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Abstract
We show that the twin-width of every n-vertex d-regular graph is at most n d−2

2d−2 +o(1) for any fixed integer
d ≥ 2 and that almost all d-regular graphs attain this bound. More generally, we obtain bounds on the
twin-width of sparse Erdős–Renyi and regular random graphs, complementing the bounds in the denser
regime due to Ahn, Chakraborti, Hendrey, Kim, and Oum.
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1. Introduction
The twin-width tww(G) of a graph G is a parameter recently introduced by Bonnet, Kim,
Thomassé, and Watrigant [6].1 Twin-width has received a lot of attention largely due to its algo-
rithmic applications, as it is shown in [6] that any first-order formula can be evaluated in linear
time on graphs in a given class of bounded twin-width, given a witness certifying that twin-width
is bounded. Structured graph classes such as proper minor closed graph classes and classes of
bounded clique-width or rank-width have bounded twin-width. Meanwhile, a counting argument
can be used to show that there exist 3-regular graphs of unbounded twin-width [5].

Bounds on the twin-width of general graphs were first considered by Ahn, Hendrey, Kim, and
Oum [3], who have shown that tww(G)≤ ( 1

2 + o(1)
)
n and that

tww(G)≤ (1+ o(1))
√
3m (1)

for every graph G with n vertices andm edges. They have also started investigating the twin-width
of random graphs G(n, p). This investigation was continued in [1] where it was shown that with
high probability the twin-width of G(n, p) is �(n√p) for 726 log n/n ≤ p ≤ 1/2, i.e. (1) is tight
up to a constant factor in this regime. Meanwhile, already in [3] it was shown that if p< c/n for
fixed c< 1 then the twin-width of G(n, p) is at most two. These results left open the question of
determining the typical twin-width of G(n, p) for the range 1/n< p= o( log n/n). As one of the
contributions of this paper, we almost fully resolve this question (see Theorem 1.3).

1Informally, twin-width of a graph G is the minimum integer w such that there exists a sequence of |V(G)| − 1 iterated
vertex identifications, starting with G such that at every step of the process, every vertex is incident with at most w red edges,
where a red edge appears between two sets of identified vertices if they are neither fully adjacent nor fully non-adjacent. We
will not need the formal definition in this paper and will be working with a simpler notion of sparse twin-width which we
introduce at the end of this section.
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We also consider the twin-width of random d-regular n-vertex graphs for d = o( log n). Prior
to our work, very little was known even in the case d = 3. As mentioned above, 3-regular graphs
have unbounded twin-width, but the counting argument only gives a lower bound which is triply
logarithmic in the number of vertices. Meanwhile, the best prior upper bound on the twin-width
of n-vertex 3-regular graphs was of the order O

(√
n
)
as above. In this paper, we precisely deter-

mine the maximum twin-width among all n-vertex 3-regular graphs as n
1
4+o(1) and show that

tww(G)= n1/4+o(1) for almost all n-vertex 3-regular graphsG. These results generalize to d-regular
graphs, determining precisely the asymptotics for the maximum twin-width of n-vertex d-regular
graphs for any d.

Theorem 1.1. If d ≥ 2 is an integer, then

tww(G)≤ n
d−2
2d−2+o(1)

for every n-vertex d-regular graph G. Moreover, the inequality holds with equality for almost all
n-vertex d-regular graphs.

More generally, for various sparse random graph models we show that the twin-width is typi-
cally polynomial in the number of vertices, with the exponent governed by the maximum average
degree of the graph.

Recall that the maximum average degree of a graph G, denoted by mad(G), is defined as the
maximum average degree of subgraphs of G, i.e.

mad(G)= max
H⊆G,v(H)>0

2e(H)
v(H)

.

(We denote the number of vertices and edges of a graph H by v(H) and e(H), respectively.)
Let us first state a special case of our most general result for Erdős–Renyi random graphs with

constant average degree.

Theorem 1.2. For every c> 1 there exists ρ = ρ(c)> 2c such that with high probability

mad
(
G
(
n,

c
n

))
= (1+ o(1))ρ and tww

(
G
(
n,

c
n

))
= n

ρ−2
2ρ−2+o(1).

Our most general result gives estimates of the typical twin-width for several models of sparse
random graphs with average degree bounded from below away from one. It extends Theorems 1.1
and 1.2 as well as giving tighter bounds on the error terms.

Theorem 1.3. Fix ε > 0. Let G be a random n-vertex graph obtained using any of the following
models:

• G is a uniformly random d-regular graph on n vertices with 2< d< 1
5 log n,

• G is a uniformly random graph on n vertices and m edges with (1+ ε)n≤m≤ 1
11n log n, or

• G is a random graph G(n, p) with 1+ε
n ≤ p≤ 1

12
log n
n .

Then, with high probability, we have

n
d−2
2d−2 ·�ε

(
d√
log n

)
≤ tww(G)≤ n

d−2
2d−2 · eOε

(
d−1√log n·log log n+log d

)
, (2)

where d =mad(G).

Our results, in particular, answer a question of Sylvester [12] whether tww(G)=�
(√
e(G)

)
with high probability for sparse Erdős–Renyi random graphs and random cubic graphs.
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By Theorem 1.3 the answer is negative for random d-regular graphs with d = o
(

log n
n log log n

)
and

for G(n, p) with p= o
(

log n
n log log n

)
and the answer is positive for p=�

(
log n
n

)
.

For an n-vertex graph G denote log tww(G)
log n by a(G) for brevity, i.e. tww(G)= na(G). It fol-

lows from the results of [1, 3] that a(G(n, p))= o(1) when p= 1−o(1)
n , and a(G(n, p))= 1

2 − o(1)
when p=�

(
log n
n

)
and p= 1

n1−o(1) . Theorem 1.3 establishes the asymptotics of a(G(n, p)) and
1
2 − a(G(n, p)) in most of the intermediate range, i.e. for 1+o(1)

n ≤ p≤ o
(

log n
n log log n

)
.

We finish the introduction by briefly and informally describing the techniques we use to prove
Theorems 1.1, 1.2 and 1.3. To obtain the upper bounds on twin-width of a graph G, we map the
vertices of G to random sequences over some alphabet so that the images of far away vertices are
independent and uniformly distributed over the set of all sequences, while the images of neigh-
bours share a fair amount of information. This yields a homomorphism from the original graph
to a structured and appropriately sparse graph H, allowing us to bound the twin-width of G in
terms of the twin-width of H. We then finish by bounding the twin-width of the more structured
graph H. We prove the upper bounds in Section 2.

Our proofs of lower bounds on the twin-width rely on counting, which as far as we know
remains the only successful technique for establishing superconstant lower bounds on the twin-
width of graphs with constant maximum degree. As a new ingredient to facilitate counting
arguments, we show that for every graph G with twin-width at most w and any K ≤ v(G), G is
a spanning subgraph of a “fairly balanced” blowup of some (w+�(G))-degenerate graph on K
vertices. We prove the lower bounds in Section 3.

Preliminaries, basic definitions and notation
We mostly use standard graph theoretical notation. Let G be a graph and X ⊆V(G). We denote
by �(G) the maximum degree of G, by G[X] the subgraph of G induced by X, and by G \ X the
graph G[V(G) \ X] (if X = {v}, we write G \ v).

Let [n]= {1, 2, . . . , n}. If S and T are sets, v= (s1, s2, . . . , sr) ∈ Sr is a sequence of elements of
S, and f : S→ T is map, let f (v) := (

f (s1), f (s2), . . . , f (sr)
) ∈ Tr .

It will be convenient for us to work with a somewhat atypical notion of homomorphism, where
we allow adjacent vertices to be mapped to the same vertex. Explicitly, for graphs G and H we say
that a map φ :V(G)→V(H) is a homomorphism from G to H if for every uv ∈ E(G) we either have
φ(u)φ(v) ∈ E(H) or φ(u)= φ(v).

Next let us elaborate on the relationship between Theorems 1.1, 1.2 and 1.3. The error terms
in (2) are of the form no(1) in the setting covered by the theorem and so Theorem 1.3 implies
Theorems 1.1 and 1.2 except

• the upper bound in Theorem 1.1 needs to hold for all n-vertex d-regular graphs not just
almost all such graphs, and

• Theorem 1.2 postulates concentration of mad(G(n, p)) for p= c/n and constant c, i.e.
the existence of ρ(c) such that mad(G(n, c/n))= (1+ o(1))ρ(c) with high probability.
Anantharam and Salez establish existence of such a ρ in [4] and show that ρ can be found
as a fixed point of a certain distributional fixed-point equation, as was conjectured earlier
by Hajek [7]. Thus by the results from [4], Theorem 1.2 is implied by Theorem 1.3.

Finally, it is well-known that the random graph G(n, p) with high probability has m= p
(n
2
)+

o(√pn log n) edges, and for fixedm every graph withV(G)= [n] and e(G)=m has the same prob-
ability inG(n, p). Thus, if (2) holds for any value ofm= p

(n
2
)± o(√pn log n) with high probability

(independent of the choice ofm), then it holds with high probability forG(n, p). It follows that the
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conclusion of Theorem 1.3 for G(n, p) follows from its conclusion for uniformly random graphs
on n vertices andm edges.

Thus Theorems 1.1, 1.2 and 1.3 follow from the next two theorems, which we prove in
Sections 2 and 3, respectively.

Theorem 1.4. [Upper bounds]

(i) If G is an n-vertex, d-regular graph with d> 2, then

tww(G)≤ n
d−2
2d−2 · eO

(
d−1√log n·log log n+log d

)
. (3)

(ii) Let ε > 0 be fixed. If G is a uniformly random graph on n vertices and m edges with m≥
(1+ ε)n and d =mad(G), then (3) holds with high probability.

Theorem 1.5. [Lower bounds] If G is either

(i) a uniformly random n-vertex, d-regular graph with 2< d< 1
5 log n, or

(ii) a uniformly random graph on n vertices and m edges where (1+ ε)n≤m≤ 1
11n log n and

d =mad(G),

then with high probability

tww(G)≥ n
d−2
2d−2 ·�

(
d√
log n

)
. (4)

The time has come to define twin-width, or rather a substitute of it that we will work with.
A contraction sequence from a graph G to a graph H is a sequence of graphs (G=G1,G2, . . . ,
Gk =H) such that for each i ∈ [k− 1] the graph Gi+1 is obtained from Gi by identifying two ver-
tices. That is, for some pair of distinct vertices u, v ∈Gi the graph Gi+1 is obtained from Gi \ {u, v}
by adding a new vertex w such that wx ∈ E(Gi+1) if and only if ux ∈ E(Gi) or vx ∈ E(Gi). We say
that a contraction sequence (G1,G2, . . . ,Gk) is a w-contraction sequence for some positive integer
w if �(Gi)≤w for every i ∈ [k], and this sequence is a contraction sequence for the graph G1 if
v(Gk)= 1.

Finally, we define the sparse twin-width of a graph G, denotes by stww(G), as the minimum
positive integer w such that there exists a w-contraction sequence for G. That is, stww(G) is the
minimum w such that we can reduce G to a one-vertex graph via a sequence of pairwise vertex
identifications such that the degrees of all the vertices throughout this process are at most w.

The twin-width tww(G) is defined similarly to the sparse twin-width, but using a notion of
trigraphs. In particular, the twin-width of G is the minimum over contraction sequences (G=
G1,G2, . . . ) for G of a parameter that is upper bounded by maxi �(Gi). For every graph G, we
have

max{tww(G),�(G)} ≤ stww(G)≤ tww(G)+�(G), (5)
where the inequality tww(G)≤ stww(G) follows from the partial description of tww(G) above, and
the inequality stww(G)≤ tww(G)+�(G) is implicit in [[5], Lemma 7.1].

The maximum degree �(G) is much smaller than the estimates given on tww(G) in
Theorems 1.4 and 1.5 and those estimates remain true even if tww(G) is rescaled by a constant
factor. Thus by (5) it suffices to prove these theorems with tww(G) replaced by stww(G), and that
is what we will do, working from now on almost exclusively with the notion of sparse twin-width.

2. Upper bounds
In this section we prove Theorem 1.4, establishing the upper bounds in our main results.
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We start by expanding on the description of our methods in the introduction and giving a
sketch of a proof of an upper bound of n

1
3+o(1) on the sparse twin-width of n-vertex 3-regular

graphs. While this bound is weaker than the tight bound n
1
4+o(1), which we will end up proving, it

already substantially improves on the previously known bounds and illustrates the main steps of
the approach implemented in this section.

LetG be an n-vertex 3-regular graph. Let �= ( 1
6 + o(1)

)
log2 n be an integer. For each v ∈V(G),

let the label f (v) ∈ {0, 1}� be chosen uniformly at random among all 2� distinct {0, 1}-sequences of
length �. If u1, u2, u3 are the neighbours of v, we define

φ(v)=

⎛
⎜⎜⎜⎜⎜⎝

f (v)

f (u1)

f (u2)

f (u3)

⎞
⎟⎟⎟⎟⎟⎠ ∈ {0, 1}4×�.

In particular, φ(v) is uniformly distributed among the 24� = n
2
3+o(1) matrices of size 4× � with

{0, 1} values. Furthermore, if uv ∈ E(G) then φ(u) and φ(v) have (at least) two rows in common,
although not in the same positions. Thus if H =H(�) is the graph with all possible such 4× �

matrices as vertices and an edge between any two matrices sharing at least two rows in this way,
then φ is a homomorphism fromG toH, and we can obtain a contraction sequence fromG toH by
arbitrarily identifying pairs of vertices of G with the same image, until we obtain a subgraph ofH.
As the dependencies between values of φ are only local, it is not hard to believe (and will be shown
later in a more general and technical setting) that the number of preimages of every vertex of H
is typically close to the expected value n

1
3+o(1) and so we can choose φ so that the total degree of

vertices identified into a single one in this process is n
1
3+o(1), i.e. our contraction sequence from G

toH is an n
1
3+o(1)-contraction sequence. To show that stww(G)≤ n

1
3+o(1) it remains to extend this

sequence to an n
1
3+o(1)-contraction sequence for G, i.e. to obtain an n

1
3+o(1)-contraction sequence

for H.
To accomplish this final step note that�(H(�))= n

1
3+o(1) and that there exists a natural homo-

morphism from H(�) to H(�− 1) by deleting the final column of each matrix. As in the previous
paragraph, we can convert the homomorphism in to an n

1
3+o(1)-contraction sequence from H(�)

to H(�− 1), and repeating this process eventually extend this sequence to an n
1
3+o(1)-contraction

sequence for H.
This finishes the sketch.
We proceed to tighten and generalize the steps presented above. The next three lemmas lay

down the groundwork which will allow us to obtain a randommap φ from the vertices of a sparse
graph G to a set of matrices in a way similar to the above so that the neighbours share as much
information as possible, but far away vertices share none. If a graph corresponds to a digraph with
maximum outdegree one, it is possible to obtain such φ with neighbours sharing almost all the
information (see Lemma 2.2). In general, we obtain φ by decomposing G into such digraphs.

Lemma 2.1. If G is a graph and a, b ∈N are such that a≥ b and a
b ≥ 1

2mad(G), then there exist
spanning subgraphs G1, . . . ,Ga of G, each of which admits an orientation with maximum outdegree
one, such that each edge of G belongs to exactly b of them.

Proof. Let G= (V , E), and consider the following auxiliary bipartite graph H. The bipartition of
H consists of the two sets V × [a] and E× [b], and there exists an edge between vertices (v, i) ∈
V × [a] and (e, j) ∈ E× [b] if v and e are incident in G. We now claim that H admits a matching
that covers E× [b], and to prove this we use Hall’s theorem. So consider any subset X ⊆ E× [b].
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Let F ⊆ E be the projection of X to the first coordinate, and let A⊆V be the set of vertices in
G that touch at least one edge in F. Since mad(G)≤ 2a

b , we have |F| ≤ a
b · |A|. Furthermore, it

follows directly by definition of H that NH(X)=A× [a]. Thus, we have |NH(X)| = |A| · a≥ b ·
|F| ≥ |X|, where we used that X ⊆ F × [b] in the last inequality. Thus, Hall’s condition is satisfied
and we indeed find a matchingM inH that covers every vertex in E× [b]. For i= 1, . . . , a, define
Ei := {(u, v) | ∃t ∈ [b] : (u, i) is matched to (uv, t) inM}. It is readily verified that Di := (V , Ei) is a
digraph of maximum out-degree at most 1, and its underlying graph Gi is a subgraph of G. The
fact that M covers every vertex in E× [b] now directly implies that every edge e of G belongs to
exactly b of the graphs G1, . . . ,Ga, as desired. �

In the next lemma we construct homomorphisms from graphs that admit an orientation with
maximum outdegree one (which we will obtain from Lemma 2.1) to a certain explicit family of
sparse graphs, which will serve as building blocks of the homomorphism we will use to bound
stww(G).

We now define this graph family. Let S be a (possibly infinite) set. We say that two sequences
(s1, s2, . . . , sr) and (s′1, s′2, . . . , s′r) of the same length r are close if they contain a common
subsequence of length r − 1, that is if there exist indices i and j such that

(s1, s2, . . . , si−1, si+1, . . . , sr)= (s′1, s′2, . . . , s′j−1, s
′
j+1, . . . , s

′
r).

Let 	 = 	(S, r) be a graph withV(	)= Sr such that two sequences are adjacent in 	 if and only
if they are close. Let 	∗(S, r) be the induced subgraph of 	 with vertex set restricted to the set of
sequences in which each element of S appears at most once.

Lemma 2.2. If G is a graph which admits an orientation with maximum outdegree at most one,
then for every positive integer r there exists a set S and a homomorphism φ from G to 	∗(S, r) such
that for every pair of vertices u, v ∈V(G), if the sequences φ(u) and φ(v) share a common element,
then the distance between u and v in G is at most 2r − 2.

Proof. It suffices to prove the lemma for connected graphs G. Indeed, if G is a union of two vertex
disjoint graphs non-null graphs G1 and G2, we may inductively assume that for i= 1, 2 there exist
homomorhisms φi :V(Gi)→ 	∗(Si, r) satisfying the conditions of the lemma for Gi. Further, we
may assume without loss of generality that S1 ∩ S2 = ∅. If φ :V(G)→ 	∗(S1 ∪ S2, r) is defined so
that φ|V(Gi) = φi for i= 1, 2, then φ is as desired.

Hence we assume that G is connected and that the edges of G are directed so that every vertex
has at most one outneighbour. Then G contains a unique directed cycle C or exactly one vertex
with no outneighbours.

Let S=V(G)∪ {s1, . . . , sr}, where {s1, . . . , sr} is an arbitrary set disjoint from V(G). For each
vertex v, let v= v1, v2, . . . , vt be the vertices of the unique longest directed path starting at v,
and let f (v)=min (t, r). Now set φ(v) := (v1, . . . , vf (v), s1, . . . , sr−f (v)). Observe that if (v,w) is a
directed edge, then the substring obtained by deleting v1 from φ(v) can be obtained from φ(w)
either by deleting the final element of φ(w) or by deleting v from φ(w). Additionally, if v and w
share an element then they share an element in V(G), and so the distance between them is at most
2r − 2. Thus φ is a homorphism satisfying the lemma. �

Next we formalize the arguments used to bound twinwidth via homomorphisms sketched at
the beginning of the section, starting with the following simple lemma.

Lemma 2.3. If G,H are graphs and φ is a homomorphism from G to H, then

stww(G)≤max{stww(H),m�(G)} , (6)

where m := maxv∈V(H) |φ−1(v)|.
Proof. It suffices to show that there exists a m�(G)-contraction sequence from G to a subgraph
of H, as we can then extend it to a max{stww(H),m�(G)}-contraction sequence for G using the
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stww(H)-contraction sequence for H. We obtain such a sequence by repeatedly identifying the
vertices in φ−1(v) into a single vertex for every v in V(H). At any step of this process each vertex
of the intermediate graph Gi has been obtained by identification of at mostm vertices of G and so
has degree at mostm�(G). �

Next we define a certain technical product of the graphs 	(S, r) defined above to which we
will map our graph G and bound its twin-width. For positive integers q≥ 2, r1, . . . , ra, and b, let

=
(r1, r2, . . . , ra;b, q) be the graph with

V(
)= {
(v1, v2, . . . , va) | vi ∈ [q]ri

}
where two vertices v= (v1, v2, . . . , va) and u= (u1, u2, . . . , ua) are adjacent if there exists a set of
b components of u which are close to the corresponding components of v, that is if there exists
I ⊆ [a] with |I| = b such that for each i ∈ I either uivi ∈ E(	([q], ri)) or ui = vi.

Lemma 2.4. If a, b, q, r, r1, . . . , ra ∈N are such that a≥ b, q≥ 2 and r1, . . . , ra ≤ r, then

stww(
(r1, r2, . . . , ra;b, q))≤ r2babqar−b(r−1)+1. (7)

Proof. Let 
=
(r1, r2, . . . , ra; b, q). First, we bound �(
). Given u= (u1, u2, . . . , ua) ∈V(
)
we can enumerate its neighbours as follows. There are

(a
b
)
< ab ways of choosing a set I ⊆ [a] with

|I| = b such that the components with indices in I in the neighbour are close to the corresponding
components of u. For each i ∈ I there are at most qr2 ways of choosing the entries of this row in
the neighbour, as there are at most r2 ways of choosing the shared subsequences, and at most q
ways of choosing the remaining entry. Finally, there are at most qr ways of choosing entries of
each remaining row, yielding an upper bound ab × (qr2)b × (qr)a−b on the number of neighbours
of u. Thus

�(
)≤ r2babqar−b(r−1) (8)

We now prove the lemma by induction on
∑a

i=1 ri using (8) and Lemma 2.3. The base case,
when ri = 1 for every i ∈ [a], is trivial, as stww(
)≤ v(
)= qa < r2babqar−b(r−1)+1 in this case.

For the induction step assume without loss of generality that r1 ≥ 2. Let ψ : [q]r1 → [q]r1−1 be
a map erasing the last component, i.e. ψ((x1, . . . , xr1−1, xr1 ))= (x1, . . . , xr1−1).

Note thatψ maps pairs of close sequences to close ones. Indeed, if deleting the i-th component
of (x1, . . . , xr1−1, xr1 ) and j-th component of (y1, . . . , yr1−1, yr1 ) yields the same sequence, then
deleting i′-th component of (x1, . . . , xr1−1) and j′-th component of (y1, . . . , yr1−1) yields the same
sequence, where i′ =min (i, r − 1) and j′ =min (j, r − 1). Equivalently, ψ is a homomorphism
from 	([q], r1) to 	([q], r1 − 1).

Let 
′ =
(r1 − 1, r2, . . . , ra; b, q) and let φ :V(
)→V(
′) be defined by
φ((u1, u2, . . . , ua))= (ψ(u1), u2, . . . , ua), i.e. φ erases the last entry of the first component
of each vertex of 
. It is easily seen from the definitions that φ is a homomorphism from 
 to

′ and |φ−1(v)| = q for every v ∈V(
′). Thus by (8), Lemma 2.3 applied to φ, and the induction
hypothesis applied to
′ we have

stww(
)≤max
{
stww(
′), q�(
)

}≤ r2babqar−b(r−1)+1,

and (7) holds. �
For the next steps in the proof we need the following rather loose variant of the Chernoff

bound.
If X be a sum of independent random variables taking values in {0, 1}, then

P[X> c]≤ e−c/3 (9)

for every c≥ 3E[X].
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This inequality follows from a more standard form of the Chernoff bound (see e.g. [[10],
Theorem 2.3])

P[X> (1+ δ)E[X]]≤ e−
δ

2+δE[X] (10)

for every δ ≥ 0 applied with c= (1+ δ)E[X], as δ
2+δ ≥ 1

3 (1+ δ) for δ ≥ 2.
We will also use the Hajnal–Szemerédi theorem on the existence of equitable colourings in

graphs with a given maximum degree.

Theorem 2.5 ([8]). If G is a graph and k ∈N such that k≥�(G)+ 1, then V(G) can be partitioned
into independent sets V1, . . . ,Vk such that |Vi| ≤ v(G)

k + 1.

Applying Theorem 2.5 to the �-th power of G we obtain the following.

Corollary 2.6. If G is a graph and �, k ∈N are such that k≥ (�(G))� + 1, then V(G) can be parti-
tioned into sets V1, . . . ,Vk such that |Vi| ≤ v(G)

k + 1 and the distance between any pair of distinct
vertices of Vi in G is at least �+ 1 in G.

Proof. Let G∗ be the graph with V(G∗)=V(G) such that two vertices of G∗ are adjacent if the
distance between them in G is at most �. Then �(G∗)≤ (�(G))�, and so the corollary follows
from Theorem 2.5 applied to G∗. �

Our next lemma gives an upper bound on the sparse twin-width of a graph in terms of sev-
eral parameters, which we optimize in a subsequent lemma to get the upper bounds in our main
results.

Lemma 2.7. If G is a graph and a, b, q, r ∈N are such that a≥ b, ab ≥ 1
2mad(G), q≥ 2 and

v(G)≥ 6ra · qar+1(�(G))2r, (11)

then

stww(G)≤max
{
r2babqar−b(r−1)+1,

4
qar

v(G)�(G)
}
. (12)

Proof. By Lemma 2.1 there exist spanning subgraphs G1, . . . ,Ga of G, each of which admits an
orientation with maximum outdegree one, such that each edge of G belongs to at least b of them.
By Lemma 2.2 for each i ∈ [a] there exists a set Si and a homomorphism ψi from Gi to 	∗(Si, r)
such that for every pair of vertices u, v, if the sequences ψi(u) and ψi(v) share a common element,
then the distance between u and v in G is at most 2r − 2.

Let
=
(r1, r2, . . . , ra;b, q), where ri = r for all i ∈ [a]. We define a randommap φ :V(G)→
V(
) as follows. For each i ∈ [a], we independently choose a random map πi : Si → [q], with the
values of each individual πi chosen uniformly and independently at random. Then, let

φ(v) := (π1(ψ1(v)), π2(ψ2(v)), . . . , πa(ψa(v)))
for every v ∈V(G), where we are abusing notation by denoting by πi(ψi(v)) the element of [q]r
obtained from ψi(v) by applying πi component-wise. Note that given that ψi is a homomorphism
and by definition of 	∗(Si, r), if uv ∈ E(Gi) then ψi(u) and ψi(v) are close, and so πi(ψi(v)) and
πi(ψi(u)) are also close. As each edge of G belongs to at least b subgraphs Gi it follows that φ is
a homomorphism from G to 
, since adjacency in 
 is defined by having at least b components
which are close. As the components of ψi(v) are distinct, πi(ψi(v)) is uniformly distributed on
[q]r . Indeed, by definition of πi for every (s1, . . . , sr) ∈ Sri such that s1, . . . , sr are pairwise-distinct
and every q1, . . . , qr ∈ [q]r we have

P
[∧r

i=1(πi(si)= qi)
]=

r∏
i=1

P
[
πi(si)= qi

]= 1
qr
.
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As themapsπi are chosen independently, for each v ∈V(G) its image φ(v) is uniformly distributed
on [q]r × [q]r × . . . [q]r =V(
).

Note that if �(G)≤ 1 then stww(G)≤�(G) and the lemma trivially holds. Thus we assume
�(G)≥ 2.

Let k= (�(G))2r−2 + 1≤�(G)2r−1. By Corollary 2.6, the vertex set of G can be partitioned
into sets V1, . . . ,Vk such that for every i ∈ [k], |Vi| ≤ v(G)

k + 1 and the distance between any pair
of distinct vertices of Vi in G is at least 2r − 1 in G. Thus for any pair of distinct vertices u, v ∈Vi,
the sequences ψj(u) and ψj(v) are disjoint for every j ∈ [a]. It follows that for each i ∈ [k] the
random variables {φ(v)}v∈Vi are mutually independent.

We will bound stww(G) by applying Lemma 2.3 to φ chosen so that

m(φ) := max
u∈V(
)

|φ−1(u)|
is as small as possible. Let

c= 3
v(
)

(
v(G)
k

+ 1
)
.

Recalling that φ(v) is uniformly distributed onV(
) for every v ∈V(G), we have thatE[|φ−1(u)∩
Vi|]= |Vi|

v(
) ≤ c/3 for every u ∈V(
) and i ∈ [k]. Thus

P[|φ−1(u)∩Vi|> c]≤ e−c/3

by the Chernoff bound (9). It follows from the union bound that P[|ψ−1(u)|> kc]≤ ke−c/3 for
every u ∈V(
), and so P[m(φ)≤ kc]≥ 1− v(
)ke−c/3. Using (11) we have

log
(
kv(
)e−c/3)= log k+ ar log q− 1

v(
)

(
v(G)
k

+ 1
)

≤ 3r�(G)+ qar − v(G)
qar�(G)2r−1

≤ 3r�(G)+ qar − 4qar�(G)
< 0.

Thus with positive probability we havem(φ)≤ kc= 3
v(
)

(
v(G)+ k

)≤ 4 v(G)qar . Applying Lemma 2.3
to φ and using Lemma 2.4 to bound stww(
) gives

stww(G)≤max{stww(
), kc�(G)} ≤max
{
r2babqar−b(r−1)+1,

4
qar

v(G)�(G)
}
,

as desired. �
The following lemma is obtained from Lemma 2.7 by optimizing the choice of parameters.

Lemma 2.8. Let G be a graph and let d := mad(G) and � := log v(G). If

2+ �−1/6 ≤ d ≤ �

30 log �
and log (�(G))≤ �1/6, (13)

then

stww(G)≤�(G) · (v(G)) d−2
2d−2 · eO(d−1�1/2 log �+log d). (14)

Proof. Let b :=
⌈
�1/2

d log �

⌉
, a := � db

2 � ≤ db, r :=
⌊

�
2db log �

⌋
. First note that

r ≤ �

2d log � · �1/2
d log �

≤ �1/2, and (15)

ar ≤ db · �

2db log �
≤ �

2 log �
. (16)
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Let κ := �
(2a−b)r , i.e. v(G)= eκ(2a−b)r . Finally, let q := �eκ� ≤ eκ + 1≤ 2eκ .

Our goal is to apply Lemma 2.7, but first let us estimate κ . For the lower bound we have

κ ≥ �

2ar
(16)≥ �

2 �
2 log �

= log �.

Thus

ar log
( q
eκ
)

≤ ar
(
log (1+ e−κ )

)≤ are−κ ≤ ar
�

(16)≤ 1, (17)

and so

qar =
( q
eκ
)ar · eκar (17)≤ eκar+1. (18)

Similarly for the upper bound on κ , assuming v(G), and thus �, are large enough, we have
�

κ
= (2a− b)r ≥ (d − 1)br

≥ (d − 1)b
(

�

2db log �
− 1

)
≥ d − 1

2d
�

log �
− bd

≥ 1
4

�

log �
−
(
�1/2

d log �
+ 1

)
d ≥ 1

6
�

log �
,

where the last inequality uses that d ≤ �
30 log � and that � is large. Thus we have

κ ≤ 6 log �. (19)

Next, we verify that (11) holds. As a≥ bd/2 implies b≤ 2a/d and a
2a−b is increasing in b, we

have

eκar ≤ (v(G))
a

2a−b ≤ (v(G))
a

2a−2a/d = (v(G))
d

2d−2 . (20)

We have that

6ra · qar+1(�(G))2r
(15)≤ 6ra · qar+1(�(G))2�

1/2

(18)≤ 6 · ra · q · eκar+1(�(G))2�
1/2

(20)≤ 6e · ra · q · (v(G)) d
2d−2 · (�(G))2�

1/2

(16)≤ 6e · q · �

2 log �
· (v(G)) d

2d−2 · (�(G))2�
1/2

≤ 12e · eκ · �

2 log �
· (v(G)) d

2d−2 · (�(G))2�
1/2

(19)≤ �7 · (v(G)) d
2d−2 · (�(G))2�

1/2
,

where the last inequality holds for log �≥ 6e, and so to verify (11) it suffices to show that

�7 · (�(G))2�
1/2 ≤ (v(G))

d−2
2d−2 . (21)

By (13) and since d−2
2d−2 is increasing in d we have

d − 2
2d − 2

≥ �−1/6

2+ 2�−1/6 ≥ 1
4
�−1/6
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and therefore

7 log �+ 2�1/2 log�(G)
(13)≤ 7 log �+ 2�2/3 ≤ 1

4
�5/6 ≤ d − 2

2d − 2
�,

where the second inequality holds for � large enough. Exponentiating the above we obtain (21).
Thus (11) holds and so (12) holds by Lemma 2.7. As v(G)≤ q(2a−b)r , we have

stww(G)≤max
{
r2babqar−b(r−1)+1,

4
qar

v(G)�(G)
}

≤ 4r2babqb+1�(G)q(a−b)r

=
(
�(G) · (v(G)) d−2

2d−2
)

·
(
4(r2babeκ(b+1)) ·

( q
eκ
)(a−b)r+b+1 · eκ(a−b)r

(v(G))
d−2
2d−2

)
.

Thus to verify (14) it remains to show that

4(r2babeκ(b+1)) ·
( q
eκ
)(a−b)r+b+1 · eκ(a−b)r

(v(G))
d−2
2d−2

= eO(d
−1�1/2 log �+log d). (22)

We prove (22) by showing that the logarithms of the terms on the left side are of the form
O(d−1�1/2 log �+ log d), starting with the last:

log

(
eκ(a−b)r

(v(G))
d−2
2d−2

)
=
(
(a− b)r − d − 2

2d − 2
(2a− b)r

)
κ

=
(

2
2d − 2

a− d
2d − 2

b
)
κr

≤
(

2
2d − 2

(
db
2

+ 1
)

− d
2d − 2

b
)
κr

= κr
d − 1

=O
(
log � · �1/2

d

)
,

where the last estimate uses (15) and (19). For the second term, using that r ≥ 2 for sufficiently
large �, we get

log
(( q

eκ
)(a−b)r+b+1

)
≤ ar log

( q
eκ
) (17)≤ 1.

Finally, for the first term,

log
(
r2babeκ(b+1)

)
= b ·O(log r + log d + log b+ κ

)= b ·O(log d + log �
)
. (23)

If d ≤ �1/2

log � then log d =O( log �) and b=O
(
�1/2

d log �

)
and so the expression in (23) has the form

O
(
d−1�1/2

)
as desired. Otherwise, b= 1 and log �=O( log d) and so the expression in (23) has

the form O( log d). This yields the desired bound for the first term in (22), and so (14) holds. �
Theorem 1.4, which we restate for convenience, readily follows from Lemma 2.8.

Proof. Let G be an n-vertex graph, � := log n and d := mad(G).
If d =�( �

log log � ) then by (1) we have

tww(G)=O
(√

dn
)

= n
d−2
2d−2O

(√
d · n 1

2d−2
)

= n
d−2
2d−2 eO

(
�
d+log d

)
= n

d−2
2d−2 eO( log d).

Thus (3) holds, and so we may assume that d ≤ �
30 log � . As it suffices to establish (3) when n is

sufficiently large (and sufficiently large as a function of ε in (ii)), we assume from now on that �

https://doi.org/10.1017/S0963548324000439 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000439


12 K. Hendrey et al.

is large enough to satisfy subsequent inequalities. In particular, we can assume �−1/6 ≤ ε/2 in (ii),
and so that d ≥ 2+ �−1/6.

Given 2+ �−1/6 ≤ d ≤ �
30 log � , (3) follows from Lemma 2.8 and (5), as long as

log(�(G))≤ �1/6 and log�(G)=O
(
d−1�1/2 log �+ log d

)
. (24)

Clearly, (24) holds in (i) as�(G)= d in this case.
It remains to verify that (24) holds with high probability if G is as in (ii). It is well known and

is an easy consequence of Chernoff type bounds that �(G)=O(�mn )=O(�d) with high proba-
bility, and so log�(G)=O( log �) with high probability. Thus (24) holds with high probability
as d−1�1/2 log �+ log d ≥ 1

2 log � (which can be easily seen by splitting into cases d ≥ l1/2 and
d ≤ l1/2). �

3. Lower bounds
In this section we prove Theorem 1.5, establishing the lower bounds in our main results.

We start by showing that for every graph G with stww(G)≤w we can divide the vertices of G
into roughly equal parts, close to any prescribed size, so that identifying all vertices in each part
yields a graph with average degree close to w. As mentioned in the introduction, this fact will be
the basis of our counting argument.

If G is a graph and P is a partition of V(G), we define the quotient graph G/P as the graph on
vertex set P in which distinct P1, P2 ∈P are adjacent if and only if there exists at least one edge
in G between a vertex in P1 and a vertex in P2. If X ⊆V(G), we denote by P − X the partition
of G \ X obtained by restricting each part of P to V(G) \ X. We say G is w-degenerate if every
subgraph of G contains a vertex of degree at most w.

Lemma 3.1. If G is a graph and K < v(G) is an integer, then there exists a partition P of V(G) such
that |P| ≤K, |P| ≤ 2v(G)

K for every P ∈P and G/P is stww(G)-degenerate.

Proof. Let n := v(G) and w := stww(G). Let P1, . . . ,Pn be the sequence of partitions of V(G)
such that

1. |Pi| = n− i+ 1 for every i ∈ [n],
2. Pi+1 is a coarsening of Pi for every i ∈ [n− 1], and
3. G=G/P1,G/P2, . . . ,G/Pn is a w-contraction sequence for G,

which exists by definition of stww(G) and contraction sequences.
We define a partition P = (P1, . . . , Pk) for some k≤K recursively as follows. Suppose we have

already defined P1, . . . , Pr−1. Let Xr−1 = P1 ∪ · · · ∪ Pr−1. If V(G) \ Xr−1 = ∅, we let k= r − 1.
Otherwise, we wish to define Pr .

Let ir be the minimum index i≤ n such that Pi − Xr−1 contains a part of size at least v(G)K and
let Pr be any such part. If no such index i exists, let ir = n and set Pr =V(G) \ Xr−1. Note that in
the latter case, Pr is the sole part of Pn − Xr−1, so we have k= r and |Pk|< v(G)

K .
We now show thatP = (P1, . . . , Pk) satisfies the requirements of the lemma. ClearlyP is a par-

tition of G. We have |Pr| ≥ v(G)
K for r ∈ [k− 1] and Pk �= ∅. Thus v(G)=∑k

r=1 |Pr|> (k− 1) v(G)K ,
thus |P| = k≤K as desired.

Next we show that |Pr| ≤ 2v(G)
K for every r ∈ [k]. As noted above this holds for r = k and so we

assume r< k. Then |Pr| ≥ v(G)
K > 1 and so ir > 1, and Pr was chosen as a part of Pir − Xr−1 of size

at least v(G)K . As Pr is a union of at most two parts of Pir−1 − Xr−1, and each part of Pir−1 − Xr−1
has size less than v(G)

K by the choice of ir , it follows that |Pr| ≤ 2v(G)
K , as desired.
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We now claim that G/P is w-degenerate. It suffices to show that for every r ∈ [k− 1], there
are at most w parts among Pr+1, . . . , Pk with neighbours in Pr . Indeed, Pr = P′

r − Xr−1 for some
P′
r ∈Pir . As G/Pir has maximum degree at most w, there are parts P̂1, P̂2, . . . , P̂s ∈Pir for some

s≤w such that every neighbour of Pr in G− Xr−1 belongs to one of them. As ir ≤ ir+1 ≤ . . .≤ ik,
each part P̂j intersects at most one of Pr+1, . . . , Pk, implying the claim.

This concludes the proof of the lemma. �
In estimates below we frequently use the following standard bounds on binomial coefficients:(

n
m

)
≤
(en
m

)m
(25)

for all integer n≥m> 0.

Lemma 3.2. There exists C0 > 0 satisfying the following. For every 0< ε≤ 1/3, there exists n0 ∈N

such that for all n,m ∈N satisfying n≥ n0 and

(1+ ε)n≤m≤ 1
10

nlog n (26)

there are at most
(
C0ε

n2
m

)m
graphs G with V(G)= [n], e(G)=m and

stww(G)≤ εd
(

n
log n

) d−2
2d−2

,

where d = 2m
n .

Proof. Set C0 := 24000. Let ε be given.

Choose n0 large enough such that ε2
(

n0
log n0

) ε
2+4ε ≥ 1, and further such that 2

d + 4d
log n ≤ 1 for

every n, d such that n≥ n0 and 2+ 2ε≤ d ≤ 1
5 log n.

Let n,m, d be as in the statement.

Let w :=
⌊
εd

(
n

log n

) d−2
2d−2

⌋
and K :=

⌊
d2n

w log n

⌋
.

By our choice of n0, we can ensure that

w≥ ε

2
d
(

n
log n

) d−2
2d−2 ≥ d (27)

and thus K ≤ dn
log n ≤ n

5 < n. Furthermore, as w< d n
log n we have that d2n

w log n ≥ d> 2 and so

K >
d2n

2w log n
. (28)

By Lemma 3.1, if G is a graph with V(G)= [n] and stww(G)≤w, then there exists a partition
P = (P1, . . . , PK) of [n] such that |Pi| ≤ 2n

K for every i ∈K and G/P is w-degenerate. We wish to
compute the number of graphs G for which this is possible.

For a given partition P = (P1, . . . , PK) of [n] and F ⊆ ([K]
2
)
, let E(P , F) be the set of all {u, v} ∈

[n]2 such that either u, v ∈ Pi for some i ∈ [K], or u ∈ Pi and v ∈ Pj for some {i, j} ∈ F. In other
words, E(P , F) is the set of possible edges for a graph G on [n] if E(G/P)⊆ F (writing V(G/P)=
[K] for simplicity).

Let N be the number of graphs G with V(G)= [n], e(G)=m and stww(G)≤w. Every such
graph G is determined by the choice of a partition P of [n] with |P| =K, a set F ⊆ ([K]

2
)
with
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|F| =wK (since it follows from degeneracy that e(G/P)≤wK) and a choice of E(G)⊆ E(P , F)
with |E(G)| =m.

There are at most Kn choices of P .
The number of choices of F is upper bounded by

((K
2
)

wK

)
(25)≤

(
eK
w

)wK (28)≤
(

ed2n
w2 log n

) d2n
log n (27)≤

⎛
⎜⎜⎝ ed2n

ε2
4 d2

(
n

log n

) 2d−4
2d−2 log n

⎞
⎟⎟⎠

d2n
log n

≤
(
4e
ε2

) d2n
log n

n
d2n

(d−1) log n =
(
4e
ε2

) 2dm
log n

e
2dm
d−1 ≤ e4m ·

(
4e
ε2

) 2dm
log n

(29)

Finally, using that

|E(P , F)| =
∑

{i,j}∈F
|Pi||Pj| +

∑
i∈[K]

(|Pi|
2

)
≤ (|F| +K)

(
2n
K

)2
=K(w+ 1)

(
2n
K

)2
≤ 8wn2

K
,

the number of choices of E(G)⊆ E(P , F) with |E(G)| =m is upper bounded by
(|E(P , F)|

m

)
(25)≤

(
e 8wn2K
m

)m

=
(
16ewn
dK

)m
. (30)

Combining the upper bounds (29) and (30) on the number of choices of F and E(G)⊆ E(P , F),
respectively, we obtain

N
1
m ≤K2/d · e4

(
4e
ε2

) 2d
log n · 16ewn

dK

= 16e5 · (4e) 2d
log n · ε− 4d

log n ·K2/d−1 ·w · n
d

(26),(28)≤ 8e5 · (4e)
2· 15 log n
log n · ε− 4d

log n ·
(
2w log n
d2n

) d−2
d ·w · n

2

m

≤ 16e5 · (4e) 25 · ε− 4d
log n ·

(
log n
n

) d−2
d · d− 2d−4

d ·w 2d−2
d · n

2

m

≤ 8000 · ε− 4d
log n ·

(
log n
n

) d−2
d · d− 2d−4

d ·
(
εd

(
n

log n

) d−2
2d−2

) 2d−2
d

· n
2

m

= 8000 · ε2−
(
2
d+ 4d

log n

)
· d 2

d · n
2

m

≤ 24000 · ε · n
2

m
= C0 · ε · n

2

m
,

the last inequality following from our choice of n0.
This concludes the proof of the lemma. �
Lemma 3.2 immediately implies the desired lower bounds on the sparse twin-width of

d-regular graphs, when combined with the following rather loose estimate of the number of
n-vertex d-regular graphs, which is implied for example by a much more precise and general
result of McKay and Wormald [11].
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Theorem 3.3 (see [11]). There exists C1 > 0 such that for all n, d such that d ≤ log n and dn is even
there are at least (C1

n
d )

dn
2 d-regular graphs G with V(G)= [n].

We now derive Theorem 1.5 (i), which we restate here as a corollary, from Lemma 3.2 and
Theorem 3.3.

Corollary 3.4 (Theorem 1.5 (i)). There exists ε > 0 such that if G is a uniformly random n-vertex,
d-regular graph with 2< d< 1

5 log n, then

stww(G)≥ ε d√
log n

n
d−2
2d−2

with high probability.

Proof. Let ε := C1
3C0

, whereC0 andC1 are the constants satisfying the conditions of Lemma 3.2 and
Theorem 3.3, respectively. We may suppose that n≥ n0, where n0 is obtained from Lemma 3.2,
depending on ε. Let w := ε d√

log n
n

d−2
2d−2 . Then by Lemma 3.2 there are at most

(
C0ε

2n
d

) dn
2

d-regular graphs on n-vertices with stww(G)<w, and by Theorem 3.3 it follows that the
probability that stww(G)<w is at most(

C0ε
2n
d

) dn
2
/
(
C1

n
d

) dn
2 =

(
2C0ε

C1

) dn
2 =

(
2
3

) dn
2 ≤

(
2
3

)n
n→∞−−−→ 0.

Thus stww(G)≥w w.h.p., as desired. �
It remains to prove Theorem 1.5 (ii). This requires more preparation, as in this setting we will

not be applying Lemma 3.2 to G itself, but to the subgraph of G attaining the maximum average
degree. First, we will need to ensure that this subgraph is not too small.

Let Gn,m denote the set of all graphs G with V(G)= [n] and e(G)=m. We say that a graph G
with n vertices andm edges is α-balanced if e(G[X])≤ m

n |X| for everyX ⊆ [n] with |X| ≤ α(n− 1).

Lemma 3.5. If 0< ε < 1
10 , α = 1

4e
− 4
ε and n,m ∈N are such that (1+ ε)n≤m≤ n2

8 , almost all
graphs in Gn,m are α-balanced.

Proof. Given the upper bound on m, we may assume that n is large enough such that
(n
2
)−m≥

(n2)
e (and n≥ e2 + 1).
We start with an auxiliary computation. Let d := m

n ≥ 1+ ε and let

f (x) := e(2d+1)x
(
x− 1
n− 1

)(d−1)x
.

Note that for 2≤ x≤ α(n− 1), we have

f (x+ 1)
f (x)

= e2d+1
(

x
x− 1

)(d−1)x ( x
n− 1

)d−1
≤ e2d+14d−1αd−1 = e3

(
4e2α

)d−1

= e3
(
e−

4
ε
+2
)d−1 ≤ e3

(
e−

4
ε
+2
)ε = e2ε−1 ≤ 1

2
,

where for the first inequality sign, we used that
(

x
x−1

)x
is monotonically decreasing for x> 1 and

that x≥ 2. It follows that f (x)≤ f (2)22−x for all integers 2≤ x≤ α(n− 1).
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Moving on to the main proof, for X ⊆ [n] let B(X) denote the set of all graphs G ∈ Gn,m such
that e(G[X])> d|X|. Let x := |X| and k := �dx�. Then

|B(X)| ≤
((x

2
)
k

)( (n
2
)

m− k

)
, (31)

as there are at most
((x2)
k
)
ways of choosing k edges of G[X] and at most

( (n2)
m−k

)
choices for the

remaining edges. Thus

|B(X)|
|Gn,m| ≤

((x2)
k
)( (n2)

m−k
)

((n2)
m
) =

((x
2
)
k

) (n2)!
(m−k)!((n2)−(m−k))!

(n2)!
m!((n2)−m)!

=
((x

2
)
k

)
m(m− 1) . . . (m− k+ 1)((n

2
)−m+ k

) ((n
2
)−m+ k− 1

)
. . .

((n
2
)−m+ 1

)
≤
(
e
(x
2
)

k

)k
mk((n

2
)−m

)k ≤
(
e
(x
2
)

dx
· dn(n

2
)
/e

)k

=
(
e2(x− 1)
n− 1

)k
≤
(
e2(x− 1)
n− 1

)dx
.

We upper bound the proportion of graphs in Gn,m which are not α-balanced by

∑
X⊆[n],0<|X|<αn

|B(X)|
|Gn,dn| ≤

∑
1≤x<αn

(
n
x

)(
e2(x− 1)
(n− 1)

)dx
≤

∑
2≤x<αn

(en
x

)x (e2(x− 1)
(n− 1)

)dx

≤
∑

2≤x<αn
e(2d+1)x

(
x− 1
n− 1

)(d−1)x
=

∑
2≤x<αn

f (x)≤ f (2)
∑

2≤x<αn
22−x

≤ 2f (2)= 2e2(2d+1)

(n− 1)2(d−1) = 2e6
(

e2

(n− 1)

)2(d−1)
≤ 2e6

(
e2

(n− 1)

)2ε
.

As the last term tends to 0 as n→ ∞ the lemma follows. �
The next lemma states that there is no large part of G which is too dense, which will allow us to

apply Lemma 3.2.

Lemma 3.6. Let α > 0 and let n,m ∈N be such that n≤m≤ 1
11n log n. If G is a uniformly random

graph in Gn,m, then with high probability for every set X ⊆ [n] with |X| ≥ αn+ 1 we have

e(G[X])≤ 1
10

|X| log |X|. (32)

Proof. Wemay first suppose that n is large enough such that αn≥ 3.
Say a graph G with vertex set [n] has property (∗) if (32) holds for every X ⊆ [n] with |X| ≥

αn+ 1.
We first claim that if G is a random graph G(n, p), with p= m

(n2)
, then (∗) holds.

Let X ⊆ [n] such that |X| ≥max (αn+ 1, 3) be fixed and x= |X|. Then, e(G[X]) is a sum of
independent binomial variables (one for each possible edge). We have E[e(G[X])]= p · (x2)=
m·(x2)
(n2)

= mx(x−1)
n(n−1) .

Note that the function log x
x is monotone decreasing for x≥ e. In particular, as x≤ n, log x

x ≥
log n
n . Let f1(n) and f2(n) be two functions, such that nf1(n)≤m≤ nf2(n); we will have to consider
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two different regimes. However we will always have f2(n)≤ 1
11 log n, and so log n

10f2(n) > 1. We then
have that

1
10

x log x= 1
10

· log x
x

x2 ≥ 1
10

· log n
n

x2 · m
nf2(n)

= log n
10f2(n)

· mx2

n2

≥ log n
10f2(n)

· mx(x− 1)
n(n− 1)

=
(
1+

(
log n
10f2(n)

− 1
))

E[e(G[X])].

Hence, by the Chernoff bound (10),

P

[
e(G[X])≥ 1

10
x log x

]
≤ P

[
e(G[X])≥

(
1+

(
log n
10f2(n)

− 1
))

E[e(G[X])]
]

≤ exp

⎛
⎜⎝−

(
log n
10f2(n) − 1

)2
2+

(
log n
10f2(n) − 1

) · mx(x− 1)
n(n− 1)

⎞
⎟⎠

≤ exp

⎛
⎜⎝−

(
log n
10f2(n) − 1

)2
1+ log n

10f2(n)

· nf1(n) · (αn)
2

n2

⎞
⎟⎠

< exp

⎛
⎜⎝−α2

(
log n
10f2(n) − 1

)2
log n
5f2(n)

f1(n) · n
⎞
⎟⎠ .

If n≤m≤ n
√
log n, i.e. f1(n)= 1 and f2(n)=

√
log n, then this value becomes

exp

⎛
⎜⎜⎜⎝−α2

(
log n

10
√

log n
− 1

)2

log n
10

√
log n

n

⎞
⎟⎟⎟⎠= exp

(
−α

2

10

(√
log n− 20+ 100√

log n

)
n

)
� 2−n.

Otherwise, if n
√
log n≤m≤ 1

11n log n, i.e. f1(n)=
√
log n and f2(n)= 1

11 log n, then this value
becomes

exp

⎛
⎜⎜⎜⎝−α2

(
log n

10· 1
11 log n

− 1
)2

log n
5· 1

11 log n

√
log n · n

⎞
⎟⎟⎟⎠= exp

(
− α2

220
√
log n · n

)
� 2−n.

Given that are at most 2n possible choices of X, in all cases the probability that there is some
X with |X| ≥ αn+ 1 for which (32) does not hold converges to 0 as n→ ∞. This completes the
proof of the claim.

We now show the statement when G is uniformly chosen in Gn,m with a coupling argument.
LetG(n, p,m) denote the random graph distribution defined by conditioningG(n, p) on having

at least m edges. The number of edges of G(n, p) follows a binomial distribution with parameters
B(
(n
2
)
, p). It is well-known (see [9], for instance) that when the mean of a binomial distribution is

an integer, it is also equal to the median. In particular, for our previous choice p= m
(n2)

,

P(e(G(n, p)≥m)≥ 1
2
.

It thus also holds that if G is a random graph G(n, p,m), with high probability (∗) holds.
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Let G and G′ be random graphs obtained using the following process. G′ will have distribution
G(n, p,m), and G will be chosen as a uniformly random subgraph of G′ with exactly m edges.
It is immediate by symmetry that G is a uniformly random graph in Gn,m. Furthermore, E(G)⊆
E(G′) and so e(G[X])≤ e(G′[X]) for any X ⊆ [n]. As (∗) holds with high probability for G′, it thus
follows that with high probability (∗) holds for G. This concludes the proof of the statement. �

We are now ready to start the proof of Theorem 1.5 (ii), which we restate here with tww
replaced by stww, which is equivalent to the original statement by (5), as �(G) is logarithmic
in v(G) in the regime covered by Theorem 1.5 (ii) with high probability, while the claimed bound
on tww is polynomial in v(G).

Theorem 3.7 (Theorem 1.5 (ii)). For every ε > 0 there exists δ > 0 such that for all n,m ∈N such
that (1+ ε)n≤m≤ 1

11n log n the following holds. If G is a uniformly random graph in Gn,m, then
with high probability we have

stww(G)≥ δ d√
log n

n
d−2
2d−2 , (33)

where d =mad(G).

Proof. W.l.o.g. suppose ε < 0.1, let α = 1
4e

− 4
ε and let C0 be as in Lemma 3.2. We show that δ =

α3/24−2/α

24C0
satisfies the theorem.Wemay suppose that n is sufficiently large such that α(n− 1)≥ α

2 n,(n
2
)−m≥ n2/3, which is possible given the upper bound on m, and α(n− 1)≥ n0, where n0 is

obtained from Lemma 3.2.
Let S(X,m′) be the set of all graphs in Gn,m such that e(G[X])=m′ and X is a maximal subset

of [n] satisfying mad(G)= 2e(G[X])
|X| , i.e. such that mad(G) is the average degree of G[X]. Note that

mad(G)≥ 2e(G)
v(G) = 2m

n .
By Lemma 3.5, with high probability every X ⊆ [n] with |X| ≤ α(n− 1) is such that e(G[X])≤

m
n |X|. In particular, for such an X, 2e(G[X])|X| ≤ 2m

n ≤mad(G). Hence, no such X has average degree
greater than that of the entire graph G. Hence, with high probability G has a set X ⊆ [n] which
attains the maximum average degree and has size |X| ≥ α(n− 1).

On the other hand, Lemma 3.6 states that with high probability every set X with |X| ≥ α(n− 1)
is such that e(G[X])≤ 1

10 |X| log |X|.
Hence, with high probability G belongs to some set S(X,m′) where |X| ≥ α(n− 1) and m′ ≤

1
10 |X| log |X|. Furthermore, as X attains the maximum average degree, then 2m′

|X| ≥ 2m
n and som′ ≥

m
n |X| ≥ (1+ ε)|X|.
Let w := δ d√

log n
n

d−2
2d−2 . Let N(X,m′) be the number of graphs G ∈ S(X,m′) with stww(G)≤w.

As there are at most 2n choices of X and o(2n) choices of m′, to prove the theorem it suffices to
show that for any X andm′ as above we have

4nN(X,m′)= o(|Gn,m|). (34)

Let x := |X| and ε′ := 2δ
α1/2

. Note that

ε′ = α · 4−2/α

12C0
<α = 1

4
e−

4
ε < ε.

As n≥ x≥ α(n− 1)≥ α
2 n, we have

ε′d
(

x
log x

) d−2
2d−2 ≥ ε′

√
α

2
· d√

log n
n

d−2
2d−2 ≥w.
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Hence, as stww(G)≤w we have stww(G[X])≤w≤ ε′
(

x
log x

) d−2
2d−2 . Given that x≥ α(n− 1)≥ n0

and (1+ ε′)x≤ (1+ ε)x≤m′ ≤ 1
10x log x, by Lemma 3.2 there are at most

(
C0ε

′ x2
m′
)m′

possible
choices of for the subgraph G[X] such that G ∈ S(X,m′) and tww(G)≤w. There are also at most((n2)−(x2)
m−m′

)≤ ( (n2)
m−m′

)
choices for the remaining edges of G. It follows that

N(X,m′)≤
(
C0ε

′ x2

m′

)m′ ((n
2
)− (x

2
)

m−m′

)
.

Usingm≤ n
xm

′ ≤ 2
α
m′, we obtain

(
4nN(X,m′)

|Gn,m|
)1/m′

≤ 4n/m
′
C0 · ε′ · x

2

m′

⎛
⎝( (n2)

m−m′
)

((n2)
m
)
⎞
⎠

1/m′

≤ 4m/m
′
C0 · 2δ

α1/2
· x

2

m′

⎛
⎜⎝

(n2)!
(m−m′)!((n2)−(m−m′))!

(n2)!
m!((n2)−m)!

⎞
⎟⎠

1/m′

≤ 4m/m
′
C0 · 2δ

α1/2
· x

2

m′

(
m(m− 1) . . . (m−m′ + 1)((n

2
)−m+m′) ((n

2
)−m+m′ − 1

)
. . .

((n
2
)−m+ 1

)
)1/m′

≤ 42/αC0 · 2δ
α1/2

· x
2

m′ · m(n
2
)−m

≤ 42/αC0 · 2δ
α1/2

· m
m′ · x2

n2/3

≤ δ · 12
α3/2

· 42/α · C0 ≤ 1/2,

implying (34) as desired. This concludes the proof of the theorem. �

4. Concluding remarks
We have established bounds on the twin-width of sparse graphs in terms of their maximum
average degree (see e.g. Lemma 2.8) and have shown that these bounds are essentially tight for
random graphs and random regular graphs. In combination with the previously known results,
our bounds, in particular, asymptotically determine log tww(G(n, p)) for 1+ε(n)

n ≤ p≤ 1− 1+ε(n)
n

for some function ε(n) sufficiently slowly approaching zero.
The regime in which tww(G(n, p)) remains least understood is the critical window p= 1+o(1)

n .
A related open question is to find optimal bounds on the twin-width of n-vertex graphs with
maximum average degree 2+ ε(n), where ε(n) quickly approaches zero. Such graphs structurally
resemble long subdivisions, and the twin-width of subdivisions has been investigated before in [5]
and [2]. It is tempting to extend our result to this setting, but substantial technical difficulties, in
particular, involving the treatment of large degree vertices, remain.
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