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Prompted by the relevant problem of temperature inversion (i.e. gradient of density
anti-correlated to the gradient of temperature) in astrophysics, we introduce a novel
method to model a gravitationally confined multi-component collisionless plasma in
contact with a fluctuating thermal boundary. We focus on systems with anti-correlated
(inverted) density and temperature profiles, with applications to solar physics. The
dynamics of the plasma is analytically described via the coupling of an appropriated
coarse-grained distribution function and a temporally coarse-grained Vlasov dynamics.
We derive a stationary solution of the system and predict the inverted density and
temperature profiles of the two species for scenarios relevant for the corona. We validate
our method by comparing the analytical results with kinetic numerical simulations of the
plasma dynamics in the context of the two-species Hamiltonian mean-field model. Finally,
we apply our theoretical framework to the problem of the temperature inversion in the
solar corona, obtaining density and temperature profiles in remarkably good agreement
with the observations.

Key words: plasma dynamics, plasma nonlinear phenomena, space plasma physics

1. Introduction

Stationary states out of thermal equilibrium occur in nature and often exhibit unexpected
properties. An example is given by the so-called inverted temperature–density profile, or
temperature inversion, that corresponds to an increase in temperature while the density is
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decreasing. Numerical simulations have shown how temperature inversion can be achieved
in non-equilibrium stationary states, usually referred to as quasi-stationary states, attained
after processes of violent relaxation (see e.g. Lynden-Bell (1967), Kandrup (1998), Levin,
Pakter & Teles (2008) and Ewart et al. (2022), see also Barbieri et al. (2022) and references
therein) of many-body systems with long-range inter-particle potentials (see Di Cintio,
Ciotti & Nipoti (2013) and Campa et al. (2014) and references therein) brought out of
thermal equilibrium by energy injection (Casetti & Gupta 2014; Teles et al. 2015; Gupta
& Casetti 2016).

Temperature inversion occurs in several astrophysical systems such as, for example,
filaments in molecular clouds (Arzoumanian et al. 2011; Toci & Galli 2015; Di Cintio,
Gupta & Casetti 2018) the Io plasma torus around Jupiter (Meyer-Vernet, Moncuquet
& Hoang 1995) and the hot gas in galaxy clusters (Wise, McNamara & Murray 2004;
Baldi et al. 2007). The most relevant and widely studied case is represented by the
atmosphere of the Sun (Golub & Pasachoff 2009). The problem of temperature inversion
in the atmosphere of the Sun has been approached in several ways (see Klimchuk (2006)
and Parnell & De Moortel (2012) and references therein) but remains far from being
completely solved.

Among all the existing theoretical models, the one that is relevant for the present work is
the kinetic approach introduced by Scudder (1992a,b) and dubbed by the author ‘velocity
filtration’. In this approach the solar atmosphere is treated as a system of non-interacting
particles under the action of the Sun’s gravity. Thanks to the conservation of energy,
only particles with a sufficient amount of kinetic energy can climb the gravity well and
reach a given altitude, thus forming the atmosphere (for this reason the mechanism was
dubbed ‘velocity filtration’). If the particle’s velocity distribution functions (VDFs) at
the base of the atmosphere are thermal, then the stationary configuration is the standard
isothermal stratified atmosphere (Aschwanden 2005), with a density profile exponentially
decreasing with altitude and a constant temperature all over the atmosphere. If, as in the
original Scudder model, the velocity distribution functions are suprathermal (e.g. they
are given by a kappa distribution, see Lazar & Fichtner 2021), then the temperature
profile is a growing function of the atmosphere’s height, thus resulting in stationary
anti-correlated density and temperature profiles. In the Scudder formalism, however, the
chromospheric VDFs are assumed fixed and suprathermal, even if the chromosphere is
highly collisional, posing the problem of how such distributions can be sustained in such
an environment. Moreover, modelling the chromosphere with a fixed kappa function (as
in Scudder 1992a,b) produces a linear increase of temperature rather than a transition
region and corona, as observed in the solar atmosphere. To overcome the difficulty of
sustaining suprathermal populations in the strongly collisional chromosphere, mechanisms
related to turbulence and wave–particle interactions (e.g. Parker & Tidman 1958) or
statistical processes based on Levy’s flights (Collier 1993) have been often evoked.
In the present work, as well as in Barbieri et al. (2024), we want to overcome this
difficulty by modelling the chromosphere as fully collisional so that it can be schematised
at every instant of time as a thermal boundary. We then ask if rapid heating events,
modelled as sudden temperature increments of the thermal boundary, are able to produce
suprathermal distribution functions. More precisely, in Barbieri et al. (2024) it has been
shown that rapid, intermittent and short-lived heating events are able to drive the coronal
collisionless plasma towards a non-equilibrium stationary state characterised by inverted
temperature–density profiles, with a transition region and a corona similar to those
observed in the solar atmosphere. As pointed out in Barbieri et al. (2024), the idea behind
studying the role of temperature fluctuations in the chromosphere lies in the fact that,
while the VDFs of the chromospheric plasma are likely to be thermal due to collisionality,
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the chromosphere is a very dynamic environment, showing fine-scale structures down to
instrumental resolution (see Molnar et al. 2019; Ermolli et al. 2022), hence its temperature
is expected to fluctuate in space and time (Hansteen et al. 2014; Peter et al. 2014).

In this paper we investigate this matter further, by analysing the problem in detail from
the point of view of kinetic plasma physics. We introduce a novel temporal coarse-graining
technique to model the physics of the non-equilibrium plasma dynamics described above
and in Barbieri et al. (2024). Here, we show how the dynamics can be described by
a set of two coupled Vlasov equations for the temporal coarse-graining version of the
distribution functions of the two species (here electrons and protons). This system of
equations is coupled to effective coarse-grained distributions at its boundary describing
the temperature fluctuations of the chromosphere. We stress the fact that, at variance with
Scudder (1992a,b), we do not consider non-interacting particles, but rather we explicitly
take into account their mutual electrostatic interaction, although only at the mean-field
level. We derive analytical expressions for the coarse-grained distribution functions
of the two species in the non-equilibrium stationary configuration. These distribution
functions exhibit suprathermal high-energy tails because of the dynamics induced by
the temperature fluctuations of the thermal boundary, that is, they are self-consistently
produced by our modelling of the chromosphere. Of course, extra parameters are
introduced to specify the distribution of temperature fluctuations, but no fine tuning of
these parameters is necessary to produce the temperature inversion and to allow the use
of a coarse-graining approach. The only requirement is a fluctuation time scale that is
smaller than the relaxation time scale of the system. As a consequence, our coarse-graining
formalism lets us interpret our results in terms of Scudder’s velocity filtration mechanism,
but without imposing a priori suprathermal tails. We note that suprathermal tails in the
distribution functions can be obtained even in stationary states of an isolated collisionless
plasma as a consequence of the dynamical phase mixing in the single-particle phase space
(see Ewart, Nastac & Schekochihin (2023) and references therein).

The paper is structured as follows. In § 2 we present the model used to describe the
collisionless plasma atmosphere in contact with the fluctuating thermal boundary. In § 3
we present the temporal coarse-graining approach describing the plasma dynamics and
we obtain the coarse-grained version of the distribution functions of the two species in
the non-equilibrium stationary configuration. In § 4 we test the theory against kinetic
numerical simulations and we discuss its limits of applicability. In§ 5 we apply our method
to the specific case of the atmosphere of the Sun and discuss the results, also comparing
our findings with the observed density and temperature profiles of Yang et al. (2009).
Moreover, we discuss some observational evidence to support our result and the physical
limits of modelling the coronal plasma neglecting Coulomb collisions. Finally, in § 6 we
summarise and discuss the future perspectives of this study.

2. The two-component gravitationally bound plasma model

We model a gravitationally bound plasma, focusing on geometrically confined plasma
structures, with specific reference to the coronal loops that are common in the Sun’s
atmosphere (see e.g. Aschwanden 2005). We model the loop as a semicircular tube
of length 2L and section S, where the charge distribution is discretised onto Ne
sections with surface number density nS, surface charge density σe = −enS and surface
mass density σm,e = mens; and Np sections with surface charge density σp = enS and
surface mass density σm,p = mpnS, representing the electron and proton components,
respectively. Moreover, the charge of the electron is represented by the constant e, while
the masses of an electron and a proton are denoted by me and mp, respectively. We
assume that Ne = Np = 2N in order to ensure global charge neutrality. A scheme of a
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two-component loop plasma model is sketched in figure 1. We now introduce the following
assumptions:

(i) Particles are subject to an external force field pointing towards the loop’s end,
representing the Sun’s (uniform) gravity plus the Pannekoek–Rosseland electrostatic
field (Pannekoek (1922) and Rosseland (1924), see also Belmont et al. (2013) for an
extended review).

(ii) The symmetry is cylindrical along the loop-following coordinate x.
(iii) Electrostatic self-interactions are modelled by truncating to the first-order Fourier

expansion as in the so-called Hamiltonian mean-field (HMF) models (see Antoni &
Ruffo 1995; Chavanis, Vatteville & Bouchet 2005; Giachetti & Casetti 2019).

(iv) Every observable is symmetric with respect to the top of the loop1. As a
consequence, if the top of the loop coincides with x = 0, all the functions of the
canonical coordinates are centrally symmetric with respect to the origin of the
two-dimensional single-particle phase space2.

The first two assumptions imply that the total energy of the system is

H = S

⎛
⎝ 2N∑

j=1

∑
α∈{e,p}

1
2
σm,α ẋ2

j,α + Eel + Ug

⎞
⎠ , (2.1)

where α ∈ {e, p} denotes the species (here electrons or protons), g = GM�/R2
� is the

gravitational field at the surface of the Sun, M� is the mass of the Sun, G is Cavendish
gravitational constant, R� is the radius of the Sun and x is the spatial coordinate (i.e. the
curvilinear abscissa of the loop). The total electrostatic energy per section Eel reads

Eel = 1
2

∫ L

−L
dxρ(x)φ(x), (2.2)

where the charge density

ρ(x) =
2N∑
j=1

∑
α∈{e,p}

σαδ(x − xj,α), (2.3)

is related to the potential φ by the Poisson equation

∂2φ

∂x2
= −4πρ. (2.4)

Here, Ug is the total external potential per section and reads

Ug = gL
∑

α∈{e,p} σm,α

π

2N∑
j=1

∑
α∈{e,p}

cos
(πxj,α

2L

)
. (2.5)

1The physical reason behind this idea is that we can schematise the chromosphere (i.e. the thermal boundary) with
its average properties (in space and time) at both feet of the loop. Combining this approximation with the symmetry of
the loop structure with respect to the top, we can impose the central symmetry during the whole dynamics.

2The practical realisation of that will be presented in § 2.1.
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FIGURE 1. Sketch of the two-component plasma loop model. The vertical axis z is the altitude
in the atmosphere; x is the curvilinear abscissa of the loop. Here, σm,α ,σα with α = {e, p} are
respectively the surface mass density and the surface charge density of the species α.

In order to use the HMF modellisation we Fourier analyse the electrostatic energy Eel.
Hereafter, we will use the following definition for the Fourier transform:

f (x) =
∑
n∈Z

fn exp
(

i
πnx

L

)
, fn = 1

2L

∫ L

−L
dxf (x) exp

(
−i

πnx
L

)
. (2.6a,b)

We then define the charge imbalances as

Qn = (Qn,x, Qn,y) =
∑

α∈{e,p}
sign(σα)qn,α, (2.7)

where the vectors qn,α are given by

qn,α = 1
2N

2N∑
j=1

[
cos

(πnxj,α

L

)
, sin

(πnxj,α

L

)]
. (2.8)

Performing the Fourier transform (2.6a,b) of the Poisson equation (2.4) and applying
(2.7)–(2.8) we obtain the modes of the potential–density pair as

φn = 4L2

πn2
ρn, ρn = −σeN

L
(Qn,x − iQn,y) ∀ n �= 0, ρ0 = 0. (2.9)

Since each density mode ρn defined above is related to a specific Qn, any vanishing density
mode ρn corresponds to a zero charge imbalance. This can be also seen directly from
(2.7) and (2.8). Indeed, if most of the 2N particles of a given species are symmetrically
concentrated at the bottom of the loop, then qn,α ≈ −1. Indeed, if they are uniformly
distributed then qn,α ≈ 0 (qn,α ≈ +1 corresponds to a situation where most of the particles
are concentrated at the top of the loop). As a consequence, if their difference Qn does not
vanish, there is a charge imbalance in the system.

From now on we will refer to the quantities qn,α as the stratification parameters.
By performing the Fourier expansion (2.6a,b) of the charge density (2.3) and of the
electrostatic potential φ(x) and by using (2.7)–(2.9), after some algebra we get the
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decomposition in Fourier modes of the electrostatic energy per section (2.2) as

Eel = 8L(Nσe)
2

π

+∞∑
n=1

||Qn||2
n2

. (2.10)

The proportionality to (Nσe)
2 arises from the fact that each particle of the system feels

the electrostatic forces due to all other particles. Its proportionality to L means that, the
larger the size of the system is, the greater is Eel. The electrostatic energy Eel depends on
all the charge imbalances ||Qn||2 scaled by n2, that is, large-scale modes make a larger
contribution to the electrostatic energy compared with the small-scale ones. Using (2.10)
combined with the total energy (2.1) we derive the equations of motion in the form

mα ẍj,α = eE(xj,α) + g

∑
α∈{e,p}

mα

2
sin
(πxj,α

2L

)
, (2.11)

where the electric field E decomposed in Fourier modes is

E(x) = 8 sign(eα)eαnSN
+∞∑
n=1

[
Qn,x

n
sin
(πnx

L

)
− Qn,y

n
cos

(πnx
L

)]
. (2.12)

We now implement the HMF assumption by truncating the Fourier expansion at the first
mode. The equations above become

mα ẍj,α = eαE(xj,α) + g

∑
α∈{e,p}

mα

2
sin
(πxj,α

2L

)
, (2.13)

and the electric field becomes

E(x) = 8 sign(eα)eαnSN
[
Qx sin

(πx
L

)
− Qy cos

(πx
L

)]
. (2.14)

In the equations above, qα = q1,α are the first mode (large-scale) stratification parameters
and Qx = Q1,x, Qy = Q1,y are the first mode charge imbalance components. From now
on, unless explicitly stated, we will refer to qα and Q, respectively, as the stratification
parameters and the charge imbalance. As one can see, the HMF assumption reduces the
computational cost of the electrostatic interactions from N2 to N.

Let us now comment further on the physics behind the expression of the
self-electrostatic interactions. To do so, we use again the electrostatic energy in terms of
its Fourier modes (2.10) truncating the expression at the first mode. After some elementary
algebra we get

Eel = E0

2N∑
j,k=1

∑
α,β∈{e,p}

Ẽα,βqj,α · qk,β, (2.15)

where

qj,α =
[
cos

(πxj,α

L

)
, sin

(πxj,α

L

)]
, (2.16)

where Ẽα,β = sign(eα) sign(eβ), and E0 = 4π−1Le2n2
SN. From these expressions it is

apparent that the interactions among particles of the same species are described by an
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antiferromagnetic HMF term while the interactions among particles of different species
are, conversely, described by a ferromagnetic HMF term. The antiferromagnetic HMF
tends to increase the angle between qj,α and qk,β in order to minimise the energy. In
terms of physical quantities in the loop, this interaction tends to increase the physical
distance xj,α − xk,α between two particles of the same species α up to the value L and
thus such a term mimics the electrostatic repulsion between charges of the same sign. The
ferromagnetic HMF tends to minimise the energy by decreasing the distance xj,α − xk,β
between two particles of different species α, β up to zero and this mimics the electrostatic
attraction between charges of the different sign.

In the following, we consider this plasma model in thermal contact with a thermal
boundary of temperature T0 (the base of the plasma atmosphere).

2.1. Normalisation and central symmetry assumption
To study the dynamics defined by (2.13), we define the following units for velocity, mass
and length:

v0 =
√

kBT0

me
, m0 = me, L0 = L

π
. (2.17a–c)

The choice of units given above implies that the unit of energy is E0 = kBT0, where T0
is the unit of temperature and kB is the Boltzmann constant. For the specific case of the
Sun the unit of temperature T0 is set equal to the reference temperature of the thermal
boundary (chromosphere), that is T0 = 104 K. The equations of motion are expressed in
dimensionless form as

Mαθ̈j,α = sign(eα)CE(θj,α) + F̃(θj,α), (2.18)

where the expressions for the external forces and the electrostatic field are

F̃(θj,α) = g̃ sin
(

θj,α

2

)
, E(θ) = Qx sin θ − Qy cos θ, (2.19a,b)

and the charge imbalance and stratification parameters are given by

Q = (Qx, Qy) =
∑

α∈{p,e}
sign(eα)qα, qα = 1

2N

2N∑
j=1

(cos (θj,α), sin (θj,α)). (2.20a,b)

In the equations above, Mα equals Mp = mp/me for the protons and Me = 1 for the
electrons, while θ is the dimensionless spatial coordinate. The dynamics is therefore fully
identified by the three parameters

M = mp

me
, C = 8e2L2n0

πkBT0
, g̃ = gL(mp + me)

2πkBT0
, (2.21a–c)

where n0 = NnS/L is the average density of a given species. The quantities C and g̃
measure the strength of the electrostatic interaction and of the external field in units of
thermal energy, respectively. Hereafter, unless explicitly stated, we will use dimensionless
quantities in all the equations and for all the quantities to be plotted in the figures.

Assuming that all quantities are symmetric with respect to the top of the loop, in terms of
the particles’ phase-space coordinates, corresponds to imposing the following symmetry
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rules:

θj+N,α = −θj,α, θ̇j+N,α = −θ̇j,α; ∀j = 1 · · · N, (2.22a,b)

where the first j = 1 · · · N particles populate one half of the loop θj,α ∈ [−π, 0] and the
remaining particles populate the other half. With such an assumption the system of (2.18)
can be reduced to a system of equations for only the first half of the loop as

Mαθ̈j,α = sign(eα)CE(θj,α) + F̃(θj,α), (2.23)

where the (2.19a,b) become

F̃(θj,α) = g̃ sin
(

θj,α

2

)
, E(θ) = Q sin θ, (2.24a,b)

and (2.19a,b) become

Q =
∑

α∈{p,e}
sign(eα)qα, qα = 1

N

N∑
j=1

cos (θj,α). (2.25a,b)

The positions and velocities of particles in the other half of the loop are then determined
using (2.19a,b).

2.2. Vlasov dynamics and thermal equilibrium solution
In the continuum limit, in terms of phase-space distribution functions the mean-field
dynamics of the normalised plasma model given by (2.23) is governed by a system of
two Vlasov equations

∂fα
∂t

+ p
Mα

∂fα
∂θ

+ Fα[ fα]
∂fα
∂p

= 0, Fα = −∂Hα

∂θ
, (2.26a,b)

where fα are the single-particle distribution functions for both species, and Hα are the
mean-field Hamiltonians

Hα = p2

2Mα

+ sign(eα)Cφ(θ) + 2g̃ cos
(

θ

2

)
; φ(θ) = Q cos θ, (2.27)

where

Q =
∑

α∈{e,p}
sign(eα)qα, qα =

∫ π

−π

dθ

∫ ∞

−∞
dp cos θ fα(θ, p). (2.28a,b)

In virtue of the Jeans theorem (see e.g. Nicholson 1983), all stationary solutions of
the system (2.24a,b) are functions the sole mean-field Hamiltonians (2.27). Technically
speaking, in general, the stationary solution of a Vlasov equation is a function of all
the constants of motion. Here, since our model is one-dimensional the only independent
constants of motion are the mean-field Hamiltonians Hα. Among all the solutions of the
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system above, the thermal equilibrium one has the following expression:

fα(θ, p) =
exp

(
−Hα

T

)
Zα

, Zα =
∫ π

−π

dθ

∫ +∞

−∞
dp exp

(
−Hα

T

)
, (2.29a,b)

where fα is normalised to 1 for both species. By combining the above equation with
(2.28a,b), we obtain

Q =
∑

α∈{e,p}
sign(eα)

∫ +∞

−∞
dp
∫ π

−π

dθ cos θ

exp
(

−Hα[Q]
T

)
∫ +∞

−∞
dp
∫ π

−π

dθ exp
(

−Hα[Q]
T

) , (2.30)

and integration with respect to p gives

Q =
∫ π

−π

dθ cos θ

exp

⎛
⎜⎜⎝−

CQ cos θ + g̃ cos
(

θ

2

)
T

⎞
⎟⎟⎠

∫ π

−π

dθ exp

⎛
⎜⎜⎝−

CQ cos θ + g̃ cos
(

θ

2

)
T

⎞
⎟⎟⎠

−
∫ π

−π

dθ cos θ

exp

⎛
⎜⎜⎝−

−CQ cos θ + g̃ cos
(

θ

2

)
T

⎞
⎟⎟⎠

∫ π

−π

dθ exp

⎛
⎜⎜⎝−

−CQ cos θ + g̃ cos
(

θ

2

)
T

⎞
⎟⎟⎠

, (2.31)

whose solution is Q = 0 (and so φ = 0). Therefore, the equilibrium solution of a
two-component plasma model, where the two species are subject to the same external
potential, requires a vanishing self-electrostatic potential, (i.e. φ = 0). The thermal
solution for the plasma atmosphere model is the so-called isothermal atmosphere given
by

fα(θ, p) =
exp

(
− H̃α

T

)

Zα

, Zα =
∫ π

−π

dθ

∫ +∞

−∞
dp exp

(
− H̃α

T

)
, (2.32a,b)

where H̃α are the mean-field Hamiltonians (2.27) with φ = 0, that is

H̃α = p2

2Mα

+ 2g̃ cos
(

θ

2

)
. (2.33)

The knowledge of the distribution functions allows us to compute the number densities nα

and the temperatures profiles Tα using the standard kinetic definitions (see e.g. Nicholson
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1983). For the number densities we get

nα(θ) =
exp

(
−2g̃

T
cos

(
θ

2

))
∫ π

−π

dθ exp
(

−2g̃
T

cos
(

θ

2

)) , (2.34)

and for the kinetic temperatures
Tα(θ) = T. (2.35)

3. Temporal coarse graining

Starting from a thermal equilibrium state (2.32a,b) with temperature T0 = 1,
the out-of-equilibrium state is induced by introducing fluctuations in the value
of the temperature of the thermal boundary. In practice, we first increase the temperature
from the initial equilibrium value T0 up to T > T0 (sorted from a probability distribution
γ (T)) for a finite fixed time interval τ 3 , of length smaller than the relaxation time tR to
equilibrium at temperature T . After a time τ the temperature of the thermal boundary
is reverted to T0 for a finite time interval tw sorted from a probability distribution η(tw),
again much smaller than the relaxation time t′R back to T0. Iterating this procedure prevents
the system from relaxing to a thermal equilibrium at either T0 or T . Under the conditions
prescribed above we now define the coarse-graining time scale t̃ such that

τ, 〈tw〉 � t̃ � t̃R, (3.1)

where t̃R ≡ min(tR; t′R). The value of t̃R is evaluated as the minimum between the thermal
crossing time and the gravity crossing time of electrons

t̃R ≡ min(tT; tg̃) tT = 2π√
T

tg̃ =
√

π

g̃
. (3.2)

The temporal coarse-grained phase-space distribution function, defined as the time average
of fα over t̃, reads as

f̃α(θ, p, t̃) = 〈fα〉t̃ = 1
t̃

∫
t̃
dtfα(θ, p, t), (3.3)

and the time-averaged Vlasov dynamics over t̃ becomes

fα(θ, p, t̃) − fα(θ, p, 0)

t̃
+ p

Mα

∂ f̃α
∂θ

+
〈
F̃α

∂fα
∂p

〉
t̃

= 0. (3.4)

Given the condition t̃ � t̃R, during the time interval t̃ the system energy cannot be
redistributed along the loop. We can therefore approximate fα with its time average fα = f̃α,
while the finite difference on the left-hand side of (3.4) becomes a time derivative. We then

3The choice of using a fixed τ is made here for the sake of simplicity. We note, however, that using a τ value drawn
by a probability distribution would not change the results.
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get

∂ f̃α
∂ t̃

+ p
Mα

∂ f̃α
∂θ

+ F̃α[f̃α]
∂ f̃α
∂p

= 0. (3.5)

The thermal boundary at the bottom boundary of the system induces an incoming flux
defined at a given time by

JT,α =
∫ +∞

0
dp

p
TMα

exp
(

− p2

2TMα

)
, (3.6)

where the value of T is drawn from the distribution γ (T) during the time intervals of
length τ ; while T = 1 during time intervals of length tw drawn from η(tw).

We now compute the temporal coarse-grained flux by taking the time average of (3.6)
obtaining

Jα = ttw

t̃
〈JT,α〉ttw + tτ

t̃
〈J1,α〉tτ , (3.7)

where t̃ = ttw + tτ ttw = ∑np

i=1 twi tτ = npτ and np is the total number of temperature
increments within t̃. Assuming τ, twi � t̃ implies that the number of temperature
fluctuations in such an interval is large enough to justify the use of an ergodic assumption.
We can therefore replace the time average over ttw with the average with respect to its
probability distribution, as

〈JT,α〉ttw =
∫ +∞

1
dTγ (T)JT,α. (3.8)

Furthermore, the assumption τ, tw � t̃ also implies ttw = ∑np

i=1 twi = np〈tw〉η, where 〈tw〉η

is given by

〈tw〉η =
∫

dtwtwη(tw), (3.9)

so that the coarse-grained flux becomes

Jα =
∫ +∞

0
dppf̃α( p), (3.10)

where f̃α( p) is defined by

f̃α( p) = A
Mα

∫ +∞

1
dT

γ (T)

T
exp

(
− p2

2TMα

)
+ 1 − A

Mα

exp
(

− p2

2Mα

)
, (3.11)

and A is

A = τ

τ + 〈tw〉η

. (3.12)

In practice, the dynamics of a two-component plasma coupled to a time fluctuating thermal
boundary at a given boundary is described, at the temporal coarse-grained level, by a set
of Vlasov equations (3.5) for the two species coupled to two incoming effective fluxes
(3.10) at the boundary. The latter are generated by the non-thermal distributions f̃α given
in (3.11).

In the formalism introduced above, it is possible to evaluate an analytic expression
for the coarse-grained phase-space distribution functions in the stationary configuration.
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To do so, one has first to determine such phase-space distributions at the boundary in
the stationary configuration. This can be carried out by imposing the stationarity and
the continuity conditions at the boundary, together with the symmetry condition in the
momentum space

∂ f̃α
∂ t̃

= 0, Nα f̃α( p) = f̃α(−π, p), f̃α(−π, p) = f̃α(−π,−p), p > 0. (3.13a–c)

In the expressions above Nα are normalisation constants. We can now build up the solution
for the entire phase space using the Jeans theorem. We then get

f̃α(θ, p) = Nα

(
A
∫ +∞

1
dT

γ (T)

T
exp

(
−Hα

T

)
+ (1 − A) exp (−Hα)

)
, (3.14)

where Hα are the mean-field Hamiltonians defined in (2.27). The constants Nα are fixed
by the normalisation condition for the two species

∫ π

−π

dθ

∫ +∞

−∞
dpf̃α(θ, p) = 1. (3.15)

Since Hα depends on f̃α(θ, p) only through the electrostatic potential φ, this is a
self-consistent problem that can be solved with respect to φ as done for the equilibrium
solution (2.30), yielding φ = 0. As a consequence, the mean-field-Hamiltonians Hα

reduce to H̃α as in (2.33). The first term on the right-hand side of (3.14) is induced by
the temperature fluctuations of the thermal boundary and is a superposition of Boltzmann
exponential distributions, each of which has a temperature T > 1 weighted with the
probability γ (T). Such a term introduces the suprathermal contribution and from now
on will be referred to as the multitemperature population.

The second term on the right-hand side of (3.14) is proportional to a Boltzmann
exponential at T = 1, due to the fact that, along each interval of length tw, the thermal
boundary is brought back to the temperature T = 1. From now on we will refer to this
term as the thermal population. The relative contribution of the multitemperature and
thermal populations is weighted by the factor A given by (3.12), corresponding to the
fraction of time in which the thermal boundary is set at one of the temperatures of the
multitemperature population.

The shape of the distribution functions depends only on the mean-field Hamiltonians
H̃α, since the system is ruled by a Vlasov-type dynamics.

Our formalism allows one to discuss the physics in the stationary configuration in terms
of velocity filtration. Given the presence of suprathermal tails in the distribution functions
(as induced by the multitemperature population) and an external field, the temperature
inversion process is expected to take place. This can be easily verified by computing the
number densities nα and the kinetic temperatures Tα from (3.14), using the standard kinetic
definitions (see e.g. Nicholson 1983). For the number densities we get

ñα(θ) =
A
∫ +∞

1
dT

γ (T)√
T

exp
(

−2g̃
T

cos
(

θ

2

))
+ (1 − A) exp

(
−2g̃ cos

(
θ

2

))

A
∫ +∞

1
dT

γ (T)√
T

∫ π

−π

dθ exp
(

−2g̃
T

cos
(

θ

2

))
+ (1 − A)

∫ π

−π

dθ exp
(

−2g̃ cos
(

θ

2

)) ,

(3.16)
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while for the kinetic temperatures

T̃α(θ) =
A
∫ +∞

1
dTγ (T)

√
T exp

(
−2g̃

T
cos

(
θ

2

))
+ (1 − A) exp

(
−2g̃ cos

(
θ

2

))

A
∫ +∞

1
dT

γ (T)√
T

exp
(

−2g̃
T

cos
(

θ

2

))
+ (1 − A) exp

(
−2g̃ cos

(
θ

2

)) .

(3.17)
In the next section the above formulas will be evaluated for different choices of model
parameters and compared with the output of kinetic numerical simulations.

4. Comparison with numerical simulations

We validated our model with N−particle numerical simulations where we integrated the
equations of motion (2.23) of the system. In the numerical experiments discussed here, as
a rule, we fixed N = 221 and used a fourth-order symplectic algorithm (see e.g. Candy
& Rozmus 1991) with fixed time step δt = 10−4. We modelled the incoming energy flux
from the fluctuating thermal boundary with the standard technique (see Tehver et al. 1998;
Landi & Pantellini 2001) such that, when a particle of a given species crosses the boundary,
it is re-injected in the system (at the bottom) with a positive velocity sampled from the
flux density argument of (3.6). We note that naively re-introducing the particle with a
new velocity extracted from a (half) Gaussian at temperature T would break the stationary
thermal equilibrium solution, as re-injected particles would have, by construction, a higher
chance of having a near zero velocities (see e.g. Lepri et al. (2021) and references therein).

4.1. Stationary state and model parameters
Motivated by the modellisation of the Sun’s atmosphere, we set the distributions of the
temperature fluctuations γ (T) and waiting times η(tw) as

γ (T) = 1
Tp

exp
(

−(T − 1)

Tp

)
, T > 1, η(tw) = 1

〈tw〉η

exp
(

− tw

〈tw〉η

)
. (4.1a,b)

The idea is that the chromospheric (i.e. the thermal boundary) temperature fluctuates
randomly in time, and the strong temperature increments (i.e. those producing a large
T), are rather rare (see Barbieri et al. 2024). This established, we tune the remaining
parameters (A, g̃, C, Tp) accordingly. In figures 2–6 (left panels) we show the time
evolution of the kinetic energies Kα (top panels) and of the stratification parameters
qα (bottom panels) evaluated in the numerical simulations for different choices of the
parameter set as

Kα = 1
N

N∑
i=1

p2
j,α

2Mα

, qα = 1
N

N∑
j=1

cos (θj,α), (4.2a,b)

together with their theoretical value (indicated by the straight solid lines) in the stationary
configuration, given by

qα,SS =
∫ π

−π

dθ

∫ +∞

−∞
dp cos θ f̃α(θ, p), Kα,SS =

∫ π

−π

dθ

∫ +∞

−∞
dp

p2

2Mα

f̃α(θ, p). (4.3a,b)

In all cases, both Kα and qα relax towards their predicted stationary value. In the right
panels of the same figures we show the kinetic temperature Te together with the number
density ne for the electrons – the profiles for the protons having the same shape – as
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(a)

(b)

(c)

FIGURE 2. (a,b) Evolution of proton (red for A = 0.25 and green for A = 0.5) and electron
(blue for A = 0.25 and orange for A = 0.5) kinetic energies Kα (a) and stratification parameters
qα (b) as numerically computed from simulations via (4.1a,b), together with theoretical
prediction for their mean value (black horizontal lines, see (4.1a,b)). (c) Numerical density (in
blue for A = 0.25 and in red for A = 0.5) and temperature (same rule of colours) of electrons vs
curvilinear abscissa of the loop θ . Grey curves denote the corresponding theoretical predictions
from analytical formulas (3.16)–(3.17).

a function of the spatial coordinate θ . The latter were computed numerically using the
standard kinetic definitions (see e.g. Nicholson 1983) for a single snapshot in the stationary
state and then time averaging over subsequent snapshots. In addition, using (3.16) and
(3.17) we have also computed their theoretical expressions. In all cases presented here, we
observe a very good match between the numerical and analytical curves.

4.1.1. The fraction of time A
As apparent from (3.12), the parameter A controls the fraction of time in which the

thermal boundary is at a given value T sorted from γ (T). In figure 2 we present two
cases: A = 0.5(τ = 0.01, 〈tw〉η = 0.01) and A = 0.25(τ = 0.01, 〈tw〉η = 0.03). All the
other parameters are fixed to g̃ = 1, Tp = 4, C = 400, M = 100.

Increasing A corresponds to an increment of the weight of the multitemperature
population in (3.14) and therefore more energy is injected into the plasma. As a
consequence, the plasma becomes less stratified in density (see variation of ñα and of the
stratification parameters qα in figure 2). For the same reason, the mean value of the kinetic
energies Kα in the non-equilibrium stationary configuration increases, as the profile of the
kinetic temperature T̃α does at each in point of the space.

4.1.2. The intensity of temperature increments Tp

The parameter Tp (see (4.1a,b)) controls the mean value of the (exponential) distribution
of the temperature fluctuations. In figure 3 we present two cases: Tp = 1 and Tp = 4. As
above, all the other parameters are fixed and are A = 0.5(τ = 0.01, 〈tw〉η = 0.01), g̃ =
1, C = 400, M = 100. Also, in this case, increasing the value of Tp makes the energy
injected by the multitemperature population increase. We thus obtain the same behaviour
as in the previous case (figure 2) for all quantities.
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(a)

(b)

(c)

FIGURE 3. (a,b) Evolution of proton (red for Tp = 4 and green for Tp = 1) and electron (blue
for Tp = 4 and orange for Tp = 1) kinetic energies Kα (a) and stratification parameters qα (b) as
numerically computed from simulations via (4.1a,b), together with theoretical prediction for their
mean value (black horizontal lines, see (4.1a,b)). (c) Numerical density (in blue for Tp = 4 and in
red for Tp = 1) and temperature (same rule of colours) of electrons vs curvilinear abscissa of the
loop θ . Grey curves denote the corresponding theoretical predictions from analytical formulas
(3.16)–(3.17).

(a)

(b)

(c)

FIGURE 4. (a,b) Evolution of proton (red for C = 400 and green for C = 100) and electron
(blue for C = 400 and orange for C = 100) kinetic energies Kα (a) and stratification parameters
qα (b) as numerically computed from simulations via (4.1a,b), together with theoretical
prediction for their mean value (black horizontal lines, see (4.1a,b)). (c) Numerical density (in
yellow for C = 400 and in black for C = 100) and temperature (same rule of colours) of electrons
vs curvilinear abscissa of the loop θ . Red curves denote the corresponding theoretical predictions
from analytical formulas (3.16)–(3.17).
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(a)

(b)

(c)

FIGURE 5. (a,b) Evolution of proton (red for g̃ = 1 and green for g̃ = 0.5) and electron (blue
for g̃ = 1 and orange for g̃ = 0.5) kinetic energies Kα (a) and stratification parameters qα (b) as
numerically computed from simulations via (4.1a,b), together with theoretical prediction for their
mean value (black horizontal lines, see (4.1a,b)). (c) Numerical density (in blue for g̃ = 1 and in
red for g̃ = 0.5) and temperature (same rule of colours) of electrons vs curvilinear abscissa of the
loop θ . Grey curves denote the corresponding theoretical predictions from analytical formulas
(3.16)–(3.17).

(a)

(b)

(c)

FIGURE 6. (a,b) Evolution of proton (green) and electron (red) kinetic energies Kα (a) and
stratification parameters qα (b) as numerically computed from simulations via (4.1a,b), together
with theoretical prediction for their mean value (black horizontal lines, see (4.1a,b)). (c)
Numerical density and temperature (red) of electrons vs curvilinear abscissa of the loop
θ . Grey curves denote the corresponding theoretical predictions from analytical formulas
(3.16)ï£¡ï£¡ï£¡(3.17).
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4.1.3. The strength of the electrostatic interactions C
The parameter C controls the strength of the electrostatic interactions between particles.

In figure 4 we report the two cases C = 100 and C = 400. All the other parameters
are fixed such that A = 0.5(τ = 0.01, 〈tw〉η = 0.01), Tp = 4, g̃ = 1, M = 100. This figure
clearly shows that the electrostatic interaction C does not play any significant role in
shaping the inverted density–temperature profiles, as obvious from the theory since φ = 0,
cf. § 3.

4.1.4. The stratification parameter g̃
This parameter determines the strength of the external stratification field in units of

the thermal energy kBT0 of the thermal boundary (i.e. the chromosphere). In figure 5
we present two cases: g̃ = 0.5 and g̃ = 1. All of the other parameters are as before. The
expressions of the distribution functions of the theory reported in (3.14) depend only on
H̃α. At the bottom (i.e. θ = −π), the mean-field Hamiltonians H̃α are the same for both
species and read

H̃α( p, θ = −π) = p2

2Mα

. (4.4)

Therefore, the two distribution functions have a fixed width in momentum space that is
independent of the specific value of g̃. Hence, also the kinetic temperature at θ = −π is
independent of g̃, as apparent in figure 5.

In the right plot of figure 5 we show that, by increasing the value of g̃, the kinetic
temperature grows with a stronger gradient going from the bottom (θ = −π) to the top
(θ = 0). In practice, as implied by (3.14), with higher values of g̃, only the Boltzmann
factors with large values of the temperature in the multitemperature population can give
a contribution at higher altitudes. In practice, from all the possible value extracted from
γ (T), only high T temperature fluctuations give sufficient kinetic energy to the particles
so that they can climb the gravitational well up to the top of the system θ = 0. We note
that this is essentially Scudder’s gravitational filtering mechanism.

4.1.5. Varying the temperature fluctuation distribution γ (T)

Finally, we change the distribution of temperature increments γ (T). We consider here
the case of a one-sided Gaussian γ (T) distribution

γ (T) = 2√
2πT2

p

exp

(
−(T − 1)2

2T2
p

)
, T > 1. (4.5)

In figure 6 we show the case for the following values of the system’s parameters: A =
0.5(τ = 0.01, 〈tw〉η = 0.01), g̃ = 1, Tp = 4, C = 400, M = 100. As expected, temperature
increments still give origin to temperature inversion independently of the specific shape of
γ (T).

4.2. Limits of the theoretical approach
We now discuss the limits of the theoretical approach, using numerical simulations. For
the sake of simplicity, we focus on the case in which the temperature oscillates between the
two values T = 1 and T = Tp with a fixed waiting time tw. In this set-up the distributions
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 7. (a–d) Kinetic energies of the electrons for four different couples of values of τ =
tw = 0.1, 20, 200, 600 from left to right. (e–h) Electron temperature–density profiles numerically
evaluated time averaging over the interval t1 = 300 and t2 = 1000 (red for temperature and blue
for density) together with the theoretical predictions in grey and calculated via (3.16)–(3.17).

γ (T) and η(tw) are given by

γ (T) = δ(T − Tp), η(tw) = δ(t − tw). (4.6a,b)

In figure 7, we report the results obtained by varying τ , with τ = tw. The other parameters
are fixed to C = 400, Tp = 4, g̃ = 1, M = 100.

We observe how, on increasing both τ and tw and retaining the ratio A = τ/(τ + tw)
fixed to 0.5, the theoretical equations computed using (3.14) start failing in reproducing
the density–temperature profiles evaluated from the numerical simulations. In particular,
in the left panels the time scales τ and tw are so small that the particles do not have
enough time to relax to a thermal configuration, neither at T = Tp or at T = 1. The
system is therefore locked in a non-equilibrium stationary configuration and the inverted
density–temperature profiles computed numerically are well reproduced by the theoretical
counterparts. Technically speaking, the inverted density–temperature profiles shown in
figure 7 are obtained by time averaging over several snapshots from t1 = 300 to the end
time t2 = 1000. Since the system is in a stationary state these profiles are independent of
the length and of the location along the stationary state of the interval t2 − t1.

For the other cases, the density–temperature profiles are numerically evaluated in the
same way. As both τ and tw increase, the kinetic energy starts to develop large amplitude
oscillations. This arises from the fact that, when moving towards a regime (shown in the
two right columns of the figure 7) in which both τ and tw are large enough (i.e. comparable
to the relaxation time), the system evolves in time passing from a thermal configuration at
T = Tp to a thermal configuration at T = 1 (see figure 8).

Of course, in all cases except when τ = tw = 0.1, since the system is no longer locked in
a stationary configuration, the theory cannot be applied and thus the numerically recovered
density–temperature profiles evaluated via time averaging do not match the theoretical
counterparts. Moreover, since the system is no longer locked in a stationary state, the
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(a) (b)

FIGURE 8. (a) Electron kinetic energy as a function of time. (b) Electron densities and
temperatures for the two thermal configurations T = Tp = 4 and T = 1. Blue and magenta,
respectively, show the numerical temperature and the numerical density for the case T = Tp = 4,
together with their respective theoretical equilibrium counterparts in grey and calculated via
(2.34)–(2.35). Red and black, respectively, show the numerical temperature and the numerical
density for the case T = 1, together with their respective theoretical equilibrium counterparts in
grey and calculated via (2.34)–(2.35).

numerical density–temperature profiles depend explicitly on the length and on the location
of the time average interval t2 − t1 for the specific run.

5. Application to the solar atmosphere

Here, we show the application of the temporal coarse graining to predicting the inverted
density–temperature profiles of the Sun’s atmosphere. To compute such profiles we have
used (3.16)–(3.17), and (3.14) for the distribution functions. We put the base of the model
at zb = 2 × 103 km (i.e. at the base of the transition region in the Sun’s atmosphere) and
the top at zt = 2.2 × 104 km (i.e. in the corona). We then fix the length 2L of half of the
loop via the following equation:

2L = (zt − zb)π = 2π × 104 km, z = 2L
π

cos
(πx

2L

)
, (5.1)

that corresponds to the typical length of a coronal loop in the solar atmosphere. With such
a choice, the dimensionless parameter g̃ is fixed to g̃ = 16.64. For the distribution of the
temperature fluctuations and the waiting times, we use (4.1a,b) discussed in § 4 above.
Thus, we are now left with the two free parameters Tp and A. We initially fix the value of
A to 1 and vary Tp.

As shown in § 4, increasing the value of Tp results in increasing the values of the
temperature profile. In order to have a temperature of the order of 106 K at the top of the
loop, we must increase Tp up to a value around 106 K (as shown in figure 10b). Therefore,
from now on, we fix Tp = 90 (that correspond to a temperature of 9 × 105 K). From
figures 10(a) and 9(a) we observe that, for A = 1, we have a temperature at the base of
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(a) (b)

FIGURE 9. Kinetic temperature (in K, (a)) computed via (3.17) and number density computed
via (3.16) (b) scaled by the mean number density n0 = 2.5 × 109 cm−3 as a function of the height
(in km) for different values of A passing from A = 1 to A = 0.01 as listed in the legend.

the order of Tb = 5 × 105 K. Such a value is far greater than the observed one, the latter
being smaller than Tb,obs = 1.2 × 104 K, as the chromospheric temperature varies between
8 × 103 and 1.2 × 104 K, see Molnar et al. (2019).

In the previous section we have shown how the temperature at the base of the loop Tb
decreases with decreasing A (see figure 2). In figure 10 we plot Tb as a function of A. We
observe that, at around A=0.022, the temperature Tb crosses the upper limit value Tb,obs.
Combining these two properties that relate Tp to A, in figure 9 we show how the inverted
density–temperature profiles with A = 0.02 and 0.01 (i.e. very rare temperature increments
with Tp = 90) are similar to the one observed in the Sun’s atmosphere. These profiles start
from Tb ∼ 1.1 × 104 K and have an initial rapid rise in temperature (the transition region)
followed by a slower increase in the above region (i.e. the solar corona).

This change of the shape caused by varying the parameter A can be understood in
terms of velocity filtration, as is apparent from the structure of the electron VDFs
at the base of the model (z = z1 = 2.3 × 103 km) as shown in figure 11 where we
plot in a semilogarithmic scale the distribution of the signed electron kinetic energy
f̃e(sign( p)p2/2) divided by the density. By doing this, it becomes clearer whether the
distribution function in question is thermal or not, since for a thermal distribution
(i.e. a Gaussian) one would get two straight lines symmetric with respect to zero. As can
be seen from figure 11(a,b), the thermal (Gaussian) part of the electron VDFs increasingly
dominates the core of the distribution, as the value of A decreases. This is the reason
why the temperature at the base decreases crossing Tb,obs = 1.2 × 104 K and tends to
T0 = 104 K. Moreover, by fixing A = 0.02, from figure 12 we observe that, in virtue of the
energy conservation (thanks to the velocity filtration mechanism), the cold central thermal
core of the electron DFs at the base of the model z = z1 = 2.3 × 103 km progressively
disappears by passing through the transition region z = z2 = 2.3 × 103 km and is totally
filtered out in the corona z = z3 = 1.1 × 104 km. As a consequence of this, one has a rapid
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(a) (b)

FIGURE 10. (a) Temperature at base Tb of the atmosphere z = 0 computed via (3.17) against
the parameter A (3.12). The red horizontal line is Tb,obs = 1.2 × 104 K. (b) The temperature at
the top Tt computed via (3.17) as function of the mean value of the temperature fluctuations Tp
for A = 1.

increase of temperature through the transition region and a slow increase of temperature
in the corona.

In figure 11(c) we can observe that all the electron VDFs rescaled by the density in
the corona at z = z3 = 1.1 × 104 km for all the values of A collapse onto each other, due
to the fact that the central thermal core has been filtered out in the corona itself. Since
the rescaled distribution functions are the same for all values of A, then the temperatures
collapse to the same curve in the corona, as shown in figure 9(a).

The number density profiles are inverted with respect to the temperature profiles with
an initial strong negative gradient (the transition region) followed by a slower decrease
within the corona. By decreasing the value of A, the number density at the bottom of the
system increases and at the same time the number density at the top decreases. Again this
is due to the fact that the cold population in (3.14) becomes more and more pronounced
for decreasing values of A, that is, we now have more particles that are not able to climb
higher in the gravity well. Since the total number of particles is fixed independently of the
values of A as dictated by the normalisation condition (3.15), then, if the density at the
bottom increases, the density at the top (the corona) should naturally decrease.

5.1. Observational evidence of temperature increments and physical limits of our
modelling

We now discuss the limits of our modelling approach. In our model, we only considered
one-sided temperature fluctuations, based on the assumption that a physical process heats
up the chromosphere for a finite amount of time. Such an assumption justifies the use
of positive temperature increments only. Observational evidence of physical processes
that can produce such increments will be presented later in this section. We stress the
fact that, even if we decrease the temperature below the background value, we still have
a temperature inversion. In this case, the ‘hot’ particles are the ones produced by the
background temperature and the ‘cold’ ones are produced by the temperature decrements.
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(a) (b) (c)

FIGURE 11. (a) Electron VDFs computed via (3.14) normalised by the electron number
densities (computed via (3.16)) at the base of the atmosphere at z = z1 = 2.3 × 103 km (the base
of the transition region) for different values of A. In (b), a magnification of the central region of
the same VDFs is shown to emphasise the central thermal (Gaussian) core. In (c) are depicted
the electron VDFs in the corona z = z3 for the same values of A as the other panels. In this panel
all the electron VDFs are collapsed onto each other because of velocity filtration.

(a) (b)

FIGURE 12. (a) Electron VDFs (computed via 3.14 normalised by the electron number densities
(computed via 3.16) for A = 0.02, computed at three increasing heights (z = z1, z2, z3) listed in
the legend as a function of the signed kinetic energy. In (b), a magnification of the central region
of the same VDFs is shown to appreciate the disappearance of the Gaussian profile with height,
as expected when velocity filtration is at work.
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Therefore, velocity filtration is still active, and the temperature starts from a value that
is smaller compared with the background due to the colder particles but rises to the
background value.

In conclusion, the temperature fluctuations drive the above collisionless plasma
environments towards a non-equilibrium stationary configuration with temperature
inversion that can be described by our temporal coarse-graining method.

This is true only if the time scales of the temperature fluctuations are much smaller than
the relaxation time tR (computed via (3.2), roughly 10 s for the parameters that we have
considered above).

Moreover, to reach coronal temperatures of 106 K and maintain, at the same time, the
temperature at the base of the transition region at around 104 K, the fraction of time in
which the chromospheric temperature increments must be as large as one million degrees
must be around A ∼ 0.02. More precisely, with this value of A, the temperature at the
base is around Tb ∼ 1.2 × 104 this is compatible with ALMA observations of temperature
1.2 × 104 K (Molnar et al. 2019).

Indeed, short-lived and intense brightenings are observed on the Sun’s surface (Dere,
Bartoe & Brueckner 1989; Teriaca et al. 2004; Peter et al. 2014; Tiwari et al. 2019;
Berghmans et al. 2021). Among all of these the so-called campfires, observed in extreme
UV imaging, have temperatures of ≈ 106 K. Other explosive events appearing in Hα line
widths have smaller temperatures, around 2 × 105 K, but are ten times more frequent
(Teriaca et al. 2004). This trend justifies the use of a decreasing exponential distribution
for the temperature increments. However, current measurements have a time resolution
of the order of a few seconds (i.e. of the order of the relaxation time tR) so that, even
if the intensity of such increments could be compatible with recently observed explosive
events, they remain unresolved because of their rapid time duration. Interestingly, recent
EUV solar observations (Raouafi et al. 2023) show that a possible physical mechanism
that is at work in the lower atmosphere is magnetic reconnection. In particular, they show
how jetting activity at the base of the solar corona driven by discrete small-scale magnetic
reconnection events (i.e. continuous sources of temperature increments) can produce a
flow of matter that propagates from the corona up to the heliosphere so that they could be
at the origin of the coronal heating and of the solar wind acceleration.

The most questionable aspect of our treatment is that the chromosphere is modelled
as fully collisional and concurrently the overlying plasma (the transition region and the
corona) is modelled as collisionless. Due to the low values of the Knudsen number Kn
(Kn ∼ 10−2–10−3 in the transition region and Kn ∼ 10−1 in the corona) the collisions
are certainly present in both the transition region and the corona. Clearly, a fully
self-consistent treatment of Coulomb collisions in the whole solar atmosphere is beyond
the scope of this work. However, it is worth briefly addressing this problem. Thanks
to the 1/r (where r is the inter-particle distance) nature of electrostatic potential,
the electron–electron mean free path in a plasma strongly depends on the particles
velocity v, more specifically it is proportional to v4. In our procedure we have ‘cold’
particles generated by the background temperature T0 and ‘hot’ particles generated by the
temperature increments. We expect that only ‘cold’ particles would be strongly affected by
collisions so that the VDFs would be closer to thermal at low energies, while non-thermal
features associated with the ‘hot’ particles, which are the ones selected by gravitational
filtering, would be able to reach the corona (Landi & Pantellini 2001). Moreover, velocity
filtration should become more efficient in presence of Coulomb collisions, thus producing
a transition region even steeper than the one produced by our model and closer to the
observed one.
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6. Summary and perspectives

In this work, we have addressed the question of generating suprathermal distribution
functions and temperature inversion in a confined plasma structure by means of
temperature increments at its edges produced by some heating events. We tackled this
problem by introducing a novel formalism to treat the plasma dynamics in contact with
a thermal boundary whose temperature fluctuates in time recently studied by Barbieri
et al. (2024). We have shown how the multi-component (in the case discussed here,
electrons and protons) plasma dynamics can be efficiently modelled in terms of the
temporal coarse-grained distribution functions f̃α for the two species. The dynamics just
mentioned is governed by the effective system of Vlasov equations (3.5) in contact with
the non-thermal distributions f̃α( p) at its boundary (3.11).

We have obtained analytical expressions for the distribution functions of the
two species in the non-equilibrium stationary configuration (3.14), in terms of the
mean-field Hamiltonians H̃α (2.33). In this set-up we can interpret the anti-correlated
density–temperature profiles in terms of velocity filtration, in analogy to the Scudder
mechanism. However, here, the suprathermal tails are not imposed as in the Scudder
approach but are self-consistently produced by the temporal variations of the temperature
of the thermal boundary (the chromosphere) yielding particles with different temperatures
that mix together giving rise to the multitemperature contribution to the coarse-grained
distribution functions in (3.14).

We have tested the theoretical predictions for temperature inversion against numerical
simulations, finding an excellent agreement between the theory and the numerical results.
In addition, we have applied our theoretical formalism to the specific case of the Sun’s
atmosphere. We have shown how decreasing the percentage of time of duration of the
temperature increments (i.e. decreasing A) a transition region naturally forms in the
inverted density–temperature profile (see figure 9). Moreover, in the condition of very
rare temperature fluctuations A ∼ 0.02 at Tp ∼ 106 K we were able to produce an inverted
temperature–density profile very similar to the one observed in the Sun’s atmosphere with
a base temperature below 1.2 × 104 K (as observed e.g. by Molnar et al. 2019), transition
region (wider than the observed one) and then a million kelvin corona.

In the present work we have derived the coarse-grained Vlasov dynamics (3.5) coupled
to the effective incoming flux (3.10) in the one-dimensional case and using the HMF
modellisation. The extension of our procedure to systems in higher dimensionality is
expected to be possible because the temporal coarse graining does not depend explicitly on
the dimensionality of the system and on the HMF modellisation for the self-electrostatic
interactions at hand. This, in principle, opens up the possibility of including the
contribution of a magnetic field along the curvilinear abscissa for the simple loop plasma
model discussed here. We note that such an additional ingredient is interesting not only for
the coronal loops in the solar atmosphere but also in the context of fusion plasmas confined
inside a tokamak machine (see Goedbloed, Keppens & Poedts 2010; Ciraolo et al. 2018).

The formalism of temporal coarse graining could be also useful to exospheric models of
heliospheric plasmas (i.e. the plasma that populates the interplanetary space) that describe
interplanetary plasma as a non-collisional medium in contact with a fixed distribution at
its boundary (Chamberlain 1960; Jockers 1970; Lemaire & Scherer 1971; Maksimovic,
Pierrard & Lemaire 1997; Lamy 2003; Zouganelis et al. 2004). Such systems have the
boundary at the base of the heliosphere (outer zone of the solar atmosphere), while the
theoretical formalism discussed here allows one to implement an exospheric model that
has the base in the high chromosphere and that is able to reproduce the plasma of the solar
atmosphere together with the heliospheric plasma. This approach can potentially give a
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model and a mechanism to produce suprathermal electrons in the heliospheric plasma,
whose presence is suggested by in situ measurements (see for example Pilipp et al. 1987;
Berčič et al. 2020; Halekas et al. 2020; Maksimovic et al. 2020).

Finally, our formalism could also be used in the context of laser–plasma interaction,
where a region of the system is in thermal contact with another where the temperature
fluctuates as a consequence of the external laser pumping (see e.g. Gibbon & Förster
1996; Atzeni 2001).
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MATTEINI, L., BALE, S.D., BONNELL, J.W., CASE, A.W., et al. 2020 Coronal electron
temperature inferred from the strahl electrons in the inner heliosphere: Parker solar probe and helios
observations. Astrophys. J. 892 (2), 88.

BERGHMANS, D., AUCHÈRE, F., LONG, D.M., SOUBRIÉ, E., MIERLA, M., ZHUKOV, A.N., SCHÜHLE,
U., ANTOLIN, P., HARRA, L., PARENTI, S., et al. 2021 Extreme-UV quiet Sun brightenings
observed by the Solar Orbiter/EUI. Astron. Astrophys. 656, L4.

CAMPA, A., DAUXOIS, T., FANELLI, D. & RUFFO, S. 2014 Physics of Long-Range Interacting Systems.
Oxford University Press.

CANDY, J. & ROZMUS, W. 1991 A symplectic integration algorithm for separable hamiltonian functions.
J. Comput. Phys. 92 (1), 230–256.

CASETTI, L. & GUPTA, S. 2014 Velocity filtration and temperature inversion in a system with long-range
interactions. Eur. Phys. J. B 87 (4).

CHAMBERLAIN, J.W. 1960 Interplanetary gas. II. Expansion of a model solar corona. Astrophys. J. 131,
47.

CHAVANIS, P.H., VATTEVILLE, J. & BOUCHET, F. 2005 Dynamics and thermodynamics of a simple
model similar to self-gravitating systems: the HMF model. Eur. Phys. J. B 46 (1), 61–99.

CIRAOLO, G., BUFFERAND, H., DI CINTIO, P., GHENDRIH, P., LEPRI, S., LIVI, R., MARANDET, Y.,
SERRE, E., TAMAIN, P. & VALENTINUZZI, M. 2018 Fluid and kinetic modelling for non-local heat
transport in magnetic fusion devices. Contrib. Plasma Phys. 58 (6–8), 457–464.

COLLIER, M.R. 1993 On generating kappa-like distribution functions using velocity space lévy flights.
Geophys. Res. Lett. 20 (15), 1531–1534.

DERE, K.P., BARTOE, J.D.F. & BRUECKNER, G.E. 1989 Explosive events in the solar transition zone.
Sol. Phys. 123 (1), 41–68.

DI CINTIO, P., CIOTTI, L. & NIPOTI, C. 2013 Relaxation of N-body systems with additive r−α

interparticle forces. Mon. Not. R. Astron. Soc. 431 (4), 3177–3188.
DI CINTIO, P., GUPTA, S. & CASETTI, L. 2018 Dynamical origin of non-thermal states in galactic

filaments. Mon. Not. R. Astron. Soc. 475 (1), 1137–1147.
ERMOLLI, I., GIORGI, F., MURABITO, M., STANGALINI, M., GUIDO, V., MOLINARO, M., ROMANO,

P., GUGLIELMINO, S.L., VIAVATTENE, G., CAUZZI, G., et al. 2022 IBIS-A: the IBIS data
Archive. High-resolution observations of the solar photosphere and chromosphere with contextual
data. Astron. Astrophys. 661, A74.

EWART, R.J., BROWN, A., ADKINS, T. & SCHEKOCHIHIN, A.A. 2022 Collisionless relaxation of a
lynden-bell plasma. J. Plasma Phys. 88 (5), 925880501.

EWART, R.J., NASTAC, M.L. & SCHEKOCHIHIN, A.A. 2023 Non-thermal particle acceleration and
power-law tails via relaxation to universal lynden-bell equilibria. J. Plasma Phys. 89 (5), 905890516.

GIACHETTI, G. & CASETTI, L. 2019 Violent relaxation in the Hamiltonian mean field model: I. Cold
collapse and effective dissipation. J. Stat. Mech. 2019 (4), 043201.

GIBBON, P. & FÖRSTER, E. 1996 Short-pulse laser - plasma interactions. Plasma Phys. Control. Fusion
38 (6), 769.

GOEDBLOED, J.P., KEPPENS, R. & POEDTS, S. 2010 Advanced Magnetohydrodynamics: With
Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press.

GOLUB, L. & PASACHOFF, J.M. 2009 The Solar Corona, 2nd edn. Cambridge University Press.
GUPTA, S. & CASETTI, L. 2016 Surprises from quenches in long-range-interacting systems: temperature

inversion and cooling. New J. Phys. 18 (10), 103051.
HALEKAS, J.S., WHITTLESEY, P., LARSON, D.E., MCGINNIS, D., MAKSIMOVIC, M., BERTHOMIER,

M., KASPER, J.C., CASE, A.W., KORRECK, K.E., STEVENS, M.L., et al. 2020 Electrons in the
young solar wind: first results from the parker solar probe. Astrophys. J. Suppl. 246 (2), 22.

https://doi.org/10.1017/S0022377824000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000849


Temperature inversion in a non-homogeneous plasma 27

HANSTEEN, V., DE PONTIEU, B., CARLSSON, M., LEMEN, J., TITLE, A., BOERNER, P., HURLBURT,
N., TARBELL, T.D., WUELSER, J.P., PEREIRA, T.M.D., et al. 2014 The unresolved fine structure
resolved: IRIS observations of the solar transition region. Science 346 (6207), 1255757.

JOCKERS, K. 1970 Solar wind models based on exospheric theory. Astron. Astrophys. 6, 219.
KANDRUP, H.E. 1998 Violent relaxation, phase mixing, and gravitational landau damping. Astrophys. J.

500 (1), 120–128.
KLIMCHUK, J.A. 2006 On solving the coronal heating problem. Sol. Phys. 234 (1), 41–77.
LAMY, H. 2003 A kinetic exospheric model of the solar wind with a nonmonotonic potential energy for

the protons. J. Geophys. Res. 108 (A1).
LANDI, S. & PANTELLINI, F.G.E. 2001 On the temperature profile and heat flux in the solar corona:

kinetic simulations. Astron. Astrophys. 372 (2), 686–701.
LAZAR, M. & FICHTNER, H. 2021 Kappa Distributions: From Observational Evidences Via Controversial

Predictions to a Consistent Theory of Nonequilibrium Plasmas. Astrophysics and Space Science
Library. Springer.

LEMAIRE, J. & SCHERER, M. 1971 Kinetic models of the solar wind. J. Geophys. Res. 76 (31), 7479.
LEPRI, S., CIRAOLO, G., DI CINTIO, P., GUNN, J. & LIVI, R. 2021 Kinetic and hydrodynamic regimes

in multi-particle-collision dynamics of a one-dimensional fluid with thermal walls. Phys. Rev. Res.
3, 013207.

LEVIN, Y., PAKTER, R. & TELES, T.N. 2008 Collisionless relaxation in non-neutral plasmas. Phys. Rev.
Lett. 100 (4).

LYNDEN-BELL, D. 1967 Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron.
Soc. 136 (1), 101–121.
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