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Abstract

This paper details the design and development of a planar switched beam network using
4 x 4 Butler matrix (BM) over a thin and flexible type biocompatible substrate. Four mils
thick liquid crystal polymer (LCP) is used as a substrate here (e, = 2.92, tand = 0.002). The
proposed design is centered at 28 GHz, targeting commercial millimeter-wave applications.
Floral-shaped antenna with defective ground structures has been implemented as basic radiat-
ing elements. The whole structure is based on microstrip line configuration. The architecture
occupies an area of 23.85 x 19.20 mm? over the LCP substrate. Individual components of the
BM are detailed here, followed by a system analysis of the whole integrated structure. The
present work also covers the electrical equivalent circuit modeling of the whole beam-forming
network. The fabricated prototype offers better than 18 dB return losses at each input port for
the desired frequency band with 6 dBi (max.) peak gain and 500 MHz bandwidth around the
center frequency. Port-to-port isolation of better than 15 dB is achieved with this topology.
Experimental and simulated results are in good agreement in all aspects. A comparative study
is also chalked out to highlight the significance of the current research work with respect to
alike earlier reported structures.

Introduction

The last few decades have witnessed the explosive growth of wireless communication. “Antenna”
is an indispensable component in the systems used in such wireless communication. Modern
day communication needs “smart antenna” in the field of sitcom, navigation, RADAR appli-
cation, microwave imaging, and even for the 5G network. Switch beam networks find wide
application in this gigantic augmentation to realize electronic scanning method. The scanning
is accomplished by altering the orientation of the antenna’s radiation pattern. The tradition-
ally employed mechanical scanning system suffers due to the wear and tear problem associated
with bulky body parts. On the contrary, electronic means of scanning offer multiple technolog-
ical advantages, viz lightweight, complete removal of wear and tear problems, easy controlling
mechanism, etc. Historically, this scanning system was employed in the wireless communica-
tion field to mitigate two prime challenges, named “multipath fading” and “inferences” [1].
Continuous scanning applications require “phased array” antenna structures. However, scan-
ning in a single dimension can be achieved by incorporating the concept of switched beam
topology. Various phase distributions of the beam-forming network can produce independent
beams with different orientations.

Keeping in view of future wireless communication for multi-gigabit services with high data
rates, the millimeter-wave (mmW) frequency spectrum is of utmost importance. The mmW
spectrum in the 28-38 GHz band [2-8] has applications in the outdoor 5G cellular system;
local multipoint distribution services, cellular backhaul, and intra-cell communication sys-
tems [9]. Even this particular band of frequency has immense potential in various biomedical
applications, such as MRI systems, imaging, etc.

Practically, there are three main categories of Radio frequency (RF) beam-forming net-
works that have been developed, such as Blass matrix [10], Rotman lens [11], and Butler matrix
(BM) [12]. Blass matrix and Rotman lens mainly suffer due to design-oriented challenges.
Traditionally, Blass matrix suffers from excessive losses and larger in size [13]. In Rotman lens
architecture, beam angle and beamwidth change dynamically with operating frequency, which
becomes main disadvantages while a constant beamwidth is demanded [14]. Additionally, effi-
ciency is also restricted due to dummy ports. On the contrary, BM is preferred in terms of
design topology, higher efficiency, and minimum RF loss [15]. This topology can produce
uniform amplitude distributions. It has some inherent characteristics, such as orthogonal
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beam formation, high directivity, very less number of circuit ele-
ments, low fabrication cost, etc. Furthermore, it can generate
multiple fixed overlapping antenna beams creating wide angular
coverage area. Several structures have been reported incorporating
circulators [16, 17] and multilayer fabrication strategies [18, 19].
However, these structures invite complexity in terms of fabrication
as well as in measurement methods. In comparison to that, the pla-
nar version of the same is appreciated for its easier implementation
techniques and experimentation. In the modern communication
world, while miniaturization plays an important role, multifaceting
conformal properties act as an addendum to the planar version of
portable devices [20-32].

In the current research work, a planar switched beam net-
work using the BM is presented over a low-loss, thin, flexible
substrate named liquid crystal polymer (LCP). It is a biocompat-
ible, radiation-resistant, and high-frequency substrate (even go up
to 110 GHz) with very low water absorption capability (<0.04%)
[26,27].

The targeted frequency of operation is chosen as 28 GHz, which
falls under the mmW band. Floral-shaped (bioinspired) antenna
elements with defective ground structures are employed here. The
whole architecture is based upon microstrip geometry, which offers
an easy procedure for manufacturing the structure along with ease
of testing.

In the subsequent sections, detailed design of BM with electro-
magnetic wave (EM) simulation results, equivalent circuit model-
ing, and fabrication of prototypes with measured results have been
elaborated.

Elements of beam-forming network

Many pieces of literature are already available on the topic of
BM; however, most of the designs focus on the enhancement of
the overall bandwidth of the network by implementing multilayer
techniques. In this current research work, one of the targets is to
make an efficient, low-cost antenna array for biomedical appli-
cations that can be easily manufactured. Due to this reason, we
have employed a single-layer planar design over a biocompatible
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and flexible microwave substrate for the BM feed network.
Individual building blocks of the beam former are explained in sub-
sections Design of 3-dB directional coupler, wideband crossover,
45° phase shifter, bio inspired antenna and also the building blocks
of Butler matrix.

A typical four-beam BM contains four numbers of 3-dB quadra-
ture directional couplers, one 0-dB RF crossover, and two 45° phase
shifters. The aim of this network is to feed the neighboring antenna
elements with equal amplitude and equally varying phase shifts.
Different phase shifts arise while different input ports are exited
and that lead the resultant antenna beam to switch in different ori-
entations. Figure 1 depicts such a scheme. Each input or feeding
point is responsible for producing different sets of linear phases
that are orthogonal in nature. Each individual set is used as an
input for the antenna array to form multiple beams in the desired
directions.

Considering the linear-phase distribution and exciting the
input port, the resultant antenna beam at the output is tilted by
the angle given by Equation (1) [1],

1 (N“‘l)_szé

IN i (1)

b, =sin~
where p varies from 1, 2, ... N; A = free-space wavelength, d = dis-
tance between adjacent antenna elements, N = 2" (here n = 2) no.
of radiators.

Design of wideband quadrature 3-dB directional coupler

Traditionally, it is known that a quadrature directional coupler has
the ability to provide 90° out-of-phase signals at the output ports
with an equal magnitude of power levels [28]. It consists of a pri-
mary transmission line, coupled with a secondary transmission
line by two-quarter wavelength (\g/4) long sections spaced \g/4
distance apart (Fig. 2). S-parameter of this four-port network can
be written as in Equation (2). The coupler design is finalized for
the frequency band of 24-30 GHz. It is based upon the use of
Rogers ULTRALAM 3850 laminate (LCP), which has a permittiv-
ity of 2.92, a loss tangent of 0.0028, and a thickness of 0.1 mm.

Ant 1,/

Beam-Steering

Figure 1. Schematic design of 4 x 4 Butler matrix.
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Figure 2. Wideband quadrature coupler design.

Table 1. Optimized dimension of the coupler and crossover designs

w W, W, W, L L L,
Circuit (mm) (mm) (mm) (mm) (mm) (mm) (mm)
Coupler 3 0.223 0.384 - 6.005 1.559 1.720

Crossover 3 0.223 0.384 0.632 8.196 1.559 1.559

The coupler is fed by a 50 2 (Z,) microstrip line with the geo-
metrical specifications depicted in Table 1 (Fig. 2). The simulated
results demonstrate a phase imbalance of less than +3°, an ampli-
tude imbalance of less than 0.5 dB, and an isolation of better than
15 dB for the entire desired band (Fig. 3)

0 j 10
1 0 0 1

§=—= - i ®)
01 j 0

Sy1 =353 (2.a)

Spu= —iSs (2.b)

Design of wideband crossover

Planar wideband crossovers based on Lange couplers have been
widely reported in literature [20-27]. However, these designs have
constraints due to its fabrication intricacies, as multiple electrical
connections are essential in a Lange coupler. A comparatively sim-
pler design is adopted in this current research work by cascading
two wideband quadrature directional couplers. It alleviates all the
associated fabrication issues. Full-wave analysis of the structure
results in optimized dimensions, as depicted in Table 1 (Fig. 4).
The proposed structure offers an insertion loss of around 1.5 dB
(max.), impedance matching of better than 16 dB, and isolation
of better than 14 dB for the entire design frequency band of
24-29 GHz (Fig. 5). S-parameter of an ideal four-port RF crossover
network can be expressed in terms of Equations (3-9)

N

3)

o = O O
= o O O
S O O =
S O = O
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Figure 3. S-parameter of the coupler.

LCP Substrate

Figure 4. Wideband crossover design.
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Figure 5. S-parameter of the crossover.

An ideal crossover is governed by the following S-parameters:
Su=81=81=0; [S=1 (4)

Equation (4) depicts that, if one injects some power into port
1, none of it goes to port 2. All the power goes cross coupled
into port 3, whereas port 4 is an isolated port. Layout of phase
shifter is shown in Fig. 6. Owing to the presence of fully symmetry
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Figure 6. Layout of the phase shifter.
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Figure 7. Black-box diagram of a fully symmetric RF crossover core. XX” and YY’
are the two axes of symmetry.

(even-odd mode) analysis can be invoked in Fig. 7, which results
into four eigen admittances

Yij [i={o,e}, j={o,e}]. (5)

These admittances are related to S-parameters as follows [28]

_ FEB + ]‘-\80 + FDE + ]‘-\00

Su 1 (6)
S, = T, — Feo—z Toe— Ty @
Sy = T — Fw; Tpet+ Ty ®)
Sy = Tp+Tp— e — Ty, ©)

1=2,Y; RSPTS
where I';; = ——, Z, = port termination impedance.

142, Y

Design of 45° phase shifter

For the present research work, the BM requires two numbers of 45°
phase shifters. It is realized by choosing the suitable length of the
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Figure 8. Proposed bioinspired antenna.

50 2 transmission line as governed by Equation (10) [29]

0 =p.0 (10)

where 0 is the phase shift required (here it is 45°); B is phase
constant (= 2m/\,); A, is guided wavelength, and £ is the phys-
ical length of the transmission line. For our case, £ is coming
around 0.76 mm. Figure 6 demonstrates the structure of the phase
shifter with optimized design dimensions (W5 = 0.223, L5 = 0.56,
L =0.2,L;, = 0.1, and Lg = 0.1 mm). S-parameter of the phase
shifter can be expressed as Equation (11)

[S]:ng 1:;]‘}.

Design of bioinspired antenna

(11)

A printed version of the monopole antenna with bioinspired geom-
etry is proposed for the beam-forming network (Fig. 8). The said
antenna looks like a flower with seven petals. Miniaturization and
enhancement of directive gain for the individual antenna elements
are achieved by this biomimicry method [30-34].The bioinspired
geometry of Jasmine-shaped flower increases the perimeter of the
antenna compared to a classical patch antenna (microstrip) and
consequently the frequency behavior. The electric length of the
radiator increases, which helps to attain high gain. From a math-
ematical point of view, this flower-shaped radiator is a class of
fractal, which refers to a set in Euclidean space with specific prop-
erties, such as self-similarity or self-affinity. In this fractal shape,
polar transformations give rise to a wide class of shapes. This polar
transformation can be defined through a vector function

v(t) =[(x(t), y(0)], t =0; (12)

that is, for each real value, t is associated with a vector in R?,
Equation (13)

U(t): 1 — R" (13)

t—v(t)

The proposed radiator occupies an area of 5.08 x 4.14 mm? over
the LCP substrate [35].

The shape of the petals is governed by the analytic curve fol-
lowing Equation (14). Each of the petals consists of two same types
of Chebyshev tapering. It is formed by choosing an independent
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Table 2. Optimized dimension of the floral-shaped antenna

Ly L, Ls W, w, W S}
(mm) (mm) (mm) (mm) (mm) (mm) (degree)
5.08 3.36 1.54 4.14 3.12 0.247 48
0
.5
104
7}
2
=15
w
.20
251 simulated Return loss of Floral Antenna

28.0 28.5

Frequency (GHz)

27.0 27.5 29.0

Figure 9. Reflection coefficient for the antenna.

variable, “L”. Then, each petal is rotated by an angle of “6”

y=Nx ()= Yp)*

Here, t is the variable, with respect to which the equation varies; it
varies between 0 and L. The variable L is responsible for length of
the petal, whereas N determines its width,

W, \’Vf
where, 0 = tan ( i )
Ly

Parametric EM simulation refers to the optimized dimension of
the antenna as summarized in Table 2. The reflection parameter
reveals that the floral-shaped antenna is well matched (>10 dB) for
a narrow-band centering at 28 GHz (Fig. 9) with 5.6 dBi directive
gain. For the present work, the radiating element faces a loading
effect of the BM at the input point. Hence, careful matching of the
impedance profile for the desired frequency band (28 4 0.25 GHz)
is mandatory.

(14)

(15)

Integration of building blocks of BM

Individual building blocks, explained in the previous subsections,
are integrated systematically to form the feed network of the beam
former (Fig. 10). It acts as a passive microwave network with eight
numbers of I/O ports, which offers better than 8 dB return losses
for the desired frequency band of the antenna (27.75-28.25 GHz),
as shown in Fig. 11 for all different excitation ports. Ports 1-4
are excitation ports, and ports 5-8 are designated as output ports,
which are used further to excite the radiating patches. Patches are
placed equidistantly (0.65 Ag) by adjusting a suitable meandering
technique in 50 {2 lines, emanating from all output ports of the feed
network (Fig. 12). Table 3 summarizes the overall dimension of the
beam-forming network.

The beam-steering property of the whole Butler matrix was
computed by feeding the input signals from different input ports.
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Figure 11. S,;-parameter for all input ports.

Figure 13 demonstrates the orientation-dependent radiation char-
acteristics in both the E and H planes. Here, characteristics have
been shown only for two ports, as the rest of the two ports will
be just symmetric ones instead of 180° phase shifts. It is clearly
visible that there is a signature of beam-steering for different port
excitations. It infers the exhibition of smart antenna engineering,
implementing the electronically scanning array technique.

Equivalent circuit modeling of Butler network

In the proposed topology, the antenna array, along with the beam-
forming network, acts as a transmitter. In this transmission mode,
the antenna itself appears as a load on the generator [36, 37-39].
An equivalent circuit representation of the transmitter (Tx) array
antenna with beam-former is shown in Fig. 14.

where Z; = equivalent impedance
[Zg = (Rg +jXg)]

Zy = R + jXp = equivalent impedance of BM

I, = current at the antenna’s input terminal

14

of generator

I = — 16
" (Zo+Zp+ Zs) (1

Z 5 = equivalent antenna’s impedance at terminals a-b
=Ry +jXs = (R + Rya) +jXa 17)

V4 = induced voltage at antenna while incident wave impinges
upon it, this is analogous.
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Figure 12. Complete architecture of the proposed '
Butler matrix (left - front view; right - rear view).

[

Table 3. Optimized dimension of the Butler matrix

Again, a portion of Py is radiated away (P,,q), and the rest amount

Lg We We t Lgy Le Ly Lo .
(mm) (mm) (mm) (mm) (mm) (mm) (mm) is dissipated as Ohmic losses, Pgpp,.
Thus,
23.85 19.2 5.08 172 302 3.12 1
Pr = Puq+ Popm- (19)
Equation (3) can be expressed as,
_ ; ; _ 1 1
Ry = antenna resistance at terminals a-b Py == Iin‘Z R, = =| L, [Roq + R, . (20)
Ry, = loss resistance of antenna 2 2
R,,q = radiation resistance of antenna
Rg = resistance of generator impedance Power delivered to the antenna (array) for radiation,
X = reactance of generator impedance ]
X, = antenna reactance at terminals “a-b” Py = E[Ii ]sz i
Xy = reactance of BM’s impedance
Ry = resistance of BM’s impedance.
The total power (Pr,) produced by the generator is the sum- _1 [Vg] 2 Rad
mation of power delivered to the antenna terminals (Py) and the 2 (Road + Ry + R + Rp)” + (X4 + Xg + Xp)°
power lost (Pg) in the generator’s internal resistance Rg. (21)
Thus, Overall antenna efficiency is given by [25]
PTO!’ = PT + PG' (18) €y = e,e.€4 (22)

Ref Plane
Port 1 (1L)
Port 2 (2L)

Port 1
Port 2

270
H-Plane

(@) (b)

Figure 13. Far-field radiation pattern of the Butler matrix with different port excitations.
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Figure 14. Circuit modelling of Butler network.
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Frequency (GHz)

Figure 15. Simulated and measured results.

where e, = total efficiency, e, = mismatch efficiency,
e, = (1 — |T|2> , e. = conduction efficiency, eq = dielectric effi-
ciency, T = Voltage standing wave ratio (VSWR) at antenna input

terminal.
Zin — ZO

T =

| —4 23
Zin+ Zy (23)

where Z;,, = input impedance of the antenna

Zy = characteristic impedance of Tx line.

Usually, e. and e4 are very difficult to evaluate separately [35].
Hence, traditionally e is written as

eo = e (1) (24)

This radiation efficiency can be obtained through Wheeler’s cap
method [40] and directivity/gain measurement. Equivalent circuit
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of antenna has a very little to do with it. However, e, can be
expressed as follows:
Rmd

_ 25
(Rmd + RB + RL) ( )

€y —

Fabrication and measurement

The proposed BM has been fabricated on a thin (100 4+ 10 pm),
flexible, and biocompatible LCP substrate. Standard photolithogra-
phy and wet-etching chemistry are adopted to realize the geometry.
It is very clear that all four input ports are placed in close proximity,
which restricts the assembly of standard RF connectors to them
for signal launching. Hence, it evokes some measurement-related
practical issues. It is solved here with the use of air coplanar probe
(ACP)-type RF coplanar probes (ground-signal-ground: GSG)
[38] of 150 pm pitch size. The in-house made coplanar waveguide
in microstrip patch (CPW-MS) [39-46] transition makes a suit-
able alternative for RF measurement and launching of signals from
probes to microstrip feed lines of Butler networks. De-embedding
techniques were adopted to achieve the intended response of the
device under test (DUT). Figure 15 depicts the return loss pro-
files for all of the input ports on the fabricated prototype. Figure 16
shows the front and rear view of fabricated prototype on flexible
substrate along with the transition structure. The flexibility of the
substrate is also observed from the same. Further, in the compact
antenna test facility, the radiation characteristics of the prototype
antenna are evaluated. It shows a maximum gain of around 5.8 dBi.
The far-field radiation pattern is exhibited in Figs. 17 and 18 for dif-
ferent input ports. The performance metrics of the antenna infer
that it is a high-gain and narrow-band candidate, mostly suitable
for detecting the tumor cell/malignant tissue at a precise operating
frequency in the mmW band. Even so, it can be used for radio-
therapy or mmW hyperthermia applications. A comparison table
(Table 3) is included here to discuss various performance metrics
of the proposed network with respect to recently reported struc-
tures. It can be inferred that our work occupies minimum layout
area over thin substrate for the same 4 x 4 BM configuration to
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G/W/G of 150 pm
corresponding to Zo=50 Ohm

Towards the excitation port
of Butler Matrix

= Quarter wavelength
long Radial stub

(a) (b) ©

Figure 16. Fabricated prototype: (a) front view, (b) rear view, and (c) CPW-MS transition structure used at the time of measurement.

— Simulated of Port 1 (1L) 90 — Simulated Port 2 (2L)
90 Eo_ Meaasured of Port 1 (1L) -- = = Measured of Port 2 (2L)

15 150

180

-154 210

270
E-Plane

(@) (b)

Figure 17. Simulated and measured far-field pattern in E-plane of the Butler matrix at 28 GHz.

——— Simulated Port 1 (1L) .
— — Measured Port 1 (1L) 90 —— Simulated Port 2 (2L)
60 5- 120 g0~ — Measured Port 2 (2L)

10 150

A04 200K T a0

270 270
H-Plane H-Plane

(a) (b)

Figure 18. Simulated and measured far-field pattern in H-plane of the Butler matrix at 28 GHz.

provide appreciable gain (>5 dBi) with satisfactory port to port  Conclusion
isolation than that of (>15 dB) earlier reported results.

A comparison table is provided in (Table 4) that compares the
proposed work with recently reported structure. The gain charac-
teristic of the bioinspired antenna is shown in the Fig. 19. It has
been shown that maximum gain of the antenna is 5.8-6 at the
desired frequency band.

This work reports the design and development of a novel con-
figuration for a planar switched beam network targeting multi-
faceted mmW applications. The novelty of the current research
work comes from the implementation of the bioinspired antenna
in the BM configuration along with the usage of flexible and

https://doi.org/10.1017/51759078724000400 Published online by Cambridge University Press
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Table 4. Comparison of performance metrics of proposed network amongst recently reported structures

Dimension
Center of
frequency Butler Input port-to-port
Ref. Year (fo) (GHz) Bandwidth@f, Size (mm?) matrix Substrate Antenna gain (dBi) isolation (dB)
[2] 2021 28 78.5% 37 x50 4 x4 The Taconic RF-30 5.8-6.7 =
[3] 2017 38 26.3% 64.4 x 60 4x8 Rogers 5880 19.8 -
[4] 2021 30 166.66% = 4%x4 RO-3003" 11.7 >15
[5] 2019 28 10.71% 36.2 x 44.3 4x4 Two-layer hybrid 10 -
stackup
[22] 2018 30 30% 60 x 50 4x4  RO-3003" - -
[24] 2019 30 180% 120 x 70 8x8 Rogers ULTRALAM 9-12 >14
3850
This 2023 28 18% 23.85 x 19.2 4 x4 Biocompatible LCP 5-6 >15
work
7 we wish to declare that there is no potential conflict of interest was reported
| by the authors.
6
54
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Figure 19. Gain of the bioinspired antenna.

biocompatible LCP substrate. Other reported works [2-5, 22, 24]
in this context achieve higher gain and bandwidth, at the cost of
a larger layout area. However, the current R&D work exhibits its
superiority in all intended performance metrics with its reduced
dimension by incorporating the said novelties into the architecture.
The proposed design offers a maximum gain of around 5 dBi with
500 MHz bandwidth. Further, it can be enhanced by enlarging the
dimension of the BM but at the cost of increased footprint area.
The high gain feature with a narrow-band profile makes the cur-
rent antenna suitable for detecting tumor cells and hyperthermia
treatments. Finally, the substrate makes the proposed antenna as a
conformal candidate for arbitrary 3D shapes. As per the author’s
knowledge to date, such a miniaturized antenna based upon pla-
nar configuration never has been reported with all state-of-the-art
performance metrics for biomedical applications with the flexible
substrate.
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