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Abstract
Flexible cables in cable-driven parallel robots (CDPRs) are easy to be excited and vibrate. Cable vibration will react
on the end-effector, causing attitude deviation of the end-effector. The main objective of this study is to accurately
model axially moving flexible cables and characterize the dynamic behaviors of associated compliant CDPRs.
Firstly, a model for transverse vibration of the axially moving length-variable cable is developed. On this basis, an
original nonlinear dynamic model of the CDPRs able to capture the vibration of the cables and the dynamics of
the end-effector is proposed. Secondly, the frequency–amplitude relationship of the CDPR is obtained. Moreover,
the significance of the excitation effect caused by the axially moving length-variable cables is demonstrated, by
comparing the results with and without excitation effect at different frequencies. It turns out that, as the oscillation
frequency of the end-effector increases, the end-effector and cables exhibit the dynamics process from steady state to
unstable large-amplitude vibration and finally to stable small-amplitude vibration. This indicates that the dynamics
of the CDPR exhibit non-linear characteristics, due to the influence of flexible cables. Finally, the proposed dynamic
model of compliant CDPRs is validated by experiments performed in the laboratory.

1. Introduction
Cable-driven parallel robots (called CDPRs for short throughout the paper) are a new type of mecha-
nisms based on parallel robot technology [1]. A CDPR is formed by a base, an end-effector, a number of
driving cables, and motion control units. The motion control of the end-effector is performed by mod-
ifying the lengths of the cables [2]. CDPRs have the advantages of large workspace, light weight, high
load capacity, fast response, and easy reconfiguration. As a result, they are widely used in the fields of
the aerial panoramic photographing [3, 4], the medical rehabilitation [5, 6], the wind tunnel test [7–10],
the radio telescope [11], and so on.

Because of the flexibility of cables, the vibration of CDPRs becomes a vital concern. Vibrations of
CDPRs can be induced by (brutal) end-effector velocity changes, wind disturbance, and/or speed reducer
backlash [12, 13]. Vibrations of CDPRs mainly include vibrations of the cables and the end-effector.
Vibrations of CDPRs can affect the static and dynamic behaviors of CDPRs, such as the positioning
accuracy, trajectory tracking, as well as the force distribution and control [12–15]. In applications requir-
ing high positioning precision, high system stiffness, and/or high dynamic performances, vibrations of
CDPRs are an important issue [13, 16]. Moreover, the oscillation of the end-effector may cause vibration
in the cables. The vibrating cables may react on the end-effector and cause large-amplitude vibration
of the end-effector [13]. When large-amplitude vibrations of CDPRs occur, even serious damage to the
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CDPRs may happen. Hence, a detailed study of cable vibration and the resulting dynamic responses of
CDPRs is desired.

Studies of CDPRs are mostly focus on force distribution [17–19], workspace analysis [20, 21], tra-
jectory planning [22, 23], and motion control [24, 25]. Only a few studies are dedicated to the vibration
analysis of CDPRs [12–14, 26, 27]. In ref. [12], a dynamic stiffness analysis of CDPRs based on the
dynamic stiffness matrix method is presented, and the modal interaction is analyzed. In ref. [13], the
dynamic model for cable-driven parallel manipulators is achieved considering the relationship between
the motion of the end-effector and the cable end force. In ref. [14], a new approach is proposed to com-
pensate the rotational oscillations of the end-effector, using reaction wheels. In ref. [26], a model relating
the motion of the end-effector and the cable tension is provided to investigate the trajectory tracking of
the end-effector. In ref. [27], the effect of the cable vibration on the natural frequencies of the cable-
driven parallel manipulator is analyzed. However, few studies consider the cable vibration and its effect
on the motion of the end-effector in CDPRs.

Cable vibration is a key problem in the dynamic analysis of CDPRs. Research on the cable vibration
mostly can be found in the engineering fields such as cable-stayed bridges and power transmission lines
[28–30]. In the modeling of cable vibration, Tagata [31] reduces the cable to a massless tensioned string
and derives the dimensionless Mathieu equation. On this basis, many scholars have done a lot of research
on the parametric vibration of cables [32–35]. However, in the above studies, the cable is stationary along
its axial direction and the cable length is invariable.

For the vibration of an axially moving string, an axially moving string/cable may undergo trans-
verse vibration excited by its axial acceleration. A small excitation can produce a large response in such
parametrically excited systems [36, 37]. Mote [38] first studied the parametric vibration of an axially
moving string due to the variation in tension using a modal analysis. Ghayesh [39, 40] investigated
the parametric vibration and stability of an axially accelerating string, assuming a mean axial velocity
with small harmonic fluctuations. Yurddaş et al. [41, 42] studied the nonlinear vibration of axially mov-
ing strings under non-ideal support. The nonlinear equations of motion and boundary conditions were
derived using Hamilton’s principle, and the axial motion was modeled using harmonic variable velocity
functions. Similarly, the governing equation of motion describing the transverse vibrations of the axially
moving string is derived from Hamilton’s principle in refs. [36, 43].

However, in the above studies, although the excitation of periodically fluctuating tension and velocity
on the cable is considered, the excitation effect of time-varying length is not considered. Moreover,
the boundary condition of the cable is that both ends are constrained, which is very different from
the CDPRs. For the CDPRs in this study, one end of the cable moves spatially along with the end-
effector. Further study is needed to be dedicated to the vibration of the axially moving cable excited
by its periodically fluctuating tension and velocity along with the time-varying length. Therefore, it is
essential to set up a brand new model to investigate the dynamic behavior of CDPRs containing axially
moving flexible cables of time-varying length. Moreover, an effective model can provide a useful tool for
the dynamic analysis of CDPRs. Research on the dynamic behavior of CDPRs can provide constructive
guidelines for the design and optimization of CDPRs.

This study is organized as follows. In Section 2, the problem of dynamic relationship between the
end-effector and the cables of CDPRs is illustrated. In Section 3, an original nonlinear dynamic model
of CDPRs able to capture the vibration of the cables and the dynamics of the end-effector is established.
An implicit numerical integration algorithm is used to solve the nonlinear partial differential equation of
CDPRs. In Section 4, based upon the proposed model of a 6-degree of freedom (DOF) 8-cable CDPR,
the frequency–amplitude relationship of the CDPR is obtained. And the significance of the excitation
effect caused by the axially moving length-variable cables is demonstrated by comparing the results with
and without excitation effect at different frequencies. In Section 5, dynamic experiments are performed
in the laboratory to validate the proposed dynamic model of compliant CDPRs. In Section 6, concluding
remarks are finally given.
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Figure 1. Kinematics schematic of a 6-DOF 8-cable CDPR.
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Figure 2. A simplified dynamic model of a 6-DOF CDPR.

2. Problem descriptions
A 6-DOF 8-cable CDPR is illustrated in Fig. 1. The purpose of using eight cables is to enable the cables
in tension during operation [27] and make the structure layout symmetrical. The number of cables can
be seven or more than seven in the design. The end-effector is suspended in the air by eight cables. The
6-DOF motion of the end-effector can be controlled by changing the length of the driving cables. As
shown in Fig. 1, a global frame OXYZ and a local frame Pxyz are set up. The origin of the local frame
Pxyz is set at the mass center of the end-effector (point P). Bi(i = 1, 2, . . ., 8) is the contact point between
the cable and the pulley; Pi(i = 1, 2, . . ., 8) is the anchoring point of the cable with the end-effector; and
ui(i = 1, 2, . . ., 8) is the direction vector for the ith cable.

A simplified dynamic model of a 6-DOF CDPR is shown in Fig. 2. For convenience, one end of
each cable is assumed to be fixed, with the other end attached to the end-effector. Initially, the end-
effector is at the static equilibrium, and the cables are in a tension state with the initial length L0i.
When the end-effector performs an oscillating motion, the cables will accelerate axially and the lengths
of the cables will alter accordingly. This axial acceleration may excite the cables, resulting in vibration
of the cables. Besides, the vibrating cables will react on the end-effector. The instantaneous attitude of
the end-effector is X = [XP, YP, ZP, φ, θ ,ψ]T, which characterize the three translations (XP, YP, ZP) and
the three rotations (φ, θ ,ψ). The instantaneous length of the cable during the motion of the end-effector
is Li, and the elastic extension in the cable caused by the vibration of the cable is δi.
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Figure 3. Force analysis of the differential cable element.

3. Problem formulations
3.1. Dynamics of the end-effector
In global frame OXYZ , the length vector of the ith cable Li is defined as [44]:

Li = Bi − XP − RxPi (1)

where Bi = −→
OBi, XP = −→

OP = [XP, YP, ZP]T represents the position vector of point P in global frame
OXYZ; xPi is the position vector of point Pi in local frame Pxyz; and R is the transformation matrix
from Pxyz to OXYZ .

As shown in Fig. 1, the end-effector is considered as a rigid body, and the equation of motion for the
end-effector can be established based on the Newton–Euler method [44]:

MẌ + WC − WG = JT
AT (2)

where M =
[

(mI)3×3 03×3

03×3 AGH

]
denotes the mass matrix; H =

⎡
⎢⎣

cos θ cosψ − sinψ 0

cos θ sinψ cosψ 0

− sin θ 0 1

⎤
⎥⎦; m is the

mass of the end-effector; AG is the inertia matrix of the end-effector about its mass center (point P). WC

denotes the nonlinear Coriolis force, WG denotes the gravity vector of the end-effector, and JT
A denotes

the Jacobian matrix of the CDPR. T is the tension vector, T = [T 1, T 2, . . ., T 8]T, and Ti(i = 1, 2, . . ., 8)
represents the tension in the ith cable. The calculation expressions for the above variables can be found
in ref. [44].

3.2. Modeling of the cable
It is assumed that the cables are homogeneous. The cables are always in a tension state with the diameter
d ≤ 3 mm. Therefore, the cables’ gravity is not taken into account. The bending stiffness of the cables is
negligible, because the cables can sustain only tensile forces. Considering the elastic effect of the cables,
the deformation of the cables conforms to Hooke’s law.

Consider the transverse vibration of the cable, since the sag of the cable is close to zero [45]. Taking
one cable as an example, as shown in Fig. 3, force analysis of the differential cable element is carried out.
The axial direction is along oywi, and the transverse direction is along oxwi. An approximation dsi ≈ dywi

is made for the differential cable element. The cable tension is Tiui, and ui is the unit directional vector of
cable tension for the ith cable. The transverse component of the cable tension is Txi, |Txi| ≈ −Ti

∂xwi
∂ywi

, and

|Txi +�Txi| ≈ Ti

∂xwi

∂ywi

+ Ti

∂

∂ywi

∂xwi

∂ywi

dywi. The transverse motion equation of the ith cable can be obtained

from the balance of forces:
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ρwAdsiv̇xi = Ti

∂2xwi

∂y2
wi

dywi + Fxi (3)

where ρw is the cable’s density, A is the cross-sectional area of the unstrained cable, dsi is the arc length
of the differential cable element, vxi is the velocity in the direction of oxwi, v̇xi is the acceleration in the
direction of oxwi, and Fxi is the external force in the direction of oxwi.

The axial speed of the ith cable (in the direction of oywi), denoted by vyi(t), is time dependent. At axial
coordinate ywi and time t, the transverse vibration of the cable is specified by the transverse displacement

xwi(ywi, t) [36]. So vxi = dxwi

dt
. Then

v̇xi = ∂

∂t

(
dxwi

dt

)
+ ∂

∂ywi

(
dxwi

dt

)
dywi

dt

= ∂2xwi

∂t2
+ 2vyi

∂2xwi

∂ywi∂t
+ v̇yi

∂xwi

∂ywi

+ v2
yi

∂2xwi

∂y2
wi

(4)

Consider the approximation of dsi ≈ dywi. Suppose the external force Fxi is zero. By substituting
Eq. (4) into Eq. (3), the partial differential equation for the transverse displacement of the ith cable can
be derived [36]:

ρwA

(
∂2xwi

∂t2
+ 2vyi

∂2xwi

∂ywi∂t
+ v̇yi

∂xwi

∂ywi

+ v2
yi

∂2xwi

∂y2
wi

)
= Ti

∂2xwi

∂y2
wi

(5)

To obtain the numerical solution of Eq. (5), the Galerkin method is applied to discretize the spatial
variable. Then the solution of Eq. (5) can be expressed as:

xwi = Xwi sin

(
π ywi

Li

)
(6)

where Xwi is the function of time t, ywi∈[0, Li].
Substituting Eq. (6) into Eq. (5) gives

ρwA

(
sin

(
πywi

Li

)
Ẍwi + 2vyi

(
π

Li

)
cos

(
πywi

Li

)
Ẋwi + v̇yi

(
π

Li

)
cos

(
πywi

Li

)
Xwi − v2

yi

(
π

Li

)2

sin

(
πywi

Li

)
Xwi

)

+ T

(
π

Li

)2

sin

(
πywi

Li

)
Xwi = 0 (7)

Setting ywi = Li

2
, the transverse vibration equation for the mid-span of the ith cable can be obtained:

Ẍwi −
(
π

Li

)2 (
v2

yi −
Ti

ρA

)
Xwi = 0 (8)

where the axial velocity of the cable vyi is related to the motion of the end-effector, and the cable tension
Ti is related to the motion of the end-effector and the cable vibration. The expression of these two
variables is needed to be established to get the complete vibration equation of the cable.

3.2.1. Expression of vyi
Based on Eq. (1), each side of it can be double as:

L2
i = (

XP + RxPi − Bi

)T (XP + RxPi − Bi

)
(9)

Taking derivatives of both sides of Eq. (9) with respect to time t gives

LiL̇i = (Li)
T
(
ẊP + ṘxPi

)
(10)

Taking derivatives of the transformation matrix R with respect to time t gives

Ṙ = R◦R (11)
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where R◦ =
⎡
⎣ 0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

⎤
⎦, ω is the angular velocity vector of the end-effector, and ω =

H[ϕ̇, θ̇ , ψ̇]T = [ωX ,ωY ,ωZ]T.
Substituting Eq. (11) into Eq. (10) gives

LiL̇i = (Li)
T ẊP + (ri × Li)

T ω (12)

The expression of the axial velocity of the ith cable can be derived from Eq. (12):

vyi = L̇i = uT
i ẊP + (ri × ui)

T ω (13)

3.2.2. Expression of Ti
The total tension Ti of the ith cable consists of three components: (1) the initial tension T 0i, (2) the
variation of the cable tension Tei caused by the 6-DOF motion of the end-effector, and (3) the variation
of the cable tension T δi caused by the vibration of the cable.

Using the definitions of L0i and Li listed in Section 2, the boundary elongation �Li caused by the
motion of the end-effector can be described as:

�Li = Li − L0i =
√(

Bi − XP − RxPi

)T (Bi − XP − RxPi

)− L0i (14)

Due to ∂xwi/∂ywi 	 1 in the vibration of the cable that is in tension tightly, from Eq. (6) with an
approximation made, the extension δi in the elastic deformation caused by the vibration of the ith cable
can be derived:

δi =
∫
(dsi − dywi)=

∫ Li

0

{
dywi

[
1 + (∂xwi/∂ywi)

2
]1/2 − dywi

}

≈
∫ Li

0

1

2
(∂xwi/∂ywi)

2 dywi = π 2X2
wi

4Li

(15)

Finally, the total tension Ti of the ith cable can be written as:

Ti = T0i + kwi

(
�Li + π 2X2

wi

4Li

)
(16)

where kwi is the stiffness coefficient of the cable. As can be seen from Eq. (16), cable tension Ti varies
with the motion of the end-effector and vibration of the cable.

3.2.3. Vibration equation of the cable
Based on the analysis above, considering the cable damping, the transverse vibration equation of the ith
cable can be described as:

Ẍwi + cwiẊwi +
(
π

Li

)2 ( Ti

ρwA
− v2

yi

)
Xwi = 0 (17)

where cable tension Ti = T0i + kwi

(
�Li + π 2X2

wi

4Li

)
, vyi = uT

i ẊP + (ri × ui)
T ω, cwi is the damping

coefficient.

3.3. Dynamic equation of CDPRs
Combining Eq. (2) and Eq. (17), and writing in matrix form leads to:{

Ẍw + CwẊw + KwXw = 0

MẌ + WC − WG = JT
AT

(18)
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Table I. The parameters of the CDPR.

Parameters Values
Cables Diameter d 0.5 mm

Density ρw 1440 kg/m3

Initial cable tension T0 [24.49, 24.49, 33.04, 33.04,
35.77, 23.37, 23.37, 35.77]T N

End-effector Mass 1.093 kg

Inertia matrix AG

⎡
⎢⎣

5.844 − 0.012 1.057

−0.012 99.364 − 0.003

1.057 − 0.003 101.314

⎤
⎥⎦× 10−4 kg · m2

where
Xw = [Xw1, Xw2,. . ., Xw8]T, Xwi(i = 1, 2, . . ., 8) represents the transverse deflection at the mid-span of

the cable;
Cw = diag(cw1, cw2, . . ., cw8), cwi(i = 1, 2, . . ., 8) represents the damping coefficient of the ith cable;

Kw = diag(Kw1, Kw2, . . ., Kw8), Kwi =
(
π

Li

)2 ( Ti

ms

− v2
yi

)
(i = 1, 2, . . ., 8);

T = [T 1, T 2,. . ., T 8]T, Ti(i = 1, 2, . . ., 8) represents the tension in the ith cable, Ti = T0i +
kwi

(
�Li + π 2X2

wi

4Li

)
; and

vyi = uT
i ẊP + (ri × ui)Tω represents the axially moving velocity of the ith cable.

Equation (18) is a nonlinear coupled equation for the motion of CDPR, which is a multibody system
having multiple DOFs. To obtain accurate approximate solutions at low computational cost, the numer-
ical method is an effective solution. To solve Eq. (18), it can be transformed into a state equation as
below:

Ẋc =

⎡
⎢⎢⎢⎣

06×6 I6×6

06×6 06×6

012×16

016×12

08×8 I8×8

−Kw −Cw

⎤
⎥⎥⎥⎦Xc +

⎡
⎢⎣

06×1

D∗

016×1

⎤
⎥⎦ (19)

where Xc =

⎡
⎢⎢⎢⎣

X6×1

Ẋ6×1

Xw8×1

Ẋw8×1

⎤
⎥⎥⎥⎦; D∗ = M−1(JT

AT − WC + WG).

The unknown Xc to be solved is a 28-by-1 vector, and Eq. (19) contains a large sparse matrix and
the coupled terms D∗ and Kw, which add more difficulties to the solution of the equation. Therefore,
Eq. (19) is solved by the implicit variable-order Runge–Kutta numerical integration method, which can
solve the coupled problem effectively.

4. Numerical simulation
4.1. Simulation conditions
The simulation has been carried out on a 6-DOF CDPR suspended by 8 cables. The cables are Kevlar
cables, which are made of aramid fiber material. The damping of the Kevlar cable with the diameter of
0.5 mm is very small and is ignored here, referring to ref. [44]. Detailed coordinates of Bi and Pi are
described in ref. [46]. A summary of the parameters used in the simulation is shown in Table I.
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Figure 4. Attitude amplitude of the end-effector: (a) displacement amplitude and (b) rotation angle
amplitude.

Figure 5. Cable amplitude: (a) cable 1, cable 2, cable 6, and cable 7, (b) cable 3, cable 4, cable 5, and
cable 8.

Note that Xw0i is the initial deflection at the mid-span of the ith cable (i = 1, 2, . . ., 8) perpendicular
to its axis (Fig. 2), and XP0 is the initial disturbance of the end-effector along the direction of OX. With
the initial disturbance of XP0 = 0.1 mm and Xw0i = 0.1 mm (i = 1, 2, . . ., 8), Eq. (19) is solved using
MATLAB with a time step of 10−4 s.

One can assume that the motion of the end-effector is a pitching oscillation: θ = A∗ sin(2π ft), A∗ = 2◦.
The variation interval of oscillation frequency f falls in [2.06, 20] Hz. The vibration of the cables excited
by the oscillation of the end-effector and the resulting dynamic response of the CDPR are investigated.

4.2. Simulation results and discussions
The frequency–amplitude relationship of the CDPR is demonstrated in Figs. 4 and 5. As shown in Figs. 4
and 5, the attitude amplitude variations of the end-effector are consistent with the cables. When the pitch-
ing oscillation frequency of the end-effector f < 8 Hz, the displacement amplitudes of the end-effector
are less than 0.5 mm, the rotation angle amplitudes are less than 0.3◦, and the cable amplitudes are only
0.1 mm. It can be seen that the CDPR is stable in the frequency interval of f < 8 Hz. When f > 8 Hz,
both the end-effector and the cables begin to occur large vibration. Especially, at the pitching oscillation
frequency of f = 10 Hz and f = 14 Hz, the amplitudes of both the end-effector and the cables reach the
maximum. At f = 10 Hz, the maximum displacement amplitude of the end-effector is up to 33.10 mm,
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Figure 6. Pitching angle variation of the end-effector: f = 2.06 Hz.

Figure 7. Pitching angle variation of the end-effector: f = 14 Hz.

the maximum rotation angle amplitude is 5.04◦, and the maximum cable amplitude is 95.87 mm. At
f = 14 Hz, the maximum displacement amplitude of the end-effector is up to 32.19 mm, the maximum
rotation angle amplitude is 7.76◦, and the maximum cable amplitude is 127.30 mm. Consequently, two
peaks can be found at f = 10 Hz and f = 14 Hz, according to Figs. 4 and 5. It can be seen that the CDPR
is unstable when f > 8 Hz.

According to Figs. 4 and 5, it can be seen that obvious deviations in the attitude of the end-effector
are caused by the vibrations of the cables and the end-effector, when the frequency is higher than 8 Hz.
Therefore, it can be inferred that the reliable motion frequency for the CDPR is within 8 Hz. When the
frequency is higher than 8 Hz, the influence of the flexible cables on the attitude deviation of the end-
effector cannot be ignored. The flexibility of the cables needs to be considered in the motion control of
the CDPR.

Besides, as shown in Figs. 4 and 5, it turns out that, as the oscillation frequency of the end-effector
increases, the end-effector and the cables exhibit the dynamics process from steady state to unstable
large-amplitude vibration and finally to stable small-amplitude vibration.

In order to further discuss the significance of the excitation effect caused by the axially moving length-
variable cables, the results with and without excitation effect are compared. Equation (18) represents the
case with excitation effect. In the case without excitation effect, we set Xw = 0 in Eq. (18), that is, the
cable vibration and its excitation effect on the end-effector are not considered.

As shown in Fig. 6, when the pitching oscillation frequency f = 2.06 Hz, the pitching angle amplitude
|θ |max without excitation effect is 2.00◦, while |θ |max with excitation effect is 2.03◦. The relative incre-
ment is only 1.5% when f = 2.06 Hz. As shown in Fig. 7, when f = 14 Hz, the pitching angle amplitude
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Table II. The results of the CDPR with and without excitation effect.

Results f Non-excitation Excitation Relative increment (%)
|θ |max 2.06 Hz 2.00◦ 2.03◦ 1.5%

14 Hz 2.00◦ 7.80◦ 290%

Figure 8. Phase diagram of pitching angle variation of the end-effector: (a) f = 10 Hz, (b) f = 14 Hz.

Figure 9. Phase diagram of the cable (cable 5): (a) f = 10 Hz, (b) f = 14 Hz.

|θ |max without excitation effect is 2.00◦, while |θ |max with excitation effect is 7.80◦. The relative increment
is 290% when f = 14 Hz. The resulting data are shown in Table II.

By comparing the results with and without excitation effect of the axially moving length-variable
cables at different frequencies, it can be concluded that the excitation effect can cause large attitude
deviations of the end-effector in some specific frequencies f . The large attitude deviation of the end-
effector can reduce the positioning accuracy of the CDPR. The proposed dynamic model of the CDPR
can be used to analyze the response of the end-effector, so as to evaluate the influence of excitation effect
on the attitude accuracy of the CDPR, which is of great importance.

Moreover, the phase diagrams of vibrations of the end-effector and the cables at the frequency of
10 Hz and 14 Hz are shown in Figs. 8 and 9. The pitching angle of the end-effector and the amplitude
of cable 5 are taken as examples. It can be seen that both the end-effector and the cables occur large
vibrations at the frequency of 10 Hz and 14 Hz, and the vibrations are non-linear. This indicates that the
dynamics of the CDPR exhibit non-linear characteristics, due to the influence of flexible cables.

It can be concluded that attitude deviation of the end-effector is caused by the cable flexibility. This
effect is particularly significant when the motion frequency of the end-effector is in some specific
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X = [01×3, 0, 2sin(2×2.06πt), 0]T

Monocular 
camera

End-effector

Tension
sensor

Frame

Figure 10. CDPR-8 prototype in lab.

intervals. With the proposed nonlinear dynamic model of the CDPRs, these intervals can be quickly
identified. It would be very useful for the design of the CDPRs.

5. Experimental verification
Verification of the dynamic model of compliant CDPRs presented in this paper was performed in the
laboratory using a 6-DOF cable-driven robot, called CDPR-8, as shown in Fig. 10. The attitude variation
of the end-effector was recorded by an external monocular camera system (DH-HV1300FM CMOS,
sampling frequency of 16 fps) [46]. Meanwhile, the tension in each cable was measured by the tension
sensor (HBM U9C, sensitivity of 1 mV/V) connected to the end of each cable. The amplitude of the
cable was not measured in the test, which was limited by the experimental equipment for such a thin
cable. Thus, the cable tensions were measured to reflect the vibration of the cables.

Due to the low sampling frequency of the monocular camera system, and the limitation of the rigid-
body frequency of the frame itself, only the low-frequency test was done. The test was performed
considering a motion of the end-effector as follows:

X = [01×3, 0, 2 sin(2 × 2.06π t), 0]T (20)

In the pitching oscillation test, compared to the pitching angle, the values of the other attitudes of
the end-effector are very small. So only the pitching angle is concerned here. As shown in Fig. 11, the
numerical and experimental values of the pitching angle amplitudes are 2.03◦ and 1.92◦, respectively.
The deviation of the numerical value from the experimental value is 0.11◦, and the relative error is
5.73%. It turns out that the numerical results of the pitching motion match well with the experimental
results. Therefore, the proposed dynamic model of compliant CDPRs is validated.

Besides, it can be seen that the experimental value of the pitching angle amplitude is slightly smaller
than the numerical value. This may be due to the limited sampling frequency of the monocular camera.
As shown in Fig. 11, there are nine sampling points per period. So the sampling frequency of 16 fps is
only adequate for this test with the oscillation frequency f = 2.06 Hz.

Cable 1 and cable 7 are taken as examples. The cable tension variation �Ti is obtained by subtracting
the initial cable tension T 0i from the instantaneous cable tension Ti. Briefly, it can be expressed as
�Ti = Ti – T 0i. The stiffness coefficients of the cables used in the simulation are obtained from the cable
tension data in the low-frequency oscillation test, which are kw = [1410, 1410, 1580, 1580, 1560, 1100,
1100, 1560] N/m.
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Figure 11. Pitching angle variation of the end-effector (f = 2.06 Hz).

Figure 12. Cable tension: (a) cable 1 and (b) cable 7.

As shown in Fig. 12(a), the maximal tension variations of cable 1 in numerical simulation and exper-
iment are 7.61 N and 7.46 N, respectively. The relative error between the numerical and experimental
results is 2.01%. As shown in Fig. 12(b), the maximal tension variations of cable 7 in numerical simu-
lation and experiment are 6.25 N and 6.11 N, respectively. The relative error between the numerical and
experimental results is 2.29%. This shows that the difference between the maximal cable tension vari-
ations obtained by numerical simulation and experiment does not exceed 0.15 N, and the relative error
is not more than 2.29%. It means that the numerical results of the cable tension variation are consistent
with the experimental values, which validates the proposed dynamic model of compliant CDPRs.

In addition, it can be found that the frequencies of the cable tension variation obtained from the
experiment and simulation do not match very well. Some factors are not considered in the simulation,
such as the friction between the cable and the pulley, and the hysteresis effect of the cable. This may
be the reason for the minor inconsistency on the frequencies of the cable tension variation between the
simulation and experiment.

6. Conclusions
With the intention to characterize the dynamic behaviors of compliant CDPRs containing flexible cables,
this paper focuses on both the vibration of axially moving length-variable cable and the reaction of the
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vibrating cables on the end-effector. A model for transverse vibration of the axially moving length-
variable cable is developed. Then, an original nonlinear dynamic model of CDPRs able to capture the
vibration of the cables and the dynamics of the end-effector is proposed. Based upon the proposed model
of a 6-DOF 8-cable CDPR, the frequency–amplitude relationship of the CDPR is obtained. Moreover,
the significance of the excitation effect caused by the axially moving length-variable cables is demon-
strated by comparing the results with and without excitation effect at different frequencies. It is proved
that the oscillation of the end-effector can cause vibration in the cables, and the vibrating cables can
react on the end-effector causing large-amplitude vibration both in the end-effector and the cables. It
turns out that, as the oscillation frequency of the end-effector increases, the end-effector and the cables
exhibit the dynamics process from steady state to unstable large-amplitude vibration and finally to stable
small-amplitude vibration. This indicates that the dynamics of the CDPR exhibit non-linear characteris-
tics, due to the influence of flexible cables. In the frequency interval where large-amplitude vibration of
the CDPR occurs, the influence of the flexible cables on the attitude deviation of the end-effector cannot
be ignored. The proposed dynamic model of compliant CDPRs is validated by experiments performed
in the laboratory using a 6-DOF cable-driven robot, called CDPR-8. This work provides an effective
methodology for the dynamic analysis of CDPRs. Research on the dynamics of CDPRs can provide
constructive guidelines for the design, motion control, and optimization of CDPRs.

Besides, due to the complex characteristics of the damping of the Kevlar cable, such as nonlinearity,
viscoelasticity, and hysteretic, the modeling of the cable damping is simplified in this paper. In future
research, the damping force of the cable will be further studied.
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