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1. Introduction. We write e(x) for e2™, ||x|| for the distance of x from the nearest
integer and use A«B to mean |A|<c \B\, where c is a positive constant depending at
most on k and e. The letter p always denotes a prime number; P2 represents a number
with precisely two prime factors. We continue the investigations started in [6] and will
make many references to the analysis there. Here we prove the following theorems.

THEOREM 1. Let k be an integer §3, and e>0 . Suppose

(a,q)=l.

Then

where

p S N

(log p)e(apk) « (1)

= (k2k)fc\-i

THEOREM 2. For e >0, j3 an arbitrary real number and a irrational, there are infinitely
many solutions of the inequality

(2)

Here

and kg 3.

THEOREM 3. Let k be an integer g4 and f(x) a real polynomial in x with irrational
leading coefficient. Then, for a given e > 0, there are infinitely many solutions of the
inequality

\\f(p)\\<P~T+'- (3)

Here, for k g 11,

T = (2T+(2fc+1-l-2k)/fc)-\

where T is defined by the following table.

k

T

4

46

5

110

6

240

7

414

8

672

9

1080

10

1770

11

3000

t Written while the author held a London University Postgraduate Studentship.
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24 GLYN HARMAN

For k §2 , we have

THEOREM 4. Suppose f is a real polynomial of degree k § 2 with an irrational leading
coefficient. Then, for e > 0, there are infinitely many solutions of

(4)

where o- =

For a brief history of results of the types (1), (2) and (3), we refer the reader to [6].
Theorem 1 improves Theorem 1 of [6] in'certain cases. Theorem 2 represents a
substantial improvement on Theorem 2 of [6] for the specific case of monomials (e.g., for
fc=3, 1/19 replaces 1/32, for fc = 8, (573I)"1 replaces (32,768)"')- Theorem 3 improves
upon Theorem 2 of [6] for k § 4 (e.g., for k = 8, we get (1407I)""1), and improves upon
the present Theorem 2 for large k. No results of the type (4) seem to have appeared in the
literature before, but S. W. Graham has shown [5] that there are infinitely many solutions
of

\\aP2\\<p-2K\ogP2y
8. (5)

See also [3] and [4] for related work. His method is an application of the small sieve. In
Section 3 we show that the exponent of log P2 in (5) may be reduced to 4/3 using the large
sieve. For large k, it follows from Chapter 5 of [12], with slight modifications, that we can
get the same answer for f(P2) as the best currently known results for f(n). In particular, it
follows from [1], with some alterations, that, for monomials, we can take

a = (2(log k +l)(3-25 + (k + l)log(fc(log k + l)))/log k)~\

which is better that the present result for k g 7 .
The new ideas in this paper compared with [6] involve Vinogradov's method [11] of

relating a trigonometrical sum to an integral with a simple arithmetical interpretation, and
the combination of this method with the ideas of Section 2 of [6]. I would like to thank
the referee for his comments, also I would like to express my thanks to R. C. Baker for his
helpful criticisms of my manuscripts.

2. Some preparatory lemmas. By £' we indicate that the variable summed over takes
values coprime to the number q which will appear in the statements of lemmas.

LEMMA 1. For log q «log N, f a real valued function, we have

I A(n)e(f(n)) = O(N*) + St-S2-S3, (6)
n = l
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TRIGONOMETRIC SUMS OVER PRIMES II 25

where

S,= r,/t(d) I ' (log l)e(f(dl)),
dSN!

rSN! mSNr"1

t I ' >2(m) , I ' A(n)e(f(mn))

and /or any 8 > 0,

Proo/. This is essentially given by Vaughan in [9] and [10].

We remark that it follows from this lemma (removing the log I factor in Sj by partial
summation as in [6]) that we need only estimate two types of sum:

(I) I ' 4>(y) I ' Hx)e(f(xy)), (7)
Y<yS2Y xSNy-'

w h e r e N ^ Y ^ ;

(II) I ' <My) I ' e(f(xy)). (8)
Y<yS2Y xSNy"1

Here Y<NK Both <f> and \j/ in (7) and (8) can be assumed to satisfy

us,

for every 8>0.

LEMMA 2. For any positive integers W, q and real number p, we have, for e >0,

L e(Puk)
R

« max
d|qu=l

dSW

Here R = 2k~l and J = (k \)dWk~\

We remark that by the conventional method of estimating sums of the type which
occurs on the right of (9), the estimate is a decreasing function of d. Thus d can essentially
be thought of as 1 in (9). This gives the usual Weyl inequality result, but we have removed
all numbers from the sum on the left of (9) not coprime to q.

Proof. It is easily shown (see Lemma 2, Chapter 9 of [12]) that

(10)
d|q
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where

GLYN HARMAN

0 if d > W,
[Wd-'~\

X e(pukdk) for dSW

By Lemma 2 of [4],

R'k
(12,

Combining (10), (11) and (12) gives (9) since the number divisors of q is «qe.
Similarly we may prove

I I lmu))I, << ( 1 3 )

d S W

where X = {k\)dLWk-\ and /(u) = auk + . . . + w .

LEMMA 3. Suppose Y^N±, 1^ m ^ k, \qa-a\<q~\ (a, q) = 1. Then, for e>0,

Y<yS2Y

«

where <#>(x), i/»(y) are real valued functions; (f>(x) = 1 is an additional necessary condition if
m is taken as 1. Here

fO ifm = l,
\ otherwise

and

(15)

Proof. For m = 1, this is Lemma 4 of [6] (replacing Lemma 2 there by the present
Lemma 2). For m = k, it is the Corollary to Lemma 3 (making the same replacement). For
Km<k, the result follows by only applying the Weyl differencing technique, for the
variable y, m - 1 times in Lemma 3 of [6] (stopping the induction at s = m - 1 , not s = k -1
as there).

Henceforth in this paper whenever the letter F appears it is defined by (15).
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LEMMA 4. Suppose Y^N\ \a - a/q\^(NkL)-\ (a, q) = 1, JV>L§ 1. Put

SL=t I ' <My) I <Hx)e(al(xy)k) .
1 = 1 Y<y<2Y

Then, if <f>(x) = l for all x,

Otherwise

Proof. We write

SL = I A,

and prove (16) first. By partial summation

A,= I'
Y<yS2Y

Here

8y

and

8y(x) = iP(y)e(a'l(yx)k) - ^ (y)e(a ' / (x + 1 ) V ) , a ' = a

Clearly 8 y (x)«Fly ' c i k - 1 (LJV l t ) - 1 . Thus

I ( ^ M W]
1 = 1 Y<yS2Y >»SN,-' J > 1=1 1=1

By (13), the fact that (y, q) = 1 and Holder's inequality we find that

It is now easy to deduce (16) from (18) and (19).
To prove (17), we use Cauchy's inequality to obtain

<t>(x)
' VsNY- ' Y<:u,<H, Y<i)2<H:[

(18)

(19)
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28 GLYN HARMAN

where

Hx = min(2 Y, Nx'1) =i ̂  max \<f>M\2 S,, (20)

say. We now remove all the terms with u, = v2 from S| to leave a sum A',, say. The terms
with vt = v2 contribute

« max\4>(v)\2 N

to Si and hence

to SL. We proceed to estimate A', as we treated A, above. We now get sums Sxyi0,2(/) to
estimate given by

The complication arises that yk - yk may not be coprime to q. It turns out that quite a
crude argument will suffice for the applications (the Ykq~1 term in (17) can be improved
but not the qYkN~kL~1 term). We have

(q,(y?-y$))s|yI-ytl«Yk; (22)
thus

^ J ^ ^ J . (23)

Hence

h IY Yk aYk\2"k

£ A',« max |,Mt,)|2 Y(LN)^[-+—+fjqj • (24)

A combination of (20), (21) and (24) together with Cauchy's inequality then yields
(17) as desired. We note that there are no technical difficulties involved in replacing ank

by a polynomial of degree k with leading coefficient a.

LEMMA 5. Let (j>(x) be an arbitrary function. Let B and A be positive integers. Then, for
8>0, we have

$(u)e(yuk)
A<uSA+B A<uSA+B

dy«B2"-fc+s max |<Mu)f. (25)

Proof. The lemma follows easily from Theorem 7 of [7].

We remark now that the drawback of the results of Lemmas 3 and 4 is that their
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TRIGONOMETRIC SUMS OVER PRIMES II 29

estimates become trivial for Y near N* (in fact the situation is even worse in Lemma 3 for
small m). The following lemma deals with estimation of sums where both ranges are quite
large.

LEMMA 6. Suppose YSNKq^NikL\lSLSN,\aq-a\<(NkL)-\(a,q) = l, e>0.
Then

I ' <My) I ' <f>(x)e(alykxk)«FNl+{^+-)2 U + ̂ f • (26)
Y<yS2Y xSNy"1 \ I <}/ \ iV /

Here A = (/, q).

Proo/. Without loss of generality Y = 2', where t is an integer. Some notation is
required in order to split the trigonometric sum in (26) into subsums. We define sets of
integers Cm as follows for O g m ^ i :

C0 = {Y}, Cm ={ym : ym = Y+ rY21-", Og rg2"- 1 } .

We put Ym = Y2~m, and write 0(ym) for the set of integers x with N(ym +2Ym)~l < x i
Mym + ^m)"1 for m>0. We define 0(yo) as the set of integers x with 0 < x s N(2Y)~1.
Clearly

I ' <A(y) I ' </>(x)e(a/yltxk)= t I S(ym)+O(N/y), (27)
Y<yS2Y xSN/y m=0ymeCm

where
ym + Y m

S(yJ= " I ' *(y) I ' ^>(x)e(a/xkyk). (28)

We write S,(y) for the inner sum in (28). We shall consider m fixed at the moment and
concentrate on one subsum S(ym). In the following the summation over x will be for
xe0(ym). We note that there are «NYJY2 numbers in 0(ym), and «Y/Ym numbers in
Cm. Write X = Ny-\

We now relate Sj(y) to integrals in accordance with one of Vinogradov's methods.
We make one important change in that we will use an infinite series of integrals rather
than one integral plus an error. The saving this apparent innovation produces is only
significant for small k; it makes no real difference to the result of Theorem I of Chapter 6
of [12], for instance. We have

(29)
r = 0 ' :

where
2k

J,(y)=f du. (30)
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= [aykl -\X~k, aykl+\X~k\

(The reader familiar with Vinogradov's work should note that we have been able to make
$(y) somewhat larger than usual; this requires us to use an infinite series but it will
become apparent that this is no real problem.) To obtain (29), note that for any u,

S,(y) = I ' * (x)e(uxk)e(xk(ay kl - «))
x

= 2, e(uxk) 2. ^ <*>(*)•
r = 0

The interchanges of orders of summation and integration in the following working are
easily justified. We have

s,(y) = xk f 1 1 ' e(xfcM>xfcr(
J&(y) r — O X ?•

= I {2™)^ f (ay
kl- u)'I' e(xku)xk^

« I ^ ^ f \u-aykl\'
r=0 r ' Jf(y)

du

du

xk^(x)e(xku) du

r = 0

ct>(x)xk'e(xku) du.

By Holder's inequality,

r = 0 '• I r = 0 ' ! VJj>

by another application of Holder's inequality. This establishes (29).
Our next task is to relate S(ym) to integrals over [0,1) in a manner similar to

Vinogradov (see [11]), and use Lemma 5 to obtain a good estimate for the integrals. We
say two intervals ^(yi), ^(y2) overlap mod 1 if there is a real number x and an integer n
such that X6^(yj) and n + xei (y 2 ) . We will show that not many of the ^(y) overlap
mod 1. Using the periodicity of the integrand in Ir we may then get our required integrals.

Suppose #(y1),y(y2) overlap mod 1; then

where h is an integer. Thus

al(yk - y$) = hq + O(qX~k) + O( Y

https://doi.org/10.1017/S0017089500005024 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005024


TRIGONOMETRIC SUMS OVER PRIMES II

Since (y1; q) = (y2, q) = 1, there are

31

solutions of y\al = b(mod q) in yu with ym § y, § ym + Ym. Thus only

intervals ^ (y j can overlap mod 1 with a given
Write V = max |i/<(i>)|2\ L/ = max |0(u)|2\ Then we deduce with one further applica-

i) u

tion of Holder's inequality that

where

by Lemma 5. Hence

Thus

Y 2 /V Y 2 (7

s(yj
2k

«

(31)

since

The result of Lemma 6 follows easily from (31) since there are O(log N) subsums as
given in (27) to consider. Slight modifications are necessary in the working for the sum
with y range of length Y since the inner sum over x has the form 0 < x g NY'1, but there
are no added difficulties.
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LEMMA 7. Suppose we have the hypotheses of Lemma 6, with the added condition that

Then

Z ^ ^ ) 2 " , (32)

where <x, is the sum on the left hand side of (26).

Proof. We shall only outline the necessary modifications to the proof of Lemma 6. By
the modulus inequality it suffices to estimate sums of the form (in the notation of (27),
(28))

I I>(y)l£|S,(y)|.
Y m € C m y 1 = 1

We proceed as before, relating S,(y) to the same series of integrals. This time however, we
are interested in how the intervals are distributed as both y and I vary. We thus require
the number of solutions of

ykal = b{mod q)

for y in a given range of Ym numbers, 1 g / ^ L. We have

lyk = C+mq,

with

The number of intervals $(y) which overlap with a given interval is thus

«(l + LY2kN~k)qe.

This is a saving of a factor (l/LYm + Y2kINkYJqB over the trivial estimate. The
remainder of the proof follows without difficulty.

3. Proof of Theorems 1, 2 and 4.

Proof of Theorem 1. The sum on the left of (1) differs from the sum on the left of (6)
by O(N*); so we need only estimate sums of the type I and II ((7) and (8)). For Y^ Nllk,
we use Lemma 6 (with / = L = 1). This gives an upper bound

(33)
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For NVk > ygN"12'"'1"', we use Lemma 3 with m = 2. This also gives an estimate (33).
Finally, for Y<N(k2l""1)~1, we apply Lemma 3 with m = 1, which also gives the bound

(33). As there are only O(log N) sums of the type I and II, (1) follows from (33). We note
that if we put a more restrictive condition on the size of q the result could be somewhat
improved. In general, however, the application of results like (1) require as large a range
of q as possible (see [2] where we use this result).

Proof of Theorem 2. As a is irrational there are infinitely many convergents to its
continued fraction. Let a/q be one such convergent. Pick N so that

and put

It follows from Lemma 5 of [6] that we need only show that

t I (log p)e(apkl) =o(N) (34)
1 = 1 pSN

in order to establish a solution of (2) with N*<p^N. Since a is irrational and we picked
a sequence of convergents with q —* °° the result of Theorem 2 follows. As in the case of
Theorem 1, we need only consider sums of the type I and II, but we here add on extra
summation over I.

Put

Then

Z + P = 2% (35)

and

kp-U-hk = -2k£, P-K-2f cf (36)

We estimate sums of type (I) by Lemma 7 if Np < Y^NK There are « log N such
sums, and by (35), (32) we get an upper bound for the total of these sums of

= o(N).

Assuming, as we may, that e is sufficiently small. We have used the fact that
F= O{Nels) to obtain this result.

For N^ Y^N", we estimate sums of type (I) by the case of Lemma 4 with c^(x)^ 1.
It follows from (36) that we get a bound which is o(N) for these sums as well.

We estimate sums of type (II) by the case of Lemma 4 with 0(x) = l. Here the
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estimate is

N1+EL(N~ik

which is certainly o(N). This establishes (34) and thus completes the proof of Theorem 2.

Proof of Theorem 4. Let a be the leading coefficient of /. Choose N and L as in the
proof of Theorem 2, but replacing £ by a. Write Y= N2<T. Let N be the collection of all
numbers of the form p^p2 where pu p2 are primes and

Y<p1=i2Y, 4Y2<p1p2^N.

We note there are »JV(log N)~2 such numbers. It thus suffices, by Lemma 5 of [6], to
prove that

t I e(lf(n))
1=1 neN

= o(JV(logN)-2). (37)

For k = 2, (37) follows from a suitable variant of Lemma 3 (by adding an extra range
of summation), taking m = 2 and making obvious choices for <p and </». For k g 3, (37) is
established directly from Lemma 4(17). This completes the proof of Theorem 4.

We now include a brief demonstration of an improvement upon Graham's result.
For irrational a and arbitrary real j3 there are infinitely many solutions of

Here c is a numerical constant which can be evaluated.

To prove this, let a/q be a convergent to the continued fraction of a, q> 106. Choose
X as the largest integer with

q>X2(\ogXq)-2.

Put

where c, is a constant <1. We note that LX<q. From Lemma 5 of [6] it suffices to show
that

SL=I , 1 I e(alPlp2)
1 = 1 X2<p,<XX<p2Sq

M

where M is the number of P2 numbers of the form pxp2 occurring in the above sum.
Clearly M»JV(log JV)~2. We have, by the modulus inequality,

LX

SL^ I h(m) e{amp)

Here h(m) is the number of representations of m as lpx with ^X. We observe that
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^5 since m <XSI2. As h(m) is non-zero for «LX(logX)~1 numbers m, by Cauchy's
inequality we have

LX t I e(amp)
L / m = l X<pSq

We may now use the well known large sieve inequality (see [8]) to estimate the above
sum. This is more economical than a similar method in [3] which was first given by
Vinogradov. We get

x < p S q

(log N)2

c,N2

<K Gog N)4 •

By choosing c, sufficiently small the result follows.

We remark that the above method can be adapted to prove a result like Theorem 4
but with the weaker exponent fc((2k — l)(2k — l) + 2k)~1.

4. Proof of Theorem 3. We first require some more lemmas.

LEMMA 8. Let $(x) be an arbitrary function, A and B integers. Then, for e > 0 , we
have

I
•>o J o A<uSA+B

<f>(u)e(aku
k da i ... dak

A<uSA+B

where T is given by the table in the statement of Theorem 3 for k ̂  11. For k ̂  12, we take

T = 4[/c2(log k + 2 log log k + 1.3)].

Proof. The lemma follows easily from Theorem 7 of [7] and Theorem 4 of [13].

LEMMA 9. Under all the hypotheses of Lemma 1 with a as the leading coefficient of f,
we have

\1/T

(41)

where T is as given in Lemma 8, and a, is the sum of Lemma 1 with f{n) replacing ank.

Proof. The proof follows as for Lemmas 6 and 7 with Lemma 8 replacing Lemma 5.
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The only real difference is that (29) becomes

v v X-RTIR(y)Xik(k+1)

r,=O rk=0 M ! ' 2 ! • • • 'k •

where

- . . . + krk.

T

I R = \ • • •
•^i(y)

dax ... dak
X(y)

and

where as is the coefficient of xs in /(x) (so ak = a).

LEMMA 10. Suppose k g 12, N^k gqgN1 3 k / 2 4 , LsJV,(a,-q) = l, |a-o/q|g(JVkL)-1,
Y^iV'. Write, /or /^L,

S,= I ' «A(y) I ' e(lf(xy)).
YSyS2Y

Proof. Working analogously to Lemmas 2 and 4, we need only estimate

lg(ydn)j.SAd)=ye(^^+l

Here x ^ N Y " 1 ^ is a polynomial of degree k - 1 and (y, q) = l. Sums with
contribute «JV^+e to S, by a trivial estimate; so we may assume d^NK Similarly we can
presume x/d^NK Let

kdk b . .
= - with

We have

We are thus able to apply Theorem I of Chapter 6 of [12] to Sx(d) to get the estimate

where 8 = 5(24 k2 log(12fc(fc +1)))"1. This is more than good enough to prove this lemma.
We remark that although we have thrown a lot away in this proof, there is no point in
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being more precise, since the sticking point in the proof of Theorem 3 is the estimation of
sums of type I (i.e. (7)).

Proof of Theorem 3. For k g 11, the proof follows as for Theorem 2, only using
Lemma 9 in place of Lemma 7. As we remarked at the end of Lemma 4's proof, there is
no problem in changing ank to f{n). The value corresponding to p in the proof of
Theorem 2 is

p' = ( T - 1)(2T+ (2k+1 - l-2k)lk)~\

which satisfies

p' + r = TV, kp'-\T-\k = -2kr; p'- \< -2kr.

For fcsi2, the proof follows from Lemmas 1, 9 and 10.
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