interested parameter η, as π , π(k) and π̃ , for k = 1, · · · , K , respectively. Let μ, μ(k), μ̃, and
�,�(k), �̃ represent the means and covariance matrices of π , π(k), and π̃ , respectively. Therefore,
we define the statistical error as W 2

2 (π, π̃). Under Corollary 1, we have

W 2
2 (π, π̃) = ‖μ − μ̃‖22 + tr(� + �̃ − 2(�̃

1
2 ��̃

1
2 )

1
2 ). (18)

Subsequently,we establish asymptotic statistical guarantees for theLS-WASPalgorithm, provided
that Assumptions 1–4 are satisfied, as detailed below.

Theorem 2. If Assumptions 1–4 hold, as n, s → ∞,

W 2
2 (π, π̃) = Op(s

−2) + Op(n
− 3

2 ), (19)

where π denotes the full data posterior; π̃ denotes the WASP approximate posterior. And n and
s represent the sample sizes of the full data and subset, respectively.

The detailed proof of Theorem 2 is provided in online supplement S5. According to Theorem 2,
as the sample size, n, of the full data increases, the sample size, s, of each subset will also increase
under a specific number of partitions, leading to a smaller statistical error that tends toward zero.
Therefore, to minimize the statistical error, it is essential to maximize the sample size whenever
possible. In cases where the sample size of the full data is limited, one can effectively reduce
the statistical error by controlling the number of samples in each subset through appropriate
partitioning.

3.3. Monte Carlo Error

TheMonteCarlo error is also introduced due to the approximation of theWasserstein barycen-
ter of subset posterior distributions, π̃ , by an empirical measure ̂̃π . This empirical measure,
while being a necessary approximation for computational tractability, is not the true Wasserstein
barycenter of subset posterior distributions. Therefore, the distance between these two measures
can be seen as the ‘Monte Carlo error.’ However, the trueWasserstein barycenter and its empirical
approximation are both random measures, which presents additional challenges in the analysis of
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this type of error. To overcome this, we consider coupled versions of thesemeasures, which evolve
from the same randomness and are therefore dependent. The Wasserstein distance between these
coupled measures provides a controlled environment in which we can investigate the magnitude
of the Monte Carlo error. Next, we will provide a detailed introduction of this coupling procedure
and outline the key steps to establish the asymptotic order of the Monte Carlo error.

Let M denote the number of iterations after burn-in. We assume η, η(k), and η̃ to follow
the distributions of π , π(k), and π̃ , respectively. Provided that Assumption 2 is satisfied, the

mth iterative draw of parameter η(k) in subset k can be obtained as η
(m)
(k) = μ(k) + �

1
2
(k)ξ

(m)
(k) for

m = 1, · · · , M , as stated in Definition 2. According to this definition, ξ (m)
(k) (k = 1, · · · , K ,m =

1, · · · , M) represent KM independent draws from distribution G, which has a zero mean and
a covariance matrix of identity matrix. Moreover, Definition 2 allows us to derive the posterior
draw of the WASP approximation posterior π̃ as follows:

η̃ = μ̃ + �̃
1
2 ξ

(m)
(k) = μ̃ + �̃

1
2 �

− 1
2

(k)

(
η

(m)
(k) − μ(k)

)
, k = 1, · · · , K ,m = 1, · · · , M, (20)

where μ̃ = 1

K

∑K
k=1 μ(k) and �̃ = �∞. As μ̃, μ(k), �̃, and �(k) are unknown, they are replaced

by their Monte Carlo estimates ̂̃μ, μ̂(k),
̂̃�, and �̂(k) in the LS-WASP algorithm, yielding ̂̃η, the

Monte Carlo estimate of η̃. Let ̂̃π represent the empirical measure of the WASP approximate
posterior acquired from Monte Carlo estimation in the LS-WASP algorithm. Consequently, ̂̃η
follows the distribution of ̂̃π , and the empirical measure ̂̃π is comprised of observations

̂̃η = ̂̃μ + ̂̃�
1
2
�̂

− 1
2

(k)

(
μ(k) − μ̂(k)

) + ̂̃�
1
2
�̂

− 1
2

(k) �
1
2
(k)ξ

(m)
(k) , k = 1, · · · , K ,m = 1, · · · , M, (21)

where ̂̃μ = 1

K

∑K
k=1 μ̂(k) and

̂̃� = �̂∞. In light of Corollary 1, we characterize the Monte Carlo

error as W2(π̃, ̂̃π). Consequently, the following theorem is presented.

Theorem 3. Under Assumptions 1–5, when n, M → ∞,

W 2
2 (π̃, ̂̃π) = Op(M

−1) + op(n
−1). (22)

where n represents the sample size of the full data and M denotes the number of iterations after
burn-in.

The detailed proof of Theorem 3 is provided in online supplement S5.

4. Simulation Studies

Two simulation studies were conducted to assess the effectiveness and feasibility of the
proposed LS-WASP algorithm. Simulation studies 1 and 2 performed the LS-WASP algorithm on
the 2PL model and M2PL model, respectively. The sample sizes, test lengths, and the number of
subsets under different partitionswere varied to evaluate the robustness of the LS-WASP algorithm
across diverse scenarios. The MC chain length was set to be 10,000, with the first 5000 iterations
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as burn-in. The bias and RMSE of item parameters and ability parameters were computed to
assess the accuracy of the parameter estimates:

Bias(η) = 1

R

R∑

r=1

(η̂r − η∗), RMSE(η) =
√√
√√ 1

R

R∑

r=1

(η̂r − η∗)2, (23)

where R represents the number of replications, η̂r denotes the parameter estimate of the r th
replication, and η∗ indicates the true value of the parameter. Each simulation condition was
conducted R = 25 replications. Additionally, we calculated the running time for each replication
to assess the computational efficiency of our LS-WASP algorithm. The maximum value of each
replication running timewas displayed as the final running time. The computation implementation
was executed on an AMD EPYC 7542 32-Core Processor (2.90 GHz) with 1.5 TB RAM on a
Windows Server 2019 Standard operating system. Note that the parallel sampling of subsets is
conducted using different cores of the computer. Specifically, after partitioning the full data into
K subsets, the K cores of the computer are used for parallel sampling, with one core used for
sampling one subset.

4.1. Study 1: Performance of LS-WASP Algorithm for the 2PL Model

4.1.1. Design The purpose of study 1 is to examine the performance of the LS-WASP algorithm
on the 2PL model. Three factors were manipulated to vary different simulation conditions: (1)
The number of examinees, i.e., n=10,000, 20,000, 50,000; (2) The number of items, i.e., J=20,
40; (3) The number of subsets, i.e., K=1, 2, 5, 10, 20, which is different number of partitions of
the full data. Varying different levels of these three factors produced 30 simulation conditions.
Each simulation condition was replicated 25 times.

Note that K = 1 corresponds to the scenario where no partitioning is performed, and the
full data set is used for analysis. Thus, we employed the PG-Gibbs Sampler for the full data set
hereafter, rather than using the LS-WASP algorithm which requires data partitioning.

4.1.2. DataGeneration The response data of 2PLmodel are generated fromEq. (1). The ability
parameters were generated from a normal distribution N (0, 1). The discrimination parameters and
difficulty parameters were sampled from a lognormal distribution log N (0.3, 0.2) and a normal
distribution N (0, 1), respectively. The manner of data generation is consistent with that of Jiang
and Templin Jiang and Templin (2019). To ensure the model identification, the priors for θi , a j ,
and b j were set to a normal distribution N (0, 1), a truncated normal distribution T N(0,+∞)(0, 10),
and a normal distribution N (0, 10), respectively. Our selection of these distributions and priors
is based on their theoretical properties and widespread use in the existing literature. However, it
is important to note that the LS-WASP algorithm can work with other distributions and priors as
well.

4.1.3. Results Table 1 shows the bias andRMSEof parameter estimates and running time across
different conditions.We observe a slight increase in the bias andRMSE for the ability parameters θ

and difficulty parameters b as the number of subsets increases. However, this increase is minimal,
indicating that the number of subsets has a negligible effect on θ and b. Furthermore, Figures
S-1 and S-2 in online supplement S2 display the average bias and RMSE of the discrimination
parameter a across different number of subsets K . From Table 1 and Figures S-1 and S-2, it
can be observed that both the average bias and RMSE for parameter a increase with K , but this
increasing trend becomes more slower as the sample size n increases. This is because an increase
in K leads to a smaller subset sample size, resulting in larger bias and RMSE. However, as the
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Table 1.
Bias and RMSE of parameter estimates and running time across different conditions in simulation study 1.

n J K Bias RMSE Time (h)
θ a b θ a b

10000 20 1 −0.0034 −0.0001 −0.0023 0.3821 0.0374 0.0233 0.393
2 −0.0031 0.0025 −0.0019 0.3822 0.0376 0.0233 0.170
5 −0.0030 0.0084 −0.0020 0.3828 0.0389 0.0233 0.071
10 −0.0024 0.0181 −0.0014 0.3837 0.0424 0.0234 0.036
20 −0.0016 0.0374 −0.0005 0.3864 0.0557 0.0231 0.019

20000 20 1 −0.0054 0.0009 −0.0021 0.3886 0.0272 0.0192 0.795
2 −0.0051 0.0015 −0.0019 0.3886 0.0271 0.0191 0.384
5 −0.0051 0.0043 −0.0018 0.3893 0.0279 0.0190 0.137
10 −0.0054 0.0089 −0.0020 0.3897 0.0296 0.0192 0.070
20 −0.0058 0.0181 −0.0026 0.3909 0.0341 0.0192 0.037

50000 20 1 0.0027 0.0014 0.0024 0.3905 0.0179 0.0120 1.985
2 0.0029 0.0018 0.0026 0.3905 0.0179 0.0120 0.973
5 0.0028 0.0028 0.0026 0.3908 0.0180 0.0121 0.392
10 0.0028 0.0046 0.0026 0.3911 0.0182 0.0120 0.174
20 0.0029 0.0084 0.0029 0.3918 0.0200 0.0121 0.089

10000 40 1 −0.0111 0.0048 −0.0110 0.2808 0.0372 0.0252 0.974
2 −0.0108 0.0063 −0.0107 0.2813 0.0377 0.0249 0.507
5 −0.0108 0.0140 −0.0109 0.2821 0.0402 0.0252 0.184
10 −0.0110 0.0255 −0.0109 0.2847 0.0466 0.0254 0.093
20 −0.0110 0.0495 −0.0109 0.2885 0.0647 0.0261 0.049

20000 40 1 −0.0053 −0.0015 −0.0036 0.2899 0.0254 0.0185 1.587
2 −0.0053 −0.0006 −0.0037 0.2900 0.0254 0.0186 0.771
5 −0.0053 0.0024 −0.0038 0.2909 0.0254 0.0185 0.316
10 −0.0051 0.0083 −0.0038 0.2913 0.0274 0.0184 0.138
20 −0.0055 0.0192 −0.0042 0.2927 0.0334 0.0185 0.071

50000 40 1 0.0029 0.0003 0.0015 0.2912 0.0190 0.0144 4.003
2 0.0027 0.0007 0.0013 0.2912 0.0190 0.0143 1.938
5 0.0027 0.0020 0.0011 0.2916 0.0191 0.0144 0.790
10 0.0028 0.0044 0.0012 0.2920 0.0196 0.0144 0.399
20 0.0027 0.0087 0.0011 0.2928 0.0215 0.0144 0.176

Bias and RMSE denote the average bias and RMSE for the parameter estimates. a represents all discrimi-
nation parameters, b represents all difficulty parameters, and θ denotes all ability parameters.

full dataset sample size increases, the subset sample size also increases for the same K , thus
slowing down the increase in estimation error. Additionally, we observe that as the sample size
increases, the overall bias and RMSE decrease, indicating that the larger the sample size, the more
accurate the parameter estimates become. It is noteworthy that when K = 20, the bias of a is
twice as high as that when K = 10. Nevertheless, even with small sample sizes when K = 20, the
RMSE results remain satisfactory. Note that the selection of the optimal subset sample size will be
influenced by the complexity of the model. Specifically, more complex model generally requires
larger sample size per subset to ensure adequate accuracy of parameter estimation. Therefore, it is
suggested that the sample size within each subset should at least meet the minimum requirement
necessary for accurate model parameter estimation. For instance, an accurate estimation of a
2PL model requires at least 500 individuals (König et al., 2020) , a 3PL model needs at least
1000 (de la Torre & Hong, 2010; De Ayala, 2013) , and a 4PL model necessitates at least 4000

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:39:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1136 PSYCHOMETRIKA

n = 10000 n = 20000 n = 50000

K = 1 K = 2 K = 5 K = 10 K = 20 K = 1 K = 2 K = 5 K = 10 K = 20 K = 1 K = 2 K = 5 K = 10 K = 20

0

1

2

3

4

Group

R
un

ni
ng

 ti
m

e 
(h

ou
r)

Test length J = 20 J = 40

Figure 1.
Running times under different subset conditions in simulation study 1. Note that ‘Group’ indicates the number of subsets.

individuals (Cuhadar, 2022) . This strategy ensures that the accuracy of estimates within each
subset is maintained, thereby ensuring the overall accuracy of the parameter estimation.

In addition, from the running time in Table 1, the running time for the full data is significantly
larger than that of subset using the LS-WASP algorithm. For example, the running time of the LS-
WASP algorithm is halved when partitioning the full data into two subsets, and it becomes a tenth
when partitioned into ten subsets, and so forth. To provide a detailed analysis of running time,
Fig. 1 presents a graphical comparison of the running time across conditions. We observe that the
running time increases with more examinees and items, while decreasing with a larger number
of subsets. When the full data are partitioned into K = 10 and K = 20 subsets, the running
time remains below 0.5h for each condition. Thus, our algorithm holds a distinct advantage in
computational speed.

To delve deeper into these differences, we compared the bias andRMSEof each item. Figure2
shows the results of J = 20. Please see online supplement S2 for results of J = 40. Clearly,
as the number of examinees increases, the bias and RMSE lines of item parameters converge
and overlap more. In essence, as examinee numbers grow, LS-WASP algorithm’s item parameter
estimation aligns more closely with full data, diminishing partitioning-related discrepancies. This
is due to a larger sample size in each subset with a constant partition number, reducing partitioning
effects. Moreover, overall estimation accuracy improves with more examinees, highlighting our
algorithm’s advantages as examinee numbers increase.

In cases of small samples split into numerous subsets, the LS-WASP algorithm may slightly
compromise discriminant parameter accuracy.However, it still produces accurate difficulty param-
eter estimates and offers a clear running time advantage. For larger samples, regardless of subset
numbers, our method ensures accurate parameter estimation and maintains fast computation.

4.2. Study 2: Performance of LS-WASP Algorithm for the M2PL Model

4.2.1. Design The aim of study 2 is to investigate the performance of the LS-WASP algorithm
for the M2PL model. 10,000 examinees were considered to be consistent with the sample size
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Figure 2.
Bias and RMSE of each item parameter estimate across various sample sizes with J = 20 in simulation study 1. Note
that ‘Group’ indicates the number of subsets.

in empirical example 2 for the multidimensional case. Three factors were manipulated to vary
different simulation conditions: (1) The number of items, i.e., J=20, 40; (2) The number of
subsets, i.e., K=1, 2, 5, 10. In this case, we excluded K = 20 because the M2PLmodel required a
minimumof 1000 examinees per subset to ensure precise parameter estimationwhen n = 10, 000;
(3) The number of dimensions of latent traits, i.e., Q=2, 3. In total, 16 simulation conditions were
conducted, and each condition was performed 25 replications.

4.2.2. DataGeneration Wegenerated item response data for theM2PLmodel fromEq. (2). The
ability parameters θ i for each examinee i were sampled from a multivariate normal distribution
N (0, IQ), where 0 is a Q-dimensional vector with all elements being 0 and IQ is a Q × Q
dimensional unit matrix. The discrimination parameter a jq and difficulty parameter b j for each
item j were generated from log N (0.3, 0.2) and N (0, 1) (for q = 1, · · · , Q), respectively. The
model identification condition of the M2PL model follows the constrains given in subsection 1.2
(Béguin & Glas, 2001) . The prior settings for the M2PL are same with those for the 2PL model,
i.e., the prior for θ i , a jq , and b j follows N (0, IQ), T N(0,+∞) (0, 10), and N (0, 10), respectively.

4.2.3. Results Table 2 presents bias and RMSE of parameter estimates and running time across
different conditions for the M2PL model. The trend of parameter estimates in the M2PL model
mirrors that of the 2PL model; that is, as the number of subsets increases, the bias and RMSE for
each parameter estimate slightly grow, but the increase remains minimal. Furthermore, the bias
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Table 2.
Bias and RMSE of parameter estimates and running time across different conditions in simulation study 2.

Q J K Bias RMSE Time (h)
θ a b θ a b

2 20 1 0.0007 −0.0059 0.0021 0.6437 0.0536 0.0289 2.761
2 0.0005 −0.0024 0.0014 0.6448 0.0533 0.0287 1.680
5 0.0007 0.0073 0.0009 0.6489 0.0557 0.0308 0.701
10 0.0005 0.0242 −0.0018 0.6559 0.0637 0.0353 0.345

40 1 0.0039 0.0104 0.0084 0.5868 0.0509 0.0310 3.860
2 0.0038 0.0143 0.0080 0.5887 0.0495 0.0310 2.088
5 0.0040 0.0262 0.0089 0.5944 0.0562 0.0320 0.905
10 0.0041 0.0466 0.0099 0.6042 0.0695 0.0345 0.463

3 20 1 −0.0006 0.0125 −0.0010 0.7381 0.0725 0.0302 3.693
2 −0.0003 0.0167 −0.0005 0.7401 0.0719 0.0306 1.903
5 −0.0005 0.0283 −0.0004 0.7462 0.0785 0.0334 0.852
10 −0.0003 0.0500 −0.0005 0.7567 0.0943 0.0409 0.448

40 1 −0.0015 −0.0104 −0.0065 0.7016 0.0630 0.0299 4.156
2 −0.0014 −0.0054 −0.0063 0.7041 0.0647 0.0304 2.181
5 −0.0016 0.0092 −0.0084 0.7121 0.0649 0.0321 0.982
10 −0.0017 0.0353 −0.0099 0.7261 0.0767 0.0368 0.494

Bias and RMSE denote the average bias and RMSE for the parameters. a represents all discrimination
parameters across Q dimensions, b represents all difficulty parameters, and θ denotes all ability parameters
across Q dimensions.

and RMSE for each parameter expand as latent trait dimensions increase. However, the difference
in results between the LS-WASP algorithm and the full data set is not significant, indicating its
applicability to the M2PL model. Figure3 depicts the running time under different subsets for
the M2PL model. With more subsets, LS-WASP algorithm speeds up significantly. Additionally,
computation time slightly increases as latent trait dimensions grow. Figure4 shows the bias and
RMSE of each item parameter estimates for J = 20. Please see online supplement S2 for results
of J = 40. As the number of subsets and latent trait dimensions increase, there is a noticeable
increase in bias and RMSE for each item. The bias and RMSE for the discrimination parameter
a stay mostly within 0.1, given that true values of a are generally between 1 and 2.5. For the
difficulty parameter b, where true values are primarily around 0 with a few exceeding 1, the bias
and RMSE are kept within 0.08. Therefore, the LS-WASP algorithm ensures accurate parameter
estimation and notably improves computational efficiency in the M2PL model.

5. Empirical Examples

Two examples from PISA computer-based mathematics data were analyzed using our pro-
posed LS-WASP algorithm. These two examples showcased the application of the LS-WASP
algorithm for the 2PL model and M2PL model, respectively. Due to page limit, please see online
supplement S4 for details on the empirical example of M2PL model.

5.1. Data Description

The first data set is from PISA 2018 computer-based cognitive mathematics test. We selected
9 scored items, i.e., CM447Q01S, CM273Q01S, CM408Q01S, CM420Q01S, CM446Q01S,
CM559Q01S,CM828Q03S,CM464Q01S, andCM800Q01S.After excluding studentswithmiss-
ing responses, the remaining sample size was 80,352. Further, 20,412 students with Not Reached
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Figure 3.
Running times under different subset conditions in simulation study 2. Note that ‘Group’ indicates the number of subsets.
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Figure 4.
Bias and RMSE of each item parameter estimate across various latent trait dimensions with J = 20 in simulation study
2. Note that ‘Group’ indicates the number of subsets.
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(original code 6), Not Applicable (original code 7), Invalid (original code 8), or No Response
(original code 9) were removed. Thus, the final sample size consisted of 59,940 students.

5.2. Purposes and Designs

We calculated the standard deviations (SD) and 95% highest posterior density (HPD) inter-
vals for each item parameter estimates. Our proposed LS-WASP algorithm primarily addresses
the significant challenges in parameter estimation arising from large sample sizes in large-scale
testing. The primary idea of our algorithm is as follows. At stage 1 of our algorithm, the full
dataset is partitioned, i.e., the “persons” are grouped. At stage 2, the same set of items are esti-
mated across different data subsets. At stage 3, the item parameters obtained from the stage 2 are
integrated to yield the final item parameter estimates. Since the LS-WASP algorithm is grounded
in the full Bayesian framework, the ability parameters are sampled from PG-Gibbs algorithm of
stage 2. Here, we also present the results of ability parameter estimation. The running time was
given to illustrate the time efficiency of the LS-WASP algorithm.

With the sample size exceeding 50,000, we divided the data into subsets of K = 2, 5, 10, 20
to align with simulation studies. We employed the 2PL model to fit the data to adhere to the PISA
operational analysis plan. We set the MCMC iterations to 10,000, with the initial 5000 iterations
as burn-in. Unlike simulation studies, real data do not have predefined “true” parameter values.
To verify the effectiveness of the LS-WASP algorithm, we computed parameter estimates from
the full data using the Pólya-Gamma Gibbs sampler for comparison.

5.3. Results

Table 3 shows the expected a posteriori (EAP) values and SD values of item parameters under
different subsets. As the number of subsets increases, sample sizes within each subset decrease,
potentially impacting parameter accuracy for inference. Conversely, fewer subsets yield larger
sample sizes, theoretically obtaining more accurate parameter estimates. From Table 3, with a
maximum of 20 subsets, the EAP of a increases by about 0.01 compared to full data. Similarly,
for parameter b, EAP differences primarily stay within 0.0007, with only a few exceeding 0.001.
Therefore, for these two parameters, estimations remain consistent between the full data and
conditions with 20 subsets.

Figure5 shows the SD differences of item parameter estimates between different subsets and
full data in empirical example 1. Clearly, as the number of subsets increases, the differences in
item parameter SDs are larger. However, the largest difference in SD of parameter b is around
0.025. Notably, the SD differences for parameter a are even smaller, staying within 0.004. This
indicates that the LS-WASP algorithm can accurately estimate the item parameters. In addition,
the differences in EAP estimates of ability parameters between different subsets and full data are
presented in online supplement S3. The results show that our algorithm’s estimation of ability
parameters remains closely aligned with the full data, without any significant deviation.

Figure6 shows the 95% HPDIs of nine item parameters under different subsets. While the
HPDI ranges of parameters a and b appear to increasewithmore subsets, the extent of this increase
remains minimal. The running time of full data is approximately 1.3h. When the full data are
partitioned into two subsets, the time required is reduced by approximately half compared to the
full data.When the full data are partitioned into 20 subsets, the computation time of the LS-WASP
algorithm takes approximately three minutes. Therefore, the LS-WASP algorithm substantially
enhances computational speed for big data and accurately estimates parameters in the 2PLmodel.
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Table 3.
EAPs and SD item parameters for PISA 2018 mathematics cognitive test.

PARM K=1 K=2 K=5 K=10 K=20
EAP SD EAP SD EAP SD EAP SD EAP SD

a1 1.6760 0.0206 1.6776 0.0254 1.6785 0.0345 1.6803 0.0465 1.6819 0.0638
a2 1.0270 0.0140 1.0271 0.0162 1.0274 0.0220 1.0279 0.0290 1.0307 0.0395
a3 1.5114 0.0197 1.5129 0.0227 1.5133 0.0306 1.5141 0.0408 1.5152 0.0559
a4 1.1544 0.0151 1.1545 0.0179 1.1548 0.0245 1.1559 0.0321 1.1583 0.0439
a5 2.0692 0.0266 2.0704 0.0332 2.0730 0.0462 2.0724 0.0588 2.0794 0.0832
a6 0.9399 0.0135 0.9402 0.0153 0.9401 0.0203 0.9414 0.0266 0.9430 0.0356
a7 1.0685 0.0146 1.0715 0.0170 1.0709 0.0222 1.0715 0.0290 1.0732 0.0387
a8 2.1228 0.0319 2.1260 0.0357 2.1269 0.0488 2.1305 0.0668 2.1385 0.0916
a9 0.7297 0.0166 0.7308 0.0181 0.7303 0.0200 0.7337 0.0225 0.7352 0.0264
b1 −0.3888 0.0078 −0.3885 0.0087 −0.3885 0.0113 −0.3887 0.0144 −0.3889 0.0192
b2 0.2754 0.0101 0.2756 0.0110 0.2760 0.0131 0.2760 0.0161 0.2759 0.0210
b3 0.6836 0.0092 0.6836 0.0102 0.6836 0.0126 0.6838 0.0157 0.6843 0.0207
b4 0.1285 0.0089 0.1288 0.0099 0.1289 0.0122 0.1289 0.0153 0.1292 0.0201
b5 −0.4618 0.0074 −0.4615 0.0083 −0.4613 0.0108 −0.4616 0.0140 −0.4615 0.0187
b6 −0.6043 0.0123 −0.6038 0.0134 −0.6044 0.0156 −0.6045 0.0192 −0.6050 0.0242
b7 0.8061 0.0124 0.8049 0.0134 0.8054 0.0158 0.8055 0.0190 0.8061 0.0242
b8 0.9134 0.0091 0.9134 0.0097 0.9134 0.0124 0.9131 0.0158 0.9133 0.0209
b9 −3.1850 0.0630 −3.1865 0.0672 −3.1888 0.0722 −3.1864 0.0781 −3.2088 0.0869

PARM represents parameter, EAP denotes the expected a posteriori estimation, and SD is the standard
deviation. K = 1 indicates the full data set, i.e., no data partitioning.

6. Discussion

For large-scale educational assessment data, current MCMC methods are significantly time-
consuming when estimating the IRT models. To address this issue, we propose a divide-and-
conquer algorithm named LS-WASP for distributed Bayesian inference in IRT models. This
algorithmpartitions the data into several subsets and then conducts parallel sampling of parameters
for these subsets. Under the assumption of a location-scatter family, we propose an approximate
Wasserstein posterior method as a substitute for the full data posterior sampling of parameters.

Simulation results and real data analysis validate the effectiveness of the LS-WASP algorithm
in estimating IRT models. First, the LS-WASP algorithm exhibits a significant advantage in
computational time. Specifically, the computational time of the LS-WASP algorithm is roughly
inversely proportional to the number of subsets K . Second, the LS-WASP algorithm accurately
estimates IRTmodel parameters. Simulation studies and real data analyses show that when sample
sizes are large, regardless of the number of subsets, the estimates for item parameters from the LS-
WASP algorithm closely align with those derived from the full data. However, when the sample
size is small but the number of subsets is large, ourmethod exhibits a slight difference in estimating
discrimination parameters compared to the results basedon full data, yet the estimation of difficulty
parameters remains precise. The advantages of our proposedmethod becomemore prominentwith
larger sample sizes, and in the case of smaller sample sizes, we suggest to select an appropriate
number of subsets to obtain the precise parameter estimates. The optimal subset sample size
depends on the model’s complexity; as complexity increases, so does the needed sample size per
subset. Therefore, each subset’s sample size should meet the minimum requirement for precise
estimation, ensuring accuracy both within subsets and across the entire dataset. Furthermore,
although our method primarily focuses on item parameters based on the data partitioning (i.e.,
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grouping the persons), simulation results show that ourmethod can still estimate ability parameters
accurately.

The LS-WASP algorithm is not only conceptually simple and easy to implement, but also
facilitates fast and accurate parameter estimation of IRT models as well as provides theoretical
guarantees. We use this algorithm in conjunction with subsampling of parameters, and then based
on the assumption that the posterior distributions of each subset belong to the same location-
scatter family, an approximation of the true WASP can be derived. Along with other regularity
assumptions, we derived the asymptotic Monte Carlo and statistical theoretical guarantees for the
theoretical foundation of this algorithm.

In addition, we would like to reiterate the purpose of this study. As known, the EM algorithm
has been the de facto method in operationally processing large educational datasets. However, it
is crucial to acknowledge the fundamental differences between the two approaches: EM being
an optimization algorithm requires relatively fewer iterations for convergence, and Bayesian esti-
mation being a sampling-based approach requires a larger number of iterations for parameter
convergence. This fundamental difference suggests that comparing them directly may not be
entirely fair. Therefore, our aim is not to replace the EM algorithm but to offer an alternative that
leverages the strengths of Bayesian inference in standard IRT settings, and provide a strong theo-
retical and practical framework for managing complex datasets. Our research seeks to explore the
potential and applicability of the Bayesian “divide-and-conquer” method in scenarios where the
Bayesian paradigm offers distinct advantages, particularly in handling the complexities inherent
in large-scale educational data.

Despite its advantages, the LS-WASP algorithm has several limitations. First, the algorithm
requires large sample size and relies on the appropriate selection of the number of subsets. The
larger the sample size, the better the performance of the algorithm. When the sample size is
small, choosing a large number of subsets may deteriorate the estimation performance, making
the selection of an appropriate subset number crucial. It is recommended that each subset’s sample
size shouldmeet theminimum requirement for precise parameter estimation. Second, the sampling
algorithm used in this paper is the Pólya-Gamma Gibbs algorithm, but the LS-WASP algorithm
is actually applicable to any MCMC sampling algorithms, such as the M-H algorithm, the slice
algorithm (Neal, 2003; Lu et al., 2018) , and so on. Thus, additional sampling methods combined
with our proposed LS-WASP algorithm can be explored in the future. Third, our results can also
be generalized to cases with different subset sample sizes, but a common subset sample size still
needs to be assumed to simplify the analysis. Fourth, the complexity of the LS-WASP algorithm
may increasewith complex IRTmodels; the further investigation of our proposed algorithm can be
explored. Finally, the accuracy of parameter estimation using the “divide-and-conquer” approach
can also be influenced by external factors, such as the unbalanced subset response data due to
data partitioning or improper handling of missing data. Inappropriate data partitioning can easily
lead to highly unbalanced response data within subsets, for instance, when the data allocated to a
subset consist entirely of 0 s or 1 s. In such cases, some subsets may not contain enough responses
from the minority groups, potentially leading to inaccurate parameter estimates. Typically, we
need to be cautious with data partitioning to ensure that each subset contains enough minority
class samples. After data partitioning, we should check each subset as thoroughly as possible
to avoid unbalanced data splitting. Additionally, handling missing data improperly can lead to
biased estimates. Imputing missing responses without proper consideration could deviate from
our research goals and potentially distort the results (e.g., Robitzsch and Rupp 2009; Pohl et
al. 2014; Sportisse et al. 2020; Du et al. 2022), especially when the missing response data are
incorrectly imputed as complete data. Therefore, in this study, we believe that strictly managing
missing data and relying solely on complete cases are pivotal for the reliability and validity of the
study outcomes. Thus, while the “missing data” approach may be beneficial in certain contexts,

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:39:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


S. XU ET AL. 1145

given its potential problems and complexity, we recommend further exploration and evaluation
of the feasibility and effectiveness of distributed Bayesian estimation in future research.
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