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Surface roughness significantly modifies the liquid film thickness entrained when dip
coating a solid surface, particularly at low coating velocity. Using a homogenization
approach, we present a predictive model for determining the liquid film thickness coated
on a rough plate. A homogenized boundary condition at an equivalent flat surface is
used to model the rough boundary, accounting for both flow through the rough texture
layer, through an interface permeability term, and slip at the equivalent surface. While
the slip term accounts for tangential velocity induced by viscous shear stress, accurately
predicting the film thickness requires the interface permeability term to account for
additional tangential flow driven by pressure gradients along the interface. We find that
a greater degree of slip and interface permeability signifies less viscous stress that would
promote deposition, thus reducing the amount of free film coated above the textures. The
model is found to be in good agreement with experimental measurements, and requires no
fitting parameters. Furthermore, our model may be applied to arbitrary periodic roughness
patterns, opening the door to flexible characterization of surfaces found in natural and
industrial coating processes.
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1. Introduction

Describing coating flow over a solid is a theoretical challenge, yet endlessly appealing
because of the many simple phenomena that involve these kinds of flows: we withdraw
spoons covered in honey from a jar, coat strawberries in chocolate, dip and remove a
paintbrush from a bucket, lift ourselves out of the water at the swimming pool, and take
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Figure 1. Dip coating system. (a) A solid plate is pulled at constant velocity v = v0ẑ from a liquid bath
having density ρ, surface tension γ , and dynamic viscosity η, where v is directed opposite to the direction
of gravitational acceleration g. The plate is rough, with a periodic texture pattern. To model the rough surface,
we apply an equivalent boundary condition to a flat equivalent surface ES that is placed a distance dES from
the bottom of the roughness. The thin film on the plate forms three regions: a flat film (region I) is connected to
a static meniscus (region III) by a dynamic meniscus (region II). We wish to know the limiting film thickness
h(z) = h0 in the flat film region. (b) The film thickness h(z) as a function of the coordinate z along the plate.

pictures with film made of a light-sensitive chemical coated over a transparent strip. In
general, in dip coating processes, the film thickness h0 coated on objects pulled from a
bath of viscous liquid depends on the capillary number Ca = ηv0/γ , which describes the
balance between viscous and capillary forces, where v0 is the pulling velocity, η is the
liquid’s dynamic viscosity, and γ is the liquid’s surface tension. The initial model for dip
coating a Newtonian liquid over a smooth, flat plate at small Ca gives the relation (Landau
& Levich 1942; Derjaguin 1943; Wilson 1982)

h0 = 0.94a Ca2/3, (1.1)

where a = √
γ /(ρg) is the capillary length, ρ is the liquid’s density, and g is the

magnitude of gravitational acceleration. The model matched earlier experiments of Morey
(1940), who found h0 ∼ Ca2/3.

The model (1.1) has been extended to include corrections accounting for gravity and
inertia at larger Ca (Spiers, Subbaraman & Wilkinson 1974; de Ryck & Quéré 1998).
Theoretical and experimental extensions have also been made with regard to the object
coated – including tilted plates (Wilson 1982; Benilov & Zubkov 2008), horizontal and
vertical cylinders (White & Tallmadge 1966; Spiers et al. 1974; Wilson 1982; Quéré
1999), compliant surfaces (Kajiya et al. 2014; Bertin et al. 2022), and rough surfaces
(Krechetnikov & Homsy 2005; Seiwert, Clanet & Quéré 2011; Sathyanath, Aarthi &
Kalpathy 2020) – as well as the liquid properties, as reviewed in Rio & Boulogne (2017).
Given the multitude of realistic situations in which a surface to be coated is rough or
porous, rather than smooth (Stauffer, Hajnal & Gendzwill 1976; Barthlott & Neinhuis
1997; Neinhuis & Barthlott 1997; Devauchelle, Josserand & Zaleski 2007; Nong &
Anderson 2010), we focus our attention on thin film flow over a rough surface pulled from
a liquid bath (figure 1). The film profile is h = h(z), and in the dynamic meniscus region
(region II), the profile tends towards a flat film of constant thickness h → h0 as z → ∞.
Although initial progress has been made to characterize the effect of roughness on the film
thickness (Aradian, Raphaël & de Gennes 2000; Krechetnikov & Homsy 2005; Seiwert
2010; Seiwert et al. 2011; Sathyanath et al. 2020), at present we lack a general model
capable of predicting film thickness coated on an arbitrary periodic roughness pattern.
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Coating thickness prediction for a film on a rough plate

At large Ca, the film thickness coated on a rough plate is found to be modelled well
by (1.1), while experiments demonstrate that at small Ca, surface roughness significantly
increases film thickness compared to the case of a smooth plate (Krechetnikov & Homsy
2005; Seiwert et al. 2011). The physical reason for this increase is that the roughness
introduces a minimum film thickness due to viscous resistance to liquid flow against
the additional solid walls or pore-like features, which have a greater area compared
to the flat case (Seiwert et al. 2011). For a rough plate, the film thickness no longer
goes to zero as Ca → 0 as predicted by (1.1); instead, experiments demonstrate that a
small film remains trapped within the rough features due to viscous resistance, such that
h0 → hmin as Ca → 0. The scale of this minimum thickness is hmin ∼ r, with r being
the typical peak-to-valley scale of the roughness. Seiwert et al. (2011) thus divide the
film into two regions: a trapped fluid region located within the roughness features, and
a free film region outside, separated by a flat plane located at the peak of the roughness
features.

Motivated by such physical reasoning, Krechetnikov & Homsy (2005), Liao, Li & Wei
(2013) and Sathyanath et al. (2020) proposed a model for rough dip coating that would
replace the no-slip boundary condition at the rough wall by a slip boundary condition
at a fictitious flat boundary plane at the peak of the roughness features. Such a model is
sensible if we consider that at the boundary plane, we find a mix of solid and fluid patches,
meaning that at the boundary there is a non-zero slip velocity (Beavers & Joseph 1967).
Introducing slip has been used successfully to model experimentally observed velocity
profiles in channels with rough walls (Lauga & Stone 2003; Maali & Bhushan 2012),
where flow velocities are similar to those in small-Ca dip coating experiments. However,
Seiwert et al. (2011) found that a slip model was insufficient to explain their observation
of a constant minimum film thickness (h0 = hmin) with no free film coated below a critical
capillary number Ca < Cac; the slip model overestimated the experimentally observed
free film thickness. A modified model was developed that proposed to augment the slip
velocity by considering porous flow through the rough layer, but it lacked experimental
comparison (Devauchelle et al. 2007). Instead of using a slip model, Seiwert et al. (2011)
proposed to model the system as two layers of liquid, where the trapped-fluid region is
replaced by a liquid of higher viscosity η∗ > η, and subsequently solve for h0. When η∗
was used as a fitting parameter to the experimental data, this ‘two-layer model’ predicted
the formation of a trapped film and the total depletion of the free film for Ca < Cac.

Despite the successes of prior modelling efforts (Krechetnikov & Homsy 2005; Seiwert
et al. 2011; Liao et al. 2013; Sathyanath et al. 2020), these models are not fully predictive
since closure of the problem requires experimental data to fit either the slip length L
or the viscosity increase parameter η∗. Here, we develop a model that provides further
insight into the physical mechanism by which the microstructure affects the macroscopic
flow, and in doing so, present a predictive model for the film thickness coated on rough
surfaces by a viscous liquid. The key factor enabling the predictability of the model
employed in the present work stems from the use of a homogenization technique (Hornung
1997; Espedal, Fasano & Mikelić 2000; Mei & Vernescu 2010), which allows us to
derive effective macroscopic properties of a surface from its microscopic structure. The
upscaling procedure involves taking a spatial average of microscopic flow quantities
describing the flow around a single microscopic roughness feature to compute effective
macroscopic properties. Properties upscaled from the microstructure can then be applied
to the macroscopic problem via an interface condition imposed over a fictitious flat surface
called the ‘equivalent surface’ (ES in figure 1) placed between the trapped liquid layer and
the free film.
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Homogenization can be used to analyse fluid–solid interaction phenomena where there
is a separation of scales between the typical microscopic roughness size and the whole
macroscopic system size (Mei & Vernescu 2010). The large scale may be given by the size
of a macroscopic object (such as the radius of a sphere with a rough surface) or by the
scale of the flow domain (such as the height of a channel) (Zampogna & Bottaro 2016;
Zampogna, Magnaudet & Bottaro 2019; Sudhakar et al. 2021). Thus homogenization has
been employed extensively to calculate the effective flow of an incompressible fluid in
domains with no free interface, such as through porous and poroelastic media (Levy &
Sanchez-Palencia 1975; Carraro et al. 2015; Zampogna & Bottaro 2016; Lācis & Bagheri
2017; Lācis, Zampogna & Bagheri 2017; Sudhakar et al. 2021; Strohbeck, Eggenweiler &
Rybak 2023), over rough surfaces (Jiménez Bolaños & Vernescu 2017; Zampogna et al.
2019; Lācis et al. 2020; Naqvi & Bottaro 2021), and across periodic and weakly periodic
microstructured permeable surfaces (Zampogna & Gallaire 2020; Ledda et al. 2021;
Zampogna, Ledda & Gallaire 2022). Bottaro & Naqvi (2020) have shown that the flow at
an interface between a free-fluid region and a rough surface is described by the slip tensor
L and interface permeability tensor Kitf (see also Naqvi & Bottaro 2021). Following their
work, in contrast to the slip models (Krechetnikov & Homsy 2005; Sathyanath et al.
2020), the boundary condition that we use considers both slip due to fluid patches at
the equivalent surface (through L) and an excess tangential velocity driven by a pressure
gradient over the rough layer (through Kitf ). We employ a boundary condition of this form
to model the thin film flow. Using the homogenization framework to compute L and Kitf

for any surface with a periodic roughness pattern (Zampogna et al. 2019; Bottaro & Naqvi
2020; Naqvi & Bottaro 2021), we can predict the coated film thickness without any fitting
parameter.

We first present the solution for the coated film thickness using a homogenized boundary
condition to model the rough surface (§ 2). Using the effective macroscopic properties
of each surface derived from its microstructure, we solve the macroscopic lubrication
equations and predict the coated film thickness. We present the experimental methods in
§ 3, where we describe the fabrication of micropillar arrays, as well as the interferometry
technique used to measure h0. The model is compared to experimental data (§ 4), and
finally we discuss our results and their implications for further study of thin film flow over
rough surfaces (§ 5).

2. Model of thin film flow over a porous bed

The dip coating system is illustrated in figure 1, where a rough plate is pulled continuously
from a liquid with density ρ, surface tension γ , and dynamic viscosity η. Three regions
are observed: a flat film (region I) is connected by a dynamic meniscus (region II) to a
static meniscus where the film meets the bath (region III). We consider the film profile
h(z) indicated in figure 1(b), and in particular aim to find its limiting value h → h0 as
z → ∞.

We model the system by considering the flow of a thin liquid film over a rough or
porous plate. The challenge in modelling such a system arises, first, because of the
complex shape of the rough or porous surface, which is difficult to address by an analytical
solution. The second challenge is the multiscale nature of the problem: the roughness
amplitude hp may be much smaller than the film thickness h0, which makes a direct
numerical simulation computationally expensive. In addition, we desire to develop a
general model for thin film flow over surfaces with arbitrary roughness topography, and we
cannot arrive at such insight from seeking a separate numerical solution for each surface
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h(z)
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h̄(z)
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Figure 2. Boundary conditions for (a) smooth and (b,c) rough plates. Velocity profiles are sketched in a
reference frame moving with the plate for three conditions: (a) no slip, (b) slip, (c) slip and porous flow.
The yellow arrow represents the slip contribution, and the pink arrow represents the contribution from porous
flow, driven by a pressure gradient through the rough layer. For a rough surface, the slip contribution is O(ε0)

and the porous flow contribution is O(ε1) (Naqvi & Bottaro 2021).

texture that we wish to model. The homogenization method is an attractive choice for
addressing these problems, because it can address arbitrarily complex periodic roughness
patterns, yet requires a full numerical solution only within a periodic cell containing
a single roughness feature to produce effective parameters for a simplified equivalent
boundary condition (Mei & Vernescu 2010; Zampogna et al. 2019; Bottaro & Naqvi
2020; Naqvi & Bottaro 2021). These constant parameters are found by averaging the
solution of associated Stokes problems in the microscopic domain (Zampogna et al.
2019; Bottaro & Naqvi 2020; Naqvi & Bottaro 2021). The resulting boundary condition
can be applied in an analytical approach to the full-scale problem, which is treated
in a manner similar to the classic analysis for a smooth plate (Landau & Levich
1942).

Before any simplification, our system consists of a Newtonian liquid flowing over a
solid surface with arbitrary periodic roughness, which is governed by the Navier–Stokes
equations (2.1)–(2.2) subject to the boundary condition that fluid cannot flow through the
solid and that fluid velocity tangential to the solid is zero (no-slip). At the liquid–air
interface, we apply the no-shear boundary condition and a capillary stress. The model
proceeds in three steps. First, we present the governing equations in § 2.1, and after
assuming a separation of scales between the texture’s periodicity and the film thickness, in
§ 2.2 we identify a homogenized boundary condition that represents the roughness of the
plate yet can be applied at an equivalent flat surface ES (see figures 2b,c) instead of the
original complex roughness shape. Second, by assuming that the film is thin, we perform
a lubrication expansion on the governing equations and boundary conditions: the resulting
simplified equations are presented in each respective subsection. Finally, in § 2.3, we solve
the resulting equations for the film thickness h0 coated on the plate as a function of velocity
v0 and the liquid properties (ρ, γ, η).

2.1. Governing equations
The rough surfaces are pulled from a Newtonian liquid of density ρ and dynamic viscosity
η, such that the flow satisfies the three-dimensional incompressible Navier–Stokes

1001 A59-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1015


L. Molefe, G.A. Zampogna, J.M. Kolinski and F. Gallaire

equations,

∂u
∂t

+ (u · ∇)u = η

ρ
∇2u − 1

ρ
∇p + g, (2.1)

∇ · u = 0, (2.2)

where u = uxx̂ + uyŷ + uzẑ is the liquid velocity, p is the pressure, and g = −gẑ (g > 0)
is the gravitational acceleration. The operator ∇ is defined as ∇ = x̂(∂/∂x)+ ŷ(∂/∂y)+
ẑ(∂/∂z). In (2.1), assuming that the system is in steady state, we drop the unsteady term
∂u/∂t = 0. Assuming that velocities are zero in the y-direction, we simplify the problem
to two dimensions, x and z (see figure 1). We remark that while the assumption uy = 0
is clearly sensible for a case of two-dimensional periodic structures that are invariant in
the y-direction, such as ridges, it is not obvious that velocities should be zero along y for
generic roughness patterns, such as a bed of pillars. Yet as long as the roughness pattern
is periodic and isotropic in the ( y, z)-plane, there is no reason for any symmetry breaking
flow along y, and we may expect on average that that velocity is zero along y. Thus for
patterns that satisfy the condition of isotropy in the plane of the plate, this assumption is
sensible.

Supposing that a characteristic film thickness scale �′ is much smaller than a
characteristic scale �′′ of the interface profile variation along the film surface, we perform
a lubrication expansion in the small parameter δ = �′/�′′, arriving at the leading-order
equations (Reynolds 1886; Oron, Davis & Bankhoff 1997; Balestra 2018)

∂ p̃
∂ x̃

= 0, (2.3)

∂2ũz

∂ x̃2 = ∂ p̃
∂ z̃

+ ρg�′2

ηUz
, (2.4)

where ·̃ denotes dimensionless variables, and lengths and velocities have been normalized
by characteristic scales

x = �′x̃, z = �′′z̃, ux = Uxũx, uz = Uzũz. (2.5a–d)

The pressure is normalized as

p = ηUz

δ�′
p̃ = ηUz

�′2/�′′
p̃. (2.6)

In addition, the liquid velocity normal to the plate is much smaller than its velocity parallel
to the plate, so Ux ∼ δUz. This relation is required for mass conservation to hold at each
order (Oron et al. 1997). Later, we will require the dimensional forms of (2.3)–(2.4), which
are given as

∂p
∂x

= 0, (2.7)

η

ρ

∂2uz

∂x2 = 1
ρ

∂p
∂z

+ g. (2.8)

Note that the characteristic scale �′′ in our case is of the order of the capillary length a,
which sets the meniscus scale in region III (figure 1).
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2.2. Boundary conditions

2.2.1. Interface condition at the plate
Supposing that the characteristic spacing � between two periodic roughness elements
is much smaller than the size of the liquid domain �′ (ε = �/�′ 	 1), we use the
homogenized boundary condition described in Bottaro & Naqvi (2020), keeping terms up
to O(ε2). The parameter ε is a separation of scales parameter that is assumed to be small
in the homogenization procedure. Before specifying the boundary condition, we must
first define a fictitious equivalent surface, denoted ES, where the macroscopic effective
condition applies. Similar to Bottaro & Naqvi (2020), we define ES to be a flat plane
located at a distance dES from the bottom of the roughness features (figure 1a), and select
the location dES = hp, which means that ES is located at the interface between the rough
layer and the free-fluid region (figures 2b,c). As has been discussed previously (Espedal
et al. 2000; Marciniak-Czochra & Mikelić 2012), there is some freedom in the choice of
the distance dES: numerical results demonstrate empirically that shifting the equivalent
surface position by O(ε) does not significantly change the macroscopic results predicted
by a homogenized theory, as the variation of macroscopic results is within O(ε) (Lācis &
Bagheri 2017; Zampogna et al. 2019). Our choice of dES is based on the assumption that
liquid is always trapped within the rough layer, as has been observed in prior experiments
(Seiwert et al. 2011). In our case, hp represents a pillar height, but in general, hp represents
the characteristic peak-to-valley scale of the rough layer.

Note that due to the position of ES, we will later decompose the total film profile h(z)
into two parts, h(z) = hp + h̄(z), where hp is the known height of the trapped layer, and
h̄(z) is the unknown thickness of the free film above ES: solving the macroscopic model
will give the asymptotic free film thickness h̄0 ≡ h̄(z → ∞) measured with respect to
ES. The total film thickness will then be h0 = hp + h̄0. Having selected the equivalent
surface’s position, the boundary condition at ES is

ux(x = 0, z) = −Kitf ∂

∂z

(
∂uz

∂x
+ ∂ux

∂z

)
, (2.9)

uz(x = 0, z) = v0 + L
(
∂uz

∂x
+ ∂ux

∂z

)
+ Kitf

η

∂

∂z

(
−p + 2η

∂ux

∂x

)
, (2.10)

where L is the slip length, and Kitf is the interface permeability (Bottaro & Naqvi 2020;
Naqvi & Bottaro 2021). The conditions (2.9)–(2.10) on velocity u at the plate include the
speed v0 at which the plate is pulled in (2.10), which by itself represents a typical no-slip
condition, as well as the effect of the roughness pattern on the liquid velocity at the plate,
represented by the L and Kitf terms. The form of the boundary conditions (2.9)–(2.10)
indicates how roughness changes the boundary condition at ES as compared to the case
of a smooth plate: the tangential velocity uz parallel to ES is augmented by a contribution
of slip L and interface permeability Kitf , and the velocity ux of liquid penetrating through
ES can be non-zero, its value determined by Kitf (Bottaro & Naqvi 2020; Naqvi & Bottaro
2021).

Applying the same scaling (2.5a–d) as for the governing equations, we expand the
boundary conditions (2.9)–(2.10) in δ and retrieve, at leading order in δ,

ux(x = 0, z) = 0, (2.11)

uz(x = 0, z) = v0 + L ∂uz

∂x
− Kitf

η

∂p
∂z
. (2.12)
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The result of the lubrication expansion for ux in (2.11) indicates that at leading order in
δ, velocities perpendicular to the equivalent surface are zero. Thus in the model, no fluid
transfers from the free-fluid region to the rough layer. This result is sensible in light of
findings that the wall-normal velocity ux at ES is typically 1–2 orders of magnitude smaller
than the tangential slip velocity (Sudhakar et al. 2021).

The boundary condition (2.12) for flow tangential to ES is illustrated in figure 2(c),
where it is compared to the typical no-slip condition (figure 2a) and Navier slip condition
(figure 2b). Velocity profiles have been drawn in the reference frame of the moving plate.
As illustrated in figure 2(b), the slip condition modifies the velocity profile by augmenting
the velocity at ES (the L(∂uz/∂x) term). When we do not neglect the flow through the
rough layer, the slip contribution is augmented further by a flow along the interface driven
by the pressure gradient within and above the rough layer (the (Kitf /η)(∂p/∂z) term),
illustrated as the pink arrow in figure 2(c). Even if the slip and permeability contributions
in (2.12) are at the same order in terms of the lubrication parameter δ, one should note that
these contributions are not equally important in terms of the homogenization parameter ε
(Naqvi & Bottaro 2021). The interface permeability term is usually found to be negligible
(O(ε1)) compared to the slip term (O(ε0)) in the case of laminar flow over rough surfaces
in an unbounded fluid domain (Zampogna et al. 2019), but, as we will see, this term cannot
be neglected in the case of a thin film flow. Note that the interface permeability term is
absent in previously proposed slip models (Krechetnikov & Homsy 2005; Liao et al. 2013;
Sathyanath et al. 2020).

2.2.2. Interface condition at the liquid–air interface
At leading order in δ, we impose at the free surface a zero shear stress condition

η
∂uz

∂x
(x = h̄, z) = 0 (2.13)

as well as capillary pressure at the free interface, expressed as

p(x = h̄, z) = −γ
∂2h̄
∂z2[

1 +
(
∂ h̄
∂z

)2]3/2 ≈ −γ ∂
2h̄
∂z2 , (2.14)

where the final expression for interface curvature assumes small slopes (Landau & Levich
1942; Balestra 2018).

2.3. Solution
To find h0 for a given surface, we solve the system of governing equations (2.7)–(2.8)
combined with the boundary conditions (2.11)–(2.12). In the next section, we will compare
the results from considering two cases for the boundary condition (2.12): a case where only
the slip term is present, and a case where flow through the rough layer also contributes.

We begin by finding the velocity profile in the thin film. After integrating (2.8) once, we
arrive at

∂uz

∂x
=
(

1
η

∂p
∂z

+ ρg
η

)
x + F(z), (2.15)
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Coating thickness prediction for a film on a rough plate

and we integrate a second time to arrive at the velocity profile

uz =
(

1
η

∂p
∂z

+ ρg
η

)
x2

2
+ F(z) x + G(z), (2.16)

where F and G are unknown functions of z. Applying the no-stress condition (2.13) at the
liquid–air interface x = h̄, we solve for F(z) using (2.15):

F(z) = −
(

1
η

∂p
∂z

+ ρg
η

)
h̄. (2.17)

At the solid–liquid interface x = 0, substitute the boundary condition (2.12) into (2.16) to
solve for G(z):

uz(x = 0, z) = G(z) = v0 + L ∂uz

∂x
− Kitf

η

∂p
∂z

= v0 − L
(

1
η

∂p
∂z

+ ρg
η

)
h̄ − Kitf

η

∂p
∂z
, (2.18)

where we know that ∂p/∂z depends only on z, because p does not depend on x by (2.7).
From the form of G(z) in (2.18), which gives the velocity profile (2.16) at x = 0, it is
apparent that the boundary condition at the rough interface acts as a correction to the
no-slip boundary condition used in the dip coating problem for a smooth surface, in which
G(z) = v0 (Landau & Levich 1942). The velocity profile in the thin film is thus

uz(x, z) =
(

1
η

∂p
∂z

+ ρg
η

)(
x2

2
− h̄x − h̄L

)
− Kitf

η

∂p
∂z

+ v0, (2.19)

and, substituting the pressure from (2.14), we have

uz(x, z) =
(
ρg
η

− γ

η

d3h̄
dz3

)(
x2

2
− h̄x − h̄L

)
+ γ

η

d3h̄
dz3 Kitf + v0. (2.20)

For an incompressible fluid, the flux j per unit plate width can be written

j =
∫ h̄

0
uz dx = constant. (2.21)

Integrating uz in (2.20) to compute j via (2.21) produces

j = v0h̄ +
(
ρg
η

− γ

η

d3h̄
dz3

)(
− h̄3

3
− Lh̄2

)
+ γ

η

d3h̄
dz3 Kitf h̄. (2.22)

Keeping in mind that j is a constant, (2.22) defines the liquid layer thickness h̄ = h̄(z). We
rewrite the ordinary differential equation (2.22) for h̄ as

d3h̄
dz3 = 3η

γ

j − v0h̄

h̄3 + 3Lh̄2 + 3Kitf h̄
+ ρg
γ

h̄3 + 3Lh̄2

h̄3 + 3Lh̄2 + 3Kitf h̄
. (2.23)

To solve the third-order differential equation for h̄, we require three boundary conditions,
which will come from matching the dynamic meniscus profile h̄(z) to the flat film (figure 1,
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region I). Prior to that, we non-dimensionalize (2.23) (Landau & Levich 1942). Introducing
a non-dimensional film thickness μ, defined as

μ = v0h̄
j
, (2.24)

we can rearrange (2.23) to arrive at

d3μ

dz3 = 3η
γ

v4
0

j3
1 − μ

μ

(
μ2 + 3v0

j
Lμ+ 3v2

0
j2

Kitf

) + v0

j
ρg
γ

μ

(
μ2 + 3v0

j
Lμ

)
μ

(
μ2 + 3v0

j
Lμ+ 3v2

0
j2

Kitf

) .
(2.25)

The scale 3ηv4
0/(γ j3) naturally provides a change of variables for the spatial coordinate z,

so along the plate we introduce the non-dimensional spatial coordinate λ, defined as

λ =
(

3η
γ

)1/3 v
4/3
0
j

z, (2.26)

and arrive at a non-dimensional version of (2.23),

d3μ

dλ3 = 1 − μ

μ(μ2 + L∗μ+ K∗)
+ ρgj2

3ηv3
0

μ(μ2 + L∗μ)
μ(μ2 + L∗μ+ K∗)

, (2.27)

where we have defined a non-dimensional slip L∗ and interface permeability K∗:

L∗ = 3v0

j
L, K∗ = 3v2

0
j2

Kitf . (2.28a,b)

Assuming that ρgj2/(3ηv3
0) 	 1, which is valid for low pulling velocities Ca → 0

(Landau & Levich 1942; Wilson 1982), we neglect the final term of (2.27), giving the
simplified equation

d3μ

dλ3 = 1 − μ

μ(μ2 + L∗μ+ K∗)
, (2.29)

relating film thickness μ to position λ along the plate. Following Landau & Levich (1942),
we conclude that μ → 1 in the flat film region, that is,

lim
λ→∞

μ = 1, (2.30)

since higher derivatives of μ must tend to zero if the film is flat. In other words, we
have d3μ/dλ3 → 0 in (2.29). At large values of λ, we thus assume that μ has the form
μ(λ) = 1 + μ1(λ), where μ1 	 1, and solving the resulting equations at the leading order
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Coating thickness prediction for a film on a rough plate

produces the matching conditions in the dynamic meniscus region as λ→ ∞:

μ(λ→ ∞) = 1 + A exp
(

− λ
3√1 + L∗ + K∗

)
, (2.31)

dμ
dλ
(λ→ ∞) = (1 − μ)[1 + L∗ + K∗]−1/3, (2.32)

d2μ

dλ2 (λ→ ∞) = (μ− 1)[1 + L∗ + K∗]−2/3, (2.33)

where A is an unknown constant of integration (see Appendix A). The constant A poses
a problem, but this can be overcome by the variable transformation used in Landau &
Levich (1942), one that is also favourable for numerical integration, because it transforms
the boundary location to a finite value rather than λ→ ∞. To numerically solve the film
thickness equation (2.29) together with boundary conditions (2.31)–(2.33), we define the
transformation (see Appendix B)

ξ =
(

dμ
dλ

)2

, (2.34)

and arrive at the differential equation

d2ξ

dμ2 = 2(μ− 1)
μ(μ2 + L∗μ+ K∗)

√
ξ

(2.35)

with boundary conditions

ξ(μ → 1) = (1 − μ)2[1 + L∗ + K∗]−2/3, (2.36)

dξ
dμ
(μ → 1) = 2(μ− 1)[1 + L∗ + K∗]−2/3, (2.37)

where we now apply the boundary condition at a finite value μ → 1, since we know μ →
1 as λ→ ∞. Note that (2.34) implies a transformation of the film curvature as

d2μ

dλ2 = 1
2

dξ
dμ
, (2.38)

which will be important later. Reducing the order of the equations from third to second
order has the consequence that we will not be able to solve exactly for the full film
thickness profile μ(λ), since the unknown constant A remains. However, as we will see,
knowing that the film curvature d2μ/dλ2 is given by (2.38) will be sufficient to find
the film thickness in the flat film region where μ(λ→ ∞) = 1, or equivalently, where
h̄0 ≡ h̄(z → ∞) = j/v0 (see (2.24)).

The system of equations (2.35) with (2.36)–(2.37) is not closed, because the unknown
flux j remains in the terms L∗ = L∗( j) and K∗ = K∗( j) (see (2.28a,b)). We know that
the flux j is governed by the flow of liquid through the meniscus region where the flat
film meets the bath, because there the capillary suction competes with viscous stress
to determine h0. Thus we can find j by considering the form of the static meniscus
in region III (figure 1). Assuming that the meniscus is quasi-static, we solve equations
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balancing capillary and hydrostatic pressure to find the static meniscus shape, and arrive
at a matching condition for the meniscus curvature at the bath (Landau & Levich 1942):

d2h̄
dz2 (z → 0) =

√
2

a
, (2.39)

where we recall that a = √
γ /(ρg) is the capillary length. Non-dimensionalizing from

(z, h̄) to (λ, μ) using (2.24) and (2.26), we have the curvature condition for the bottom of
the dynamic meniscus,

d2μ

dλ2 (λ→ 0) =
√

2 γ 2/3j

av5/3
0 (3η)2/3

, (2.40)

now in terms of the unknown flux j that we seek. Defining the meniscus curvature

κ ≡ d2μ

dλ2 (λ→ 0), (2.41)

we see that the dynamic meniscus governed by (2.29), or equivalently, (2.35), must
exhibit a profile μ(λ) whose curvature κ = (d2μ/dλ2)(λ→ 0) matches the value on the
right-hand side of (2.40). The left-hand side of (2.40) can be solved for using (2.35)–(2.37)
and the transformation (2.38), yet its solution still depends on the value of the unknown
j because L∗ = L∗( j) and K∗ = K∗( j). The right-hand side is also determined except for
the unknown j. Putting aside for now that j is unknown, knowing that μ → 1 in the flat
film region as λ→ ∞ (see (2.30)), from (2.40) we have an expression for the free film
thickness h̄ → h̄0, where

h̄0 = j
v0

= κ√
2

v
2/3
0 (3η)2/3

γ 1/6(ρg)1/2
. (2.42)

The last equality comes from using the expression for j derived in (2.40), where it becomes
clear how matching to the static meniscus curvature provides the information needed to
determine h̄0. In terms of capillary length a and capillary number Ca, (2.42) becomes

h̄0 = 32/3κ√
2

a Ca2/3, (2.43)

which has the form of (1.1), except that the curvature κ = κ(L,Kitf ) is no longer constant
but is a function of the slip L and interface permeability Kitf .

To determine the value of the curvature and close the solution (2.43), we examine
the equation for κ given in (2.40): after rearranging the right-hand side and defining the
non-dimensional parameter H = h̄0/a = j/(v0a), we notice that (2.40) has the form

κ(H) =
√

2
32/3 Ca−2/3 H. (2.44)

For completeness, we provide the definition of κ(H) (2.41) in terms of the transformation
(2.38) as

κ(H) ≡ lim
λ→0

d2μ

dλ2 (L∗(H),K∗(H)) = lim
μ→∞

1
2

dξ
dμ
(L∗(H),K∗(H)), (2.45)

where this last term can be obtained from the integration of differential equation (2.35)
with boundary conditions (2.36)–(2.37). This makes clear the dependence of κ on the
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(b)(a)

d
hp

20 µm

(c)

Figure 3. Scanning electron microscopy images of rough surfaces etched into silicon wafers. In these three
examples, pillars have height hp = 7.2 ± 0.2 μm, diameter d = 3.3 ± 0.1 μm, and spacings (a) � = 5 μm, (b)
� = 12 μm, and (c) � = 36 μm. Scale bars are 20 μm.

unknown flux j, or equivalently, the unknown parameter H. Note that

L∗(H) = 3L
Ha

and K∗(H) = 3Kitf

(Ha)2
. (2.46a,b)

A nonlinear equation of the form (2.44)–(2.45) can be solved numerically by fixed-point
iteration (Burden & Faires 2011) with the following algorithm:

(i) We first provide an initial guess H0 to solve for κ0 = κ(H0). The solution for κ is
retrieved by solving (2.35)–(2.37) and using the transformation (2.38) to compute
κ = (d2μ/dλ2)(λ→ 0).

(ii) For i > 0, compute Hi = (32/3/
√

2)Ca2/3 κi−1, and solve for κi = κ(Hi).
(iii) If the difference Δ = (Hi − Hi−1)/Hi−1 is acceptably small, then stop the

iteration. Otherwise, continue the iteration. Here, we stop the iteration using a
relative tolerance value Δ ≤ 10−6.

The iteration is implemented in Python, where we solve (2.35)–(2.37) for κ using
the SciPy package (Virtanen 2020). Code is provided in the supplementary material at
https://doi.org/10.1017/jfm.2024.1015. Knowing the non-dimensional free film thickness H
from the fixed-point iteration, we immediately arrive at the dimensional free film thickness
h̄0 = Ha, or equivalently, the fixed-point iteration provides the solution for κ , meaning that
the expressions (2.42) and (2.43) are fully determined.

3. Dip coating experiments

To probe how roughness modifies the coated film thickness for varied roughness
parameters, we perform experiments in which a viscous silicone oil coats rough silicon
wafers. Rough surfaces are etched from silicon using photolithography and dry etching
to produce a square grid of micropillars (figure 3). Pillar height is hp = 7.2 ± 0.2 μm,
and pillar diameter is d = 3.3 ± 0.1 μm. Spacing between the pillars varies in the range
� = 5–72 μm, so that the solid area fraction varies in the range φ = 0.2–34 %. Parameters
for the surfaces tested are listed in table 1, where

φ = πd2

4�2 (3.1)

for cylindrical pillars.
The dip coating experimental apparatus is illustrated in figure 4. A bath of dimensions

9.0 cm × 9.0 cm × 19.0 cm (length × width × depth) is constructed from acrylic plates
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φ (%) � (μm) L (μm) L/� Kitf (μm2) Kitf /�2

0.2 72 6.84 0.095 26.96 0.0052
0.7 36 5.94 0.165 20.61 0.0159
2.6 18 3.55 0.197 10.82 0.0334
6 12 1.91 0.159 4.54 0.0315
24 6 0.33 0.055 0.25 0.0069
34 5 0.16 0.031 0.07 0.0026

Table 1. Six rough surfaces are used for the experiments, having pillars with constant diameter d = 3.3 ±
0.1 μm, constant height hp = 7.2 ± 0.2 μm, and varied spacing �. The solid area fraction is φ = πd2/(4�2).
Computed slip and interface permeability values used in the model (see § 2 and Appendix C) are listed in
dimensional (L, Kitf ) and non-dimensional (L/�, Kitf /�2) forms.

g

v0

ρ, γ, η

Laser

Beam

expander

Thin film

on surface

Lens
Beam

stop

Lens

tube

Camera

Liquid

bath

Moving

stage

Rough 

surface

Camera

Beamsplitter

(a) (b) (c)

Figure 4. Dip coating experimental apparatus. (a) Side view. A rough surface is held in place while a liquid
bath of density ρ, surface tension γ , and dynamic viscosity η moves downwards at speed v0. A camera records
an interferometric image of the experiment. (b) Top view. A laser passes through a beam expander and into
a beamsplitter, which directs it towards the thin film of liquid. The light interferes in the thin film, and an
image of the interference pattern is recorded by the camera. (c) A typical interferometric image of a thin film of
silicone oil on a rough silicon wafer (left-hand image) during the steady regime and (right-hand image) during
the drainage regime after the bath has stopped moving. Scale bars are 0.5 mm.

and filled with silicone oil (Silitech AG) of density ρ = 941 ± 9 kg m−3, surface tension
γ = 21.2 ± 0.2 mN m−1, and viscosity η = 20.17 ± 0.07 mPa s, where the measured
values are reported with 95 % confidence intervals. The bath’s length/width (9.0 cm ≈
60a) and depth (19.0 cm ≈ 125a) are many times larger than the capillary length a ≈
1.5 mm, such that the edges of the bath do not affect the flow (Mayer & Krechetnikov 2012;
Kim & Nam 2017). The solid plates are approximately 5 cm × 2 cm (length × width), and
0.05 cm thick. The surfaces are wide enough (2 cm) that flow near the edges of the plate
does not modify film thickness near the centre where the measurement is taken (Xue &
Stone 2020), which is verified visually and by confirming that measured film thicknesses
match predicted values in the case of a smooth plate. The bath is placed on a stage that
can be moved at speeds between v0 = 1 μm s−1 and v0 = 5 mm s−1 by a linear motor
(CONEX-LTA-HS, Newport).

A rough surface is held stationary in the liquid, and the bath is moved downwards
at a constant velocity v0, while a camera (Nikon D850) records an interferometric
image of the film (figure 4a). The optical path is illustrated in figure 4(b). A red laser
(Arima ADL-63054TL) with wavelength λ0 = 635 nm is directed towards the thin liquid
film and reflected back towards a camera (Nikon D850), where the measured intensity
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Coating thickness prediction for a film on a rough plate

depends on the film thickness due to thin film interference (Schödel 2018). When the
experiment is running, the bath has constant velocity v0 relative to the plate, and the
film thickness is approximately constant, so the intensity is fairly constant across the
image (figure 4(c), left-hand image). After the bath stops moving downwards, we reach
the drainage regime (Jeffreys 1930; Seiwert 2010) and the film begins to thin, producing a
stripe pattern (figure 4(c), right-hand image). We subsequently move the field of view until
we locate the final fringe, which provides a reference height where the free film thickness
is h̄(z) = 0, thereby translating the number of fringes to an absolute film thickness.
Material characterization and representative experimental videos may be found in the
supplementary material.

4. Results

Having solved for the free film thickness h̄0 (2.43) as a function of meniscus curvature κ ,
capillary length a, and capillary number Ca, we are able to compute h0 for varied surface
roughness (given by particular L and Kitf values), liquids (encoded within a and Ca), and
dip coating velocities (given by Ca). In §§ 4.1 and 4.2, we solve the microscopic problem
to compute effective parameters L and Kitf , and demonstrate how these parameters
determine macroscopic model predictions. In § 4.3, we compare our model to experimental
data.

4.1. Microtexture slip L and interface permeability Kitf

To make a prediction for a given rough surface, we must compute the slip L and interface
permeability Kitf associated with the structure of the rough features, for which we use
the homogenization framework (Bottaro & Naqvi 2020). Microscopic simulations are
performed as described in Appendix C. In figure 5, we perform a parametric study of
the normalized slip L/� (figure 5a) and interface permeability Kitf /�2 (figure 5b) for
cylinders with varied normalized diameter d/� and height hp/�, where � is the scale
of the computational domain that defines a single periodic cell. We consider 10 pillar
heights (hp/� = 0.2–2) and 9 diameters (d/� = 0.1–0.9), for a total of 90 simulations.
Illustrations of structures with minimal and maximal values of d/� and hp/� are shown in
figure 5(a). Diamond points indicate the locations of the experimental rough surfaces listed
in table 1, except the surface with lowest φ, which lies outside the plot range. Considering
variation along the vertical d/� axis, wide pillars (d/� ≈ 0.9 in figures 5a,b) tend to
have low L/� and Kitf /�2, whereas thin pillars (d/� ≈ 0.1 in figures 5a,b) tend to have
high L/� and Kitf /�2. As the pillar diameter decreases, slip and permeability increase,
which is sensible because the amount of fluid at the equivalent surface ES increases as
the solid fraction φ decreases. Whereas macroscopic parameters depend strongly on the
normalized pillar diameter d/� (or equivalently, the solid fraction φ given by (3.1)), by
contrast, they vary little along the horizontal hp/� axis, except for short pillars with height
below hp/� ∼ 0.6. Thus we conclude that the largest changes in L and Kitf come from
changing solid fraction (vertical gradients in figures 5a,b), rather than the depth of the
roughness (horizontal gradients in figures 5a,b).

To emphasize the importance of φ in determining L and Kitf , figures 5(c,d) display
values of L/� and Kitf /�2 as functions of φ for the surfaces considered in figures 5(a,b),
defined in (3.1). The data tend to collapse to a single curve, with both L/� and Kitf /�2

decreasing with increasing φ. Points that deviate from the trend are at low hp/�, as
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Figure 5. Macroscopic parameters for surface designs with varied pillar shapes: (a) L/� and (b) Kitf /�2.
Slip L and interface permeability Kitf are normalized by �, the size of the computational domain, which is
equivalent to the periodicity of the pattern. In (a,b), diamond markers indicate the experimental surfaces listed
in table 1, except for the surface with lowest φ, which lies outside the plot range. Variation of (c) L/� and
(d) Kitf /�2 with solid area fraction φ. Variation of (e) L/� and ( f ) Kitf /�2 with normalized pillar height hp/�.
Points in (c–f ) having the same pillar diameter are grouped by colour, where the colours in (a) have been used
to indicate the value of d/�. In (c–f ), triangular markers indicate values for an inverted and upright cone. Slip
and interface permeability are computed as described in Appendix C.

mentioned previously. Points having the same diameter d/� are indicated in the same
colour. To determine whether the trend is independent of the microscopic feature’s shape,
in addition to pillars we also consider a microscopic cell with cones (open triangular
symbols): an inverted cone having high φ, and an upright cone having low φ. Despite the
difference in shapes, the cones’ solid fractions (considering ES at each cone’s top surface)
also determine their L/� and Kitf /�2 values. Therefore, solid fraction appears to be the
dominant factor in determining L and Kitf , since roughness features with different shapes
appear to have similar values of L and Kitf , as long as φ is the same. For dip coating flow,
and perhaps for more general thin film flow, these data suggest that the solid fraction φ
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is more important to determine slip and interface permeability than the precise roughness
shape.

Although it is evident in figures 5(a,b) that the depth of a groove or structure has a much
less significant effect on L and Kitf than changing the solid fraction φ, it is interesting to
note that increasing hp has a primary effect in increasing interface permeability Kitf , while
the slip does not change as significantly. Observe, for instance, the large spread in Kitf /�2

values at each φ in figure 5(d) compared to the smaller spread in L/� values in figure 5(c).
The variation in Kitf is more easily visualized in figures 5(e, f ), where points having the
same diameter d/� are again grouped in the same colour. At high d/� (dark purple points),
changing hp has almost no effect, but at low d/� (light yellow points), we observe larger
changes in Kitf /�2 with hp/� as compared to the changes in slip L/�. In physical terms,
this is reasonable: the parameter Kitf describes the amount by which tangential flow at
ES is increased by flow through the rough layer, and flow through the rough layer is less
restricted when height hp grows, thus increasing Kitf until a limiting value. Slip L remains
fairly constant because the solid fraction φ at ES does not change when hp changes.

Because slip and interface permeability are both derived from the structure of the rough
surface (Beavers & Joseph 1967), we expect that we cannot vary them completely as
independent parameters. Indeed, early models proposed a length scale

√
k/α as a slip

length, where k is the rough/porous layer permeability, and α is a constant depending
on the particular microscopic pore structure (Beavers & Joseph 1967). Based on this
reasoning, we should then expect

Kitf ∝ L2. (4.1)

The relation between slip and permeability values for the surfaces in figure 5 is shown in
figure 6, along with the relation (4.1) (dash-dotted line). The trend with decreasing pillar
diameter seems to closely follow Kitf = L2. As pillar diameter decreases from d/� = 0.9
to d/� = 0.1, the L and Kitf values increase significantly, following the trend (4.1). The
variation in hp/� = 0.2–2 adds some spread to the data, but the general trend remains.
The cones (figure 6, triangles) also follow (4.1). For comparison with previous works, we
computed the value of the constant α for each structure and find that it varies within the
range α ≈ 0.7–2.2, but is always of order O(1) (see Appendix D), confirming the ordering
relation (4.1).

4.2. Model predictions
We have examined how the microscopic shape of rough features affects the values of the
macroscopic effective parameters L and Kitf , which are a homogenized representation
of a rough surface’s properties. Now we turn our focus towards determining how these
effective parameters affect the dip coating flow over a plate (figure 1). The solution to
(2.44) for the meniscus curvature κ is plotted as log(κ) in figure 7 for varied slip L and
interface permeability Kitf , which have been normalized by the capillary length a. The
solution has been plotted for varied values of capillary number Ca, the non-dimensional
pulling velocity. Note that because we are now considering the macroscopic problem, we
normalize L and Kitf by the macroscopic scale a. Microscopic length scales have been
‘forgotten’ following the homogenization procedure.

For small slip L → 0 or small interface permeability Kitf → 0, the film thickness given
by computing (2.43) is found to be the same as the value expected for a smooth surface,
κsmooth = 0.6445 (Landau & Levich 1942; Wilson 1982). To visualize a range of slip
and permeability where the roughness may be considered negligible, we have plotted
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Figure 6. Relation between non-dimensional slip L/� and interface permeability Kitf /�2 for all the surfaces
considered in figure 5, together with the relation Kitf = L2 as a dash-dotted line (Beavers & Joseph 1967). The
surfaces are periodic, with the following unit structures: pillars with diameter d/� = 0.1–0.9, hp/� = 0.2–2,
and constant spacing � (circles); the experimentally designed pillar arrays described in table 1 (diamonds);
and a cone that was either inverted or upright (triangles). Non-dimensional pillar diameter d/� is indicated in
colour for circular and diamond points.
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10−8 10−6 10−4 10−2
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L/a

(b)(a) (c)

Figure 7. Curvature κ as a function of normalized slip L/a and normalized interface permeability Kitf /a2,
which have been rescaled with the capillary length a. We consider three capillary numbers: (a) Ca = 10−5, (b)
Ca = 10−4, and (c) Ca = 10−3. The red shaded region indicates where κ ≥ 0.99κsmooth, where κsmooth is the
curvature for the smooth case. The relation Kitf = L2 is plotted (yellow dash-dotted line).

the contour given by κ = 0.99κsmooth, and shaded the region 0.99κsmooth ≤ κ ≤ κsmooth

in red. Within this range, curvature κ , and thus the film thickness h̄0, differs from that of a
smooth plate by less than 1 %. The red shaded region is informative about the sensitivity of
curvature κ to varied L and Kitf , while we note that κ is exactly κsmooth only at the origin
(L,Kitf ) = (0, 0). We then observe that increasing either L or Kitf decreases κ and thus
decreases the free film thickness h̄0 ∝ κ . Another region of interest is the black region,
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Coating thickness prediction for a film on a rough plate
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L/a = 10–4, Kit f/a2 = 10–8

L/a = 10–3, Kit f/a2 = 10–6

L/a = 10–2, Kit f/a2 = 10–4

L/a = 10–1, Kit f/a2 = 10–2
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10–1
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a Ca2/3/L
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Figure 8. Coating thickness for varied surface parameters. (a) Dimensionless free film thickness h̄0/a varies
for surfaces with different normalized slip L/a and interface permeability Kitf /a2. Assuming that Kitf ∝ L2,
we see that increasing the magnitude of slip L decreases the coated free film thickness. In addition, the critical
capillary number Cac increases significantly with greater slip. The capillary length for our experimental system
is a ≈ 1.5 mm. (b) The curves are self-similar when considering h̄0/(aCa2/3) versus aCa2/3/L. The result
indicates that the critical capillary number Cac scales as (L/a)3/2.

where κ = 0. By (2.42), for κ = 0, we have h̄0 = 0 and no free film is coated, which
corresponds qualitatively to the physical observation by Seiwert et al. (2011). Thus for a
given liquid and withdrawal speed, the results in figure 7 indicate that designing a surface
with a sufficiently high L or Kitf , or an appropriate combination of the two, ensures that
a film is coated only within the rough layer and not on top of the textures. From the plots
with increasing Ca in figure 7, we can make a physical observation that higher Ca (having
higher speed v0, higher viscosity η, or a lower liquid surface tension γ ) increases the
values of L or Kitf necessary to achieve coating only within the rough layer, without an
additional free film. Although we can observe the variation of κ with L and Kitf separately,
we have previously found in figure 6 that the effective parameters appear to closely follow
the relation (4.1). Thus we have plotted Kitf = L2 as a dash-dotted line in figure 7,
and we expect that the variation in κ for different surfaces will follow the trend along
this line.

For a given surface (a given point in the L–Kitf space in figure 7), we can observe
how the film thickness depends on the non-dimensional pulling velocity Ca. Figure 8(a)
is a plot of the normalized film thickness h̄0/a as a function of Ca, for five different
surfaces with varied L and Kitf . We have chosen values such that Kitf = L2, as we have
observed from the data presented in figure 6. In all cases there is a critical capillary number
Cac at which no film is coated on top of the textures, in qualitative agreement with the
experiments of Seiwert et al. (2011). The Cac value increases with increasing L and Kitf .
Physically, this is because a higher L or Kitf signifies less viscous stress at ES that would
promote deposition. Therefore, it is more difficult, and requires higher velocity, to coat a
free film on surfaces with roughness features promoting slip at the interface, a result that
has implications for surface design.

Although the relation of coating thickness h̄0 to coating velocity changes significantly
with slip and interface permeability (figure 8a), we can also demonstrate that the solution
has a universal character via the existence of a similarity solution. Assuming that the
relation (4.1) holds, we substitute Kitf = L2 (figure 6) into (2.29) and use the relations
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(2.44) and (2.46a,b) to arrive at an equation

d3μ

dλ3 = 1 − μ

μ3 + 3bκ−1 Ca−2/3
(L

a

)
μ2 + 3b2κ−2 Ca−4/3

(L
a

)2

μ

(4.2)

for μ = μ(λ, β,Ca) in terms of three variables, λ, β ≡ L/a and Ca. Here, b = 3−2/3
√

2
is a constant, and κ is the meniscus curvature (2.40). A similarity solution ν = ν(λ, s)
can then be found satisfying (4.2), with the similarity variable being s = a Ca2/3/L (see
Appendix E). Performing the same matching procedure as in § 2, but instead rescaling to
use a dilated curvature κν = d2ν/dλ2, allows us to show that the relation (2.43) for the film
thickness h̄0 is universal no matter the value of L. Accordingly, figure 8(b) shows the data
rescaled using the relevant parameters; we observe that plotting h̄0/(a Ca2/3) as a function
of a Ca2/3/L produces a collapse of the film thickness curves. The horizontal asymptote
in figure 8(b) implies h̄0 ∼ a Ca2/3, which we already found in § 2. However, the collapse
to constant critical value a Ca2/3/L ∼ 1 provides further insight into the value of Cac,
which we find to be

Cac =
(L

a

)3/2

, (4.3)

confirming a similar scaling for the critical capillary number Cac presented in Seiwert
et al. (2011), and thereby quantifying how Cac increases with increasing slip (also see
Devauchelle et al. 2007).

4.3. Comparison with experiments
As described in § 4.1, homogenization has allowed us to deduce effective parameters
L and Kitf from arbitrary periodic microscopic structures. The microscopic simulation
provides closure to the system (2.35)–(2.37) by providing values of L and Kitf , and in
§ 4.2 we solved the macroscopic problem for the free film thickness h̄0. We now use the
model to predict experimentally measured film thicknesses. Predicted h̄0 for a surface with
� = 36 μm is plotted as a function of Ca in figure 9 (light blue solid line), where we have
L = 5.94 μm and Kitf = 20.61 μm2. The model is in good agreement with experimental
data (light blue filled symbols), although we observe a slight deviation around Ca =
3 × 10−4 where the free film thickness sharply decreases to zero. Each experimental
point represents the average of 5–6 measurements, vertical error bars represent a 95 %
confidence interval in h̄0/a, and horizontal error bars (too small to be visible) likewise
represent a 95 % confidence interval in Ca. For comparison, we have also plotted the data
of Seiwert et al. (2011) at two viscosities (open symbols), compared to our model (dark
blue solid line) where slip and interface permeability are computed for the pillar design
described in Seiwert et al. (2011), giving values L = 1.7 μm and Kitf = 4.0 μm2. Though
the prior experiments were conducted for two different viscosities (indicated by either
pentagons or stars), the model prediction does not differ for varied viscosity. The model
(solid lines) is able to reproduce the sharp decrease in h̄0 at a critical capillary number Cac,
though with a deviation at low h̄0. The results in figure 9 emphasize the importance of the
interface permeability term to the present model, which arises from the form of (2.12).
Without this term (setting Kitf = 0), a model that includes only the slip term (figure 9,
dashed lines) is not able to capture the behaviour at Cac. Rather than a critical cutoff, a
model with only slip simply predicts a different scaling below Cac of h̄0/a ∼ Ca2 (Liao
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L = 1.7 µm, Kitf = 0 µm2

L = 1.7 µm, Kitf = 4.0 µm2

L = 5.9 µm, Kitf = 0 µm2

L = 5.9 µm, Kitf = 20.6 µm2

Smooth

h̄ 0
/
a

Figure 9. Measured dimensionless free film thickness h̄0/a compared to models with and without Kitf . The
solid grey line indicates the theoretical prediction for a smooth plate, with the black points indicating our
experimental measurements. Dashed blue lines indicate theoretical predictions for the ‘pure slip’ case (Kitf =
0 μm2), whereas solid blue lines indicate predictions with non-zero slip and interface permeability. Data points
are from our experiments with a surface having pillar spacing � = 36 μm (filled blue symbols), or from Seiwert
et al. (2011) (open symbols). Error bars indicate 95 % confidence intervals in our measurements. Shapes
represent different liquid viscosities used in the experiments of Seiwert et al. (2011): 19 mPa s (pentagons) and
97 mPa s (stars). The capillary length in all experiments is a ≈ 1.5 mm. Source code for computing predictions
for surfaces with varied effective parameters can be found at https://www.cambridge.org/S0022112024010152/
JFM-Notebooks/files/coating_thickness_prediction.ipynb.

et al. 2013), which does not match experimental observations. As expected, at large Ca,
the data converge to h̄0 as given by (1.1).

Our model underpredicts Cac compared to both previous experimental data (dark blue
open symbols) (Seiwert et al. 2011) and our experimental data (light blue filled symbols).
In the prior experiments, the critical capillary number was Cac ≈ 10−4, whereas the
model predicts Cac ≈ 5 × 10−5, so the model underpredicts the critical capillary number
by approximately 50 %. The solid fraction was approximately φ = 7 % (Seiwert et al.
2011). In our experiment, φ = 0.7 %, and we observe a similar deviation, with predicted
Cac ≈ 2 × 10−4 and measured Cac ≈ 3 × 10−4.

Coating experiments were performed for all the surfaces listed in table 1.
Non-dimensional film thickness h̄0/a is plotted as a function of Ca in figure 10. Each
surface is indicated in a different colour, where experiments are plotted as points, and the
model prediction is plotted as a solid line. Our model can accurately predict film thickness
coated on a rough plate, and does so without fitting parameters. The inset displays the same
data on a logarithmic scale to better show the data at low Ca and h̄0/a. As may be expected,
the model predicts coated film thickness accurately until the film becomes so thin that
the interface approaches the top surface of the pillars; in this case, the homogenization
parameter ε = �/h̄0 is no longer small, and the agreement with the model becomes less
accurate. It is also clear from the inset of figure 10 that the prediction of Cac is much better
for lower φ than for dense pillar arrays. Remarkably, the model still captures the trend in
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Figure 10. Dimensionless free film thickness h̄0/a for surfaces with varied area fraction φ. Each surface is
represented by a different colour, where experimental measurements are plotted as points, and the model is
plotted as a solid line. Error bars indicate 95 % confidence intervals. The inset shows a plot on a logarithmic
scale to better display data at low Ca.

the data for ε approaching O(1). Thus we are able to model the effect of microstructure
on coating thickness in dip coating in a predictive way, and our results demonstrate a large
range of validity of the homogenization approach, including its application to model thin
film flows, a class of problems that may initially seem to present adverse conditions for
use of the homogenization framework.

5. Discussion and conclusion

Coating flows and wetting on rough surfaces are common in both natural and engineered
systems (Stauffer et al. 1976; Barthlott & Neinhuis 1997; Nong & Anderson 2010). Here,
we have investigated film deposition by dip coating a rough plate. One approach to
modelling a rough boundary is to find equivalent averaged macroscopic properties that
can be applied at a smooth equivalent surface ES. Using this method, we show that the
homogenization technique is able to predict experimentally measured film thicknesses
coated on rough plates. The model overcomes the two main difficulties in modelling
dip coating of rough surfaces. First, it overcomes the computational expense of a direct
numerical simulation, because a macroscopic model can be used that still accurately
captures the effect of microscopic structure on the flow. Second, the model is predictive,
requiring no fitting parameters. In this way, the model does not require experimental
data for closure, and provides more insight into the physics of flow over the rough
interface by employing a boundary condition that accurately models the flow. In addition,
with no fitting parameters, our model is a promising method for surface design and
characterization.

The model and experiments presented here provide additional physical insight into
the mechanism for film thickness modification by a rough surface: both the slip and
interface permeability contributions lead to less viscous stress at the boundary ES (see
(2.12)), implying that there is less viscous force to compete with the capillary suction
responsible for thinning the film. This explains the observation that the free film is thinner
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Coating thickness prediction for a film on a rough plate

than it would otherwise be for a solid surface at the same plane ES. In addition to slip
L, interface permeability Kitf contributes a flow along the interface that is driven by a
tangential pressure gradient. In dip coating, the pressure gradient is a capillary pressure
gradient induced by the meniscus curvature, and this pressure gradient drives additional
flow along the interface ES when Kitf is non-zero. It is interesting to remark that similar
considerations for a porous plate modelled with Darcy’s law lead to an interface condition
with similar structure and also result in the observation of a critical capillary number Cac,
emphasising the importance of flow within the porous or rough layer to the coating process
(Devauchelle et al. 2007).

Previous models have been proposed to link specific texture patterns and the slip length
L, including ridges, pillars and holes (Lauga & Stone 2003; Ybert et al. 2007). We
have demonstrated that the microscopic structure contributes primarily to a surface’s
macroscopic interfacial properties (L,Kitf ) based on the structure’s solid fraction φ (or
periodicity �), rather than the particular shape of the rough features (see figure 6). This is
an important result for applications, because it implies that designing a particular surface’s
L and Kitf requires attention predominantly to the solid fraction φ, whereas the particular
shape of the roughness can be tuned to other design requirements. Given our result, an
important issue for future work is to extend our analysis to natural surfaces with a less
regular (aperiodic) structure, either by determination of an effective periodicity � or by
using other upscaling techniques: for this purpose, statistical upscaling methods may be
suitable (Mantoglou & Gelhar 1989; Rubinstein & Torquato 1989; Sarkar & Prosperetti
1996).

There are many avenues for extension of the current theory, both to different coating
scenarios, such as fibre coating or spin coating of rough surfaces, and to different
parameter regimes. For example, corrections to model the film thickness on a smooth
plate when gravity or inertia cannot be neglected may be applied to our model to
extend its validity over a greater range of Ca (de Ryck & Quéré 1998). It is also
interesting to consider a qualitative comparison between our experiments and observations
of ‘paradoxical lubrication’ of drops in rough microchannels (Keiser et al. 2019), where
drops are pulled by gravity through a tilted rough microchannel. The drops are observed
to descend very slowly below a critical tilt angle; above this critical angle, their descent
velocity in the channel increases significantly. Keiser et al. (2019) proposed a physical
mechanism for this behaviour. Below the critical velocity, almost no lubricating film
separates the drop from the rough surface of micropillars. Above the critical velocity, a
lubricating film separates the drop from the roughness, allowing it to move faster through
the channel. These two cases correspond to experimental observations in dip coating
of a rough plate, where two regimes of film thickness are observed: no free film is
coated on the plate below a critical coating velocity (below Cac), corresponding to the
‘trapped’ drop, whereas above the critical velocity (above Cac), a free film is coated on
the rough plate, corresponding to the ‘lubricated’, quickly descending drop. In both the
dip coating experiments (see figure 10a) and the drop sliding experiments (Keiser et al.
2019), the critical velocity to coat a lubricating film increases with smaller solid fraction,
demonstrating an agreement of the thin film behaviour in both cases. Though we here
provide a qualitative comparison, we expect that there is a genuine correspondence to be
explored between these systems, since dip coating and drops in microchannels are known
to have a close correspondence as coating processes driven by dynamic menisci (Cantat
2013).

In addition, our model could be extended to describe thin film flow over many types
of complex natural surfaces (Barthlott & Neinhuis 1997; Neinhuis & Barthlott 1997)
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and engineered surfaces (Tricinci, Pignatelli & Mattoli 2023). For example, the model
is promising for describing microfluidic mixers, in which a flow through a microfluidic
channel passes over a rough pattern to promote mixing (Stroock et al. 2002). Currently,
we have tested the model only for the case when the surface is fully wetted. However, since
many types of hydrophobic surfaces are wetted in a state where air is trapped within the
textures and liquid is retained only on top (Cassie & Baxter 1944), it would be useful
to study the effective slip and interface permeability when the microscopic cell has a
multiphase combination of liquid and gas (Lauga & Stone 2003; Ybert et al. 2007; Alinovi
& Bottaro 2018). Other works have probed the effect of anisotropic roughness on thin
film flow, which is another area where the present model can be extended (Zampogna &
Gallaire 2020).

Our work fits into the context of several previous works challenging the typical
assumptions of homogenization, such as those that relax the assumption of periodicity
(Zampogna & Gallaire 2020; Ledda et al. 2021). Homogenization has been employed
abundantly to characterize flow in large fluid domains (Mei & Vernescu 2010; Lācis et al.
2020; Naqvi & Bottaro 2021), due to the assumption requiring a large separation of scales
between the macroscopic structure and the microscopic roughness scale. However, the
present results suggest that a homogenized interface condition can remain predictive for
thin or shallow liquid layers, demonstrating that a homogenized model is effective for thin
film flow. Thus it also seems promising to investigate applications to thin film flows in
other coating or wetting scenarios, such as drop wetting on textured surfaces.

Supplementary material. Supplementary movies and computational notebook files are available at https://
doi.org/10.1017/jfm.2024.1015. Computational notebooks can also be found online at https://www.cambridge.
org/S0022112024010152/JFM-Notebooks.
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Appendix A. Asymptotic matching of region II (dynamic meniscus) to region I (flat
film)

As illustrated in figure 1, the dynamic meniscus in region II is connected to a flat film in
region I, whose thickness is unknown. Following Landau & Levich (1942), the solution
in the dynamic meniscus region must be asymptotically matched to the flat film solution.
The governing equation for the dynamic meniscus is (2.29), and as mentioned in the text,
we have the condition (2.30) in region II. As λ→ ∞, we assume that the function μ has
the form μ = 1 + μ1, where μ1 	 1. We substitute the function μ = 1 + μ1 into (2.29),
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Coating thickness prediction for a film on a rough plate

giving
d3μ1

dλ3 = −μ1

(1 + μ1)3 + L∗(1 + μ1)2 + K∗(1 + μ1)
, (A1)

which simplifies to
d3μ1

dλ3 = − μ1

1 + L∗ + K∗ , (A2)

from the assumption that μ1 is small. Considering that limλ→∞ μ = 1, we must have
that limλ→∞ μ1 = 0, which provides a boundary value for (A2). The solution to (A2)
satisfying the boundary value is

μ1 = A exp[−(λ/ 3√1 + L∗ + K∗)], (A3)

where A is an unknown constant, implying that μ is given by (2.31). The higher derivatives
(2.32)–(2.33) are derived directly from (2.31).

Appendix B. Transformation from μ(λ) to ξ(μ)

To understand the nature of the transformation (2.34), note that (2.34) gives

dμ
dλ

= −
√
ξ, (B1)

where we must take the negative root in ±√
ξ because we know that the slope of the film

profile is always negative (see figure 1b). The higher derivatives are then derived as

d2μ

dλ2 = d
dλ

(
−
√
ξ
)

= dμ
dλ

d
dμ

(
−
√
ξ
)

= 1
2

dξ
dμ
, (B2)

d3μ

dλ3 = d
dλ

(
d2μ

dλ2

)
= dμ

dλ
d

dμ

(
1
2

dξ
dμ

)
= −1

2
d2ξ

dμ2

√
ξ . (B3)

Equation (B3) is the basis of the transformed equation (2.35).

Appendix C. Calculation of slip and interface permeability

Several works based on the multiscale analysis of flows at the interface between a
free-fluid region and a microstructured surface have been developed in recent years (see,
for instance, Jiménez Bolaños & Vernescu 2017; Zampogna et al. 2019; Lācis et al.
2020). Following Bottaro & Naqvi (2020) and Naqvi & Bottaro (2021), the estimation
of the macroscopic velocity in the z-direction in (2.12) depends on the slip and interface
permeability coefficients, L and Kitf , which are calculated from the solution of closure
problems valid in the microscopic elementary cell shown in figure 11. Here, we would like
to provide the reader with an operational recipe to calculate the macroscopic coefficient
for any periodic surface roughness, without discussing the details of the homogenization
procedure leading to the model (2.9)–(2.10). See Zampogna et al. (2019) for further details
about the development of boundary conditions for flows over rough surfaces using the
homogenization method. For a given rough surface, the calculation of L and Kitf is
performed as follows.

(i) Determine the spacing (along the two directions in the plane of the surface) between
two adjacent microstructures, that is, identify the periodicity of the microstructure.
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Figure 11. Vector components of λ and ψ within the microscopic domain. From left to right, the colours
represent the isocontours of λz′ , λy′ , λx′ , ψz′ , ψy′ and ψx′ on the planes z′ = 0.5� and x′ = 0.5�.

(ii) Define the microscopic elementary cell as a rectangular prism containing one single
periodic microstructure. The size of the microscopic cell along the two directions
in the plane of the surface corresponds to the identified spacings, while along the
direction normal to the surface, the cell is unbounded.

(iii) Within the microscopic elementary cell, solve the problem

∇ · λ = 0, −∇ξ + ∇2λ = 0,

λ = 0 on ∂S, lim
x′→+∞

∂λz′

∂x′ = 1, lim
x′→+∞

ξ = 0,

⎫⎪⎬⎪⎭ (C1)

and
∇ · ψ = 0, −∇χ + ∇2ψ = H∗(−x′ + hp)ẑ′,

ψ = 0 on ∂S, lim
x′→+∞

∂ψz′

∂x′ = 0, lim
x′→+∞

χ = 0,

⎫⎪⎬⎪⎭ (C2)

where the triplet (x′, y′, z′) represents the microscopic spatial variables related to
(x, y, z) by (x′, y′, z′) = (x, y, z)/ε (Bottaro & Naqvi 2020). The variables λ, ψ ,
ξ and χ are auxiliary microscopically periodic variables introduced during the
homogenization procedure, while H∗ is the Heaviside function centred at x′ = hp,
corresponding to the tip of the protrusions forming the rough surface. The vector ẑ′
represents the unit vector along the z′ direction, and ∂S denotes the pillar’s surface
(figure 11).

(iv) The macroscopic quantities L and Kitf used in the interface conditions (2.12) are
then retrieved from the solutions of (C1)–(C2) by introducing the averaging relations

L = −x′ + hp +
∫∫
λz(x′ → +∞) dy′ dz′, (C3)

Kitf =
∫∫

ψz(x′ → +∞) dy′ dz′. (C4)

Problems (C1)–(C2) have been solved numerically for all the surfaces considered in
the main text. In contrast to the theoretical microscopic elementary cell, whose surface
normal size �n tends to infinity, �n is finite in the computational domain. A value of
�n between 4� and 8� ensures solution invariance with precision 1 % (Zampogna et al.
2019). The numerical solution relies on a weak form implementation in the finite-element
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Figure 12. Constant α relating slip to interface permeability by α =
√
Kitf /L (Beavers & Joseph 1967).

Markers are the same as in figure 6.

solver COMSOL Multiphysics. The spatial discretization is based on P1-P2 Taylor–Hoods
elements for the couples (ξ, λ) and (χ,ψ). We use mesh spacing �l1 = 0.1 at the
boundaries of the microscopic cell, and we guarantee at least 10 grid points on each side
of the solid inclusions when the spacing �l1 produces less than 10 points on that side.
Other simulations have been carried out on finer meshes with spacing �l2 = �l1/2 and
�l3 = �l1/4, and numerical convergence of the average values of L and Kitf up to 2 %
has been verified between �l2 and �l3. As an example, figure 11 shows the microscopic
fields associated with the structure used to calculate the light blue solid profile of figure 9.

Appendix D. Relation between L and Kitf

As discussed in § 4, early models proposing a slip length at a rough interface related its
value to the permeability by a constant α, depending on the pore structure (Beavers &
Joseph 1967). Based on the data of figure 5, we can compute α for various surface designs.
In figure 12, the value of α is observed to be approximately α = 1, except when φ becomes
large, where it appears that

√
Kitf grows faster than L.

Appendix E. Similarity solution ν(λ, s)

From (4.2), which determines μ as a function of three variables μ(λ, β,Ca),
we find a rescaled similarity solution ν(λ, s), and use the similarity variable
s = Ca2/3/β = a Ca2/3/L to collapse the curves in figure 8(a). We thus arrive at ν, a
universal form for the film profile, as well as a universal form for the relation of film
thickness to pulling velocity, as discussed in § 4.2. Here, we provide further details for the
derivation of a similarity solution ν. Assuming that Kitf = L2, the solution μ is governed
by (4.2), repeated here for clarity,

d3μ

dλ3 = 1 − μ

μ3 + 3bκ−1 Ca−2/3 βμ2 + 3b2κ−2 Ca−4/3 β2μ
, (E1)
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and subject to boundary conditions arising from (2.31)–(2.33),

μ(λ→ ∞) = 1 + A exp

(
− λ

3
√

1 + 3bκ−1 Ca−2/3 β + 3b2κ−2 Ca−4/3 β2

)
, (E2)

dμ
dλ
(λ→ ∞) = (1 − μ)

[
1 + 3bκ−1 Ca−2/3 β + 3b2κ−2 Ca−4/3 β2

]−1/3
, (E3)

d2μ

dλ2 (λ→ ∞) = (μ− 1)
[
1 + 3bκ−1 Ca−2/3 β + 3b2κ−2 Ca−4/3 β2

]−2/3
, (E4)

where we have used (2.44) and (2.46a,b) to substitute

L∗ = 3bκ−1 Ca−2/3 β and K∗ = 3b2κ−2 Ca−4/3 β2, (E5a,b)

and β is a non-dimensional slip, defined as

β = L
a
. (E6)

Recall that b = 3−2/3
√

2 is a constant. As discussed in the main text, in (E5a,b), we
assume that Kitf ∼ L2. Assume that μ has the form

μ = ζmν(λ̂, β̂, Ĉa), (E7)

where we define the dilated variables as

λ̂ = ζ nλ, β̂ = ζ qβ, Ĉa = ζ cCa. (E8a–c)

A rescaled curvature κν is also required, which is defined as

κν = d2ν

dλ̂2
(λ̂→ 0) (E9)

and relates to the curvature κ defined by (2.40) by κ = ζm+2nκν . Substituting (E7) into
(E1) and using the definitions (E8a–c), it can be shown that ν satisfies (E1) when m = 0,
n = 0 and q = 2

3 c. The conditions on m and n are required by the form of (E1), whereas we
proceed to select c = 1, which implies that q = 2

3 . Thus if we select ζ ≡ Ca−1 in (E8a–c),
we use the identified values of m, n, q and c to deduce from (E7) that

μ = ν(λ, s), (E10)

now expressing ν as a function of two variables instead of three, where the similarity
variable s is defined by

s−1 = L
a Ca2/3 . (E11)

The rescaled version of (E1) is written

d3ν

dλ3 = 1 − ν

ν3 + 3b(κνs)−1ν2 + 3b2(κνs)−2ν
. (E12)
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A similar rescaling can be carried out to arrive at rescaled versions of boundary conditions
(E2)–(E4):

ν(λ→ ∞) = 1 + A exp

(
− λ

3
√

1 + 3b(κνs)−1 + 3b2(κνs)−2

)
, (E13)

dν
dλ
(λ→ ∞) = (1 − ν)[1 + 3b(κνs)−1 + 3b2(κνs)−2]−1/3, (E14)

d2ν

dλ2 (λ→ ∞) = (ν − 1)[1 + 3b(κνs)−1 + 3b2(κνs)−2]−2/3. (E15)

The matching condition (2.40) for the static meniscus is also ‘universal’ in the sense that
it does not depend on the slip L, so (2.43) also applies when considering κν(λ, s), which
depends on the similarity variable s rather than the slip L. Thus we have

h̄0

a Ca2/3 = 32/3κν√
2
. (E16)

Because κν = κν(λ, s) is a function of s rather than L, we can deduce from this relation
that the curves in figure 8(a) must collapse if we consider the relation between the variables
h̄0/(a Ca2/3) and s, which indeed is observed in figure 8(b).

As before, if we wish to solve (E16), then the unknown κν remains, so a transformation
of (E12) and boundary conditions (E13)–(E15) is performed in the same way as in (2.3),
using a similar transformation to the one defined in (2.34). We arrive at a transformed
equation and boundary conditions analogous to (2.35)–(2.37), and can solve the system
using the same fixed point iteration scheme as employed in § 2.3.

REFERENCES

ALINOVI, E. & BOTTARO, A. 2018 Apparent slip and drag reduction for the flow over superhydrophobic and
lubricant-impregnated surfaces. Phys. Rev. Fluids 3, 124002.

ARADIAN, A., RAPHAËL, E. & DE GENNES, P. 2000 Dewetting on porous media with aspiration. Eur. Phys.
J. E 2, 367–376.

BALESTRA, G.M.N. 2018 Pattern formation in thin liquid films: from coating-flow instabilities to microfluidic
droplets. PhD thesis, École Polytechnique Fédérale de Lausanne.

BARTHLOTT, W. & NEINHUIS, C. 1997 Purity of the sacred lotus, or escape from contamination in biological
surfaces. Planta 202, 1–8.

BEAVERS, G.S. & JOSEPH, D.D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech.
30 (1), 197–207.

BENILOV, E. & ZUBKOV, V. 2008 On the drag-out problem in liquid film theory. J. Fluid Mech. 617, 283–299.
BERTIN, V., SNOEIJER, J.H., RAPHAËL, E. & SALEZ, T. 2022 Enhanced dip coating on a soft substrate.

Phys. Rev. Fluids 7 (10), L102002.
BOTTARO, A. & NAQVI, S. 2020 Effective boundary conditions at a rough wall: a high-order homogenization

approach. Meccanica 55, 1781–1800.
BURDEN, R.L. & FAIRES, J.D. 2011 Numerical Analysis, 9th edn. Cengage Learning.
CANTAT, I. 2013 Liquid meniscus friction on a wet plate: bubbles, lamellae, and foams. Phys. Fluids 25,

031303.
CARRARO, T., GOLL, C., MARCINIAK-CZOCHRA, A. & MIKELIĆ, A. 2015 Effective interface conditions
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