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ABSTRACT. The trapping of bubbles of air in polar ice has provided a unique 
record of past atmospheric composition. However, the interpretation of measured 
concentrations depends on the statistics of the trapping process. Measurements of 
trace atmospheric constituents whose concentrations are changing steadily can be 
interpreted in terms of an "efTective age" of the gas which difTers from the age of the 
ice by a delay which corresponds to the mean trapping time. The statistics of bubble 
trapping can be modelled as a percolation model which is one of a class of models 
whose transitions are characterized by large critical fluctuations. These critical 
fluctuations cause an intrinsic sample-to-sample variability in the delay time and 
thus in the efTective age. Monte Carlo simulations using a lattice model of the firn are 
presented, showing the efTect of finite sample size on the age distribution of trapped 
gas. For samples containing more than about 103-104 bubbles, the simulations 
indicate that the range of variability is small compared to the average duration of the 
trapping process. 

1. INTRODUCTION 

The present paper concerns the trapping of air bubbles as 
firn (compacted but permeable accumulated snow grains) 
becomes non-permeable ice as the density increases. The 
bubble trapping is analysed using the percolation model 
from lattice statistics. The statistics of this air-bubble 
trapping are of some importance because the composition 
of air from bubbles in polar ice provides a record of 
atmospheric concentrations of climatically active atmos­
pheric constituents such as CO2• These records span 
periods ranging from decades to millennia, depending on 
the accumulation rate and thickness of the ice cap from 
which the record is obtained (see, for example, Delmas 
and others, 1980; N eftel and others, 1985; Pearman and 
others, 1986; Barnola and others, 1987). As well as being 
required for the direct interpretation of concentrations of 
trapped gases, the statistics of the firn-closure process are 
also important in the interpretation of those measure­
ments of firn closure that are to be used in the 
interpretation of gas data. 

The percolation model is a statistical model describing 
random networks. I t has been used to model a wide range 
of physical processes (Zallen, 1983). The relevance of the 
percolation model to bubble trapping in firn was 
recognized by Enting (1985b) and StaufTer and others 
(1985). When modelling firn closure in terms of 
percolation, we can draw on a very large body of 
existing work on this and related models. Section 2 below 
reviews some key results from this field of "lattice 
statistics" and introduces some of the technical terms 
involved (see also the review by Enting (1987)). The 
present study is motivated by the fact that many of these 
lattice-statistics models, including the percolation model, 

exhibit transitIOns characterized by fluctuations on all 
length scales. Enting (1985b) identified the fluctuations in 
the trapped bubble volume, as measured by Schwander 
and StaufTer (1984), with the statistical fluctuations of the 
percolation transition. In order to investigate the 
significance of these fluctuations for gas dating, we 
performed Monte Carlo simulations using the ultra­
marine lattice model introduced by StaufTer and others 
(1985) . 

The percolation model, as used here, is a descriptive 
statistical model of firn closure, rather than being fully 
mechanistic. In particular, the model is expressed in 
terms of the probabilities of channel closure and does not 
attempt to predict these from the physical properties of 
the firn. This approach is motivated by the recognition 
that the statistical aspects are the most important 
characteristics of the firn-closure process. Any more 
comprehensive model that seeks to predict properties 
such as the close-ofT density must take the percolation 
statistics into account as a prerequisite for defining the 
close-ofT point. Some of the issues involved in modelling 
firn closure have been discussed by StaufTer (1982). The 
universality theory property of lattice model transitions 
(see section 2 below) predicts that, suitably scaled, a 
simple percolation model will correctly represent the 
characteristics of more complicated percolating systems. 

One important qualitative result from this identific­
ation was the recognition that, because of the sharp cut­
ofT in the trapping, the deconvolution of atmospheric 
composition from a record of mean bubble composition is 
a relatively well-conditioned inversion problem (Enting, 
1985a). Enting and Mansbridge (1985) (henceforth 
referred to as EM) suggested that, because of this 
relatively well-conditioned nature of the process of 
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deconvolving bubble compositions to obtain a record of 
atmospheric composition, the trapping could be para­
meterized by an effective age. This effective age differed 
from the age of the ice by a delay time which was 
expressed as an integral over the trapping distribution 
(see Equation (6) below). From the simulations described 
below, we can estimate the sample-to-sample variation in 
this delay time. 

The lay-out of the remainder of the paper is as follows. 
Section 2 reviews some key concepts from lattice statistics. 
Section 3 reviews the concepts of the bubble-trapping 
distribution and the effective age of the gas. A number of 
relevant measurements of ice-core properties are noted. 
Section 4 describes the lattice model used in the Monte 
Carlo studies. Section 5 presents the results of the 
simulations. Section 6 gives a brief discussion of the 
effect of pore closure on the restriction of diffusive mixing 
through the firn, and the role of percolation theory in 
understanding this effect. Section 7 gives some concluding 
remarks while additional details of the simulation 
algorithm are given in the Appendix. 

2. CRITICAL PHENOMENA AND PERCOLATION 

In this section, we review some of the relevant results from 
lattice-statistics models of critical phenomena, with 
particular reference to the percolation model. Further 
details may be found in Enting (1987) and references 
therein. Some technical terms of particular relevance to 
the firn-closure problem are noted below in italics. 

The term lattice statistics is used to cover a range of 
mathematical or statistical models defined at discrete 
points in space, usually on a regular lattice. The 
properties of the models are derived from locally defined 
statistical characteristics. Many of the applications have 
been in solid-state physics where the lattice corresponds to 
an actual crystal lattice and the statistical variations arise 
from the effects of temperature. These models have been 
the subject of very extensive study. The references in the 
review by Enting (1987) can be used as an initial point of 
contact with the lattice-statistics literature. In addition, 
Efros (1986) and Stauffer (1985) have published 
in trod uctory books specifically on the percolation 
model. The first of these covers a greater range of topics 
but suffers from the lack of any references. 

The percolation model has a very simple statistical 
characterization. In the form used to model bubble 
trapping, the bubbles are associated with points on the 
lattice, the sites. Neighbouring sites are regarded as being 
linked by bonds on the lattice. These bonds are regarded as 
being either "connected" or "broken". The connectivity 
is assigned randomly, independently for each bond. The 
model deals with the statistics of clusters of sites joined by 
chains of "connected" bonds. When modelling firn 
closure, the "connected" bonds represent open pores or 
channels between the snow grains. 

There is a wide class of lattice models (including 
percolation models) which exhibit what are known as 
critical phenomena. The characteristics of these critical 
phenomena are: 

1. There is a critical probability at which the macro-
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scopic properties of the system change abruptly. In the 
percolation model, there is a particular (lattice­
dependent) probability, Pc, above which arbitrarily 
large connected clusters will occur, but below which 
the mean cluster size remains finite. In other lattice 
models, the abrupt change is used to model a change 
in thermodynamic phase as a function of temperature. 
The general term critical point is used to define the 
point at which the change occurs. 

ii. At this critical point, there is no characteristic 
length scale; the spatial characteristics show statistical 
self-similarity (i.e. various statistical properties remain 
invariant under a change of length scale). In the 
terminology of Mandelbrot (1977), clustering proper­
ties are described by fractals. Correlations between 
sites show power-law dependence on distance at the 
critical point. 

iii. Various other statistical properties exhibit singul­
arities at the critical point. The behaviour in 
approaching the critical point can often be repres­
ented by power laws. The powers involved are called 
the critical exponents with standard symbols (usually 
Greek letters) denoting many of these exponents. For 
example, as a critical point is approached, character­
istic length scales (denoted e) diverge with a power­
law dependence on the distance from the critical 
point: e ex Ip - Pcl-v. Such power-law scaling relations 
apply within a critical region surrounding the critical 
point. 

iv. The values of the critical exponents are indepen­
dent of many local details of the statistical model. In 
particular, for percolation models, the critical expon­
ents are the same, whether one considers clusters of 
randomly occupied sites, clusters of randomly occup­
ied bonds or, as in the model described below, clusters 
of sites connected by randomly occupied bonds. The 
critical exponents are also independent of the 
particular lattice, apart from depending on the 
dimensionality. These independence properties are 
referred to as universali!y. An extreme example is the 
use of a lattice model to represent the liquid-gas co­
existence line and the liquid-gas critical point that 
terminates this co-existence line. This model can 
represent many features of such critical points even 
though neither phase occurs on a lattice. 

v. As the critical point is approached, various 
statistical quantities become extremely sensitive to 
small perturbations. In the liquid-gas model, the 
compressibility becomes arbitrarily large. In magnetic 
systems, the susceptibility (the rate of change in 
magnetization as the external field is increased) 
diverges. In the percolation model, there is an 
analogous divergence in the mean number of sites 
per connected cluster. 

vi. As well as the large responses to external forcing, 
the statistical properties near the critical point exhibit 
large intrinsic fluctuations. In the liquid-gas system, 
these correspond to density fluctuations that are 
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observed through anomalously high light scattering, 
known as critical opalescence. Similar statistical 
fluctuations occur in the percolation model. Enting 
(1985b) interpreted the highly variable results for the 
amount of trapped gas near the firn close-off (as 
measured by Schwander and Stauffer (1984)) as an 
example of such critical fluctuations. These observations 
were a key piece of evidence in arguing for the 
applicability of the percolation model in representing 
bubble trapping in firn. These critical fluctuations are 
an intrinsic part of the transition. Indeed, critical 
phenomena are sometimes referred to as co-operative 
phenomena because the transitions occur due to the co­
operative effects of such fluctuations. 

The most common forms of percolation model are site 
percolation (clusters of randomly occupied sites where pairs 
of occupied neighbours are regarded as connected) and 
bond percolation (clusters of randomly occupied bonds). 
Stauffer and others (1985) modelled firn closure using a 
conventional bond percolation model. Enting (1986, 
1987) proposed that, to represent bubble trapping, a 
more appropriate form of the percolation model would 
consider clusters of sites connected by randomly occupied 
bonds. In this "bubble-trapping" percolation model, the 
sites represent space between ice grains and the bonds 
represent connecting channels that are gradually closed 
off. A key statistic in percolation modelling is the 
percolation probability, P, which is the probability of a site 
or bond being part of an infinite connected cluster. At the 
critical point, P goes to zero as P ex Ip - Pc 1,6 with 
{J ~ 0.454 in three dimensions. 

Enting (1986, 1987) noted that the bubble-trapping 
model (clusters of sites connected by randomly occupied 
bonds) was the special form of a percolation model 
obtained by taking the q -> 1 limit of the q-state Polls 
model (Fortuin and Kastelyn, 1972; Wu, 1978). This 
connection showed the relation between the percolation 
model and more general statistical mechanics models of 
phase transitions. It was also useful in the derivation of­
series expansions for the trapping distribution (Enting, 
1986), but otherwise gives little insight into the percol­
ation model and so will not be considered further in this 
paper. 

Enting (1987) listed five main classes of mathematical 
technique that have been used to investigate critical 
phenomena in lattice models. These are (a) exact 
solutions (generally not available), (b) statistical closures 
(usually inaccurate in the critical region), (c) power-series 
expansions of statistical moments (as applied to firn 
closure by Enting (1986)), (d) renormalization group 
techniques and (e) Monte Carlo simulations. 

Monte Carlo simulations are used in the present study 
because the statistical fluctuations are simulated directly. 
However, they are restricted by the fact that the 
simulation can only be for a finite system. The other 
computational techniques above allow a formal limit of 
arbitrarily large systems to be considered. Since the range 
of spatial correlation diverges near the critical point, 
finite-size effects become important and must be corrected 
for. 

An example of the importance of correcting for finite­
size effects is that En ting (1986) estimated the Pc = 

Enting: Simulated firn closure 

0.39 ± 0.01 using series expansions based on combin­
atorial factors that involved less than 20 sites, but which 
were not subject to edge effects. In contrast, the Monte 
Carlo calculation by Stauffer and others (1985) es~i.nated 
Pc = 0.42 on the basis of simulations involving over 4000 
sites. The results are presented below, involving up to 
165888 sites, show that the apparent Pc decreases with 
sample size and appears to be converging towards a value 
in the range estimated from the series calculations. 

Since the main object of the present paper is an 
analysis of the size-dependence of the sampling statistics of 
bubble trapping, it is necessary to distinguish this from 
the finite-size effects noted above. Finite-size effects 
inevitably occur in Monte Carlo simulations because 
only a finite number of sites can be simulated. Within 
such finite simulations, we consider the question of how 
the bubble-trapping statistics are affected by taking 
specific sized samples for gas analysis. In order to study 
this second type of finite-size effect, the statistics are taken 
from a sub-region of the sites simulated. 

3. THE BUBBLE-TRAPPING DISTRIBUTION 

In the analysis of bubble trapping, there are a number of 
alternatives for the independent variable. The percolation 
models work in terms of the probability of bond closure 
(u) while levels within an ice core can be described in 
terms of density (p), depth (d) or age (z). In ideal 
situations, the four variables u, p, d and z are all 
monotone increasing functions of each other. Results 
reviewed by Schwander and Stauffer (1984) suggest that 
the critical probability U c, beyond which trapping is 
complete, corresponds to Pc = 0.82 Mg m -3 under a range 
of different deposition rates. There is, however, a 
dependence of closure density on the temperature of 
deposition (personal communication from D. Raynaud). 
Further studies of aspects of firn closure have been given 
by Stauffer (1982), Loosli (1983), Stauffer and others 
(1985), Schwander and others (1988) and Schwander 
(1988) . 

The relation between depth density and the age of the 
ice depends on the local snow-accumulation rate which 
varies by several orders of magnitude between different 
sites. The relationship between depth and age can be 
established in a variety of ways. In regions of high 
accumulation, seasonal variations in quantities such as 
electrical conductivity or oxygen-isotope ratios can be 
used to count the number of years since deposition. In 
regions of slower accumulation, ages must be inferred 
indirectly by using glaciological models. 

EM (i.e. Enting and Mansbridge, 1985) described the 
basic concepts involved in interpreting the mean 
concentrations of gases recovered from ice-core samples. 
They defined R(z, Zt) as the amount of gas that was 
trapped Zt years ago in ice that was deposited z years ago. 
Clearly, this is zero for Zt > z, i.e. the gas cannot be 
trapped until the ice is present. The existence of a sharp 
transition between firn and ice implies that there is also a 
lower bound on Zt. The gas must be trapped within a time 
of Zc of the snowfall. Thus, for non-zero R, we require 

Z - Zc < Zt < z. (1) 
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If we assume a uniform deposition process, then we set 

(2) 

The sharpness of this trapping distribu tion determines the 
extent to which gas bubbles from different times are 
trapped in a single layer. The cumulative trapping 
distribution was defined by EM as 

S(z) = 1z 

R(z')dz'. (3) 

They used this to define the normalization by requiring 

(4) 

EM showed that, if ambient gas concentrations c(z) were 
changing linearly, then the average concentration, q(z), 
occurring in bubbles in an ice layer of age z corresponded 
to ambient concentrations at a younger age, Zeff, so that 

q(z) = C(Zeff), so long as Z > Zc (5) 

with Zeff defined in terms of the mean delay or mean 
trapping time z by: 

re t e 

z = Z - Zeff = la z'R(i)di = Zc - la S(i)dz'. (6) 

In its simplest form, neglecting finite-size effects, the 
percolation model of bubble trapping equates 1 - S(z) 
with the percolation probability, P . For an. infinite 
lattice, percolation theory defines P as the probability 
that a given site is part of an infinite cluster of sites 
connected by open channels. For finite samples, the 
corresponding quantity will exhibit statistical fluctuations 
as shown in the simulations presented below. In view of 
the analysis of gas ages summarized above, the most 
important question concerning critical fluctuations is the 
size of the critical fluctuations in the mean trapping time 
z. It should be noted that since, by definition, 

S(Z) = 1 for Z ~ Zc (7) 

we have 

r" z = Zx - la S(i)dz' for Zx > Zc (8) 

independently of Zx. 
When dealing with finite samples, the point of 

complete trapping will show fluctuations about the 
infinite size limit Zc . For this reason, Zx must be chosen 
to be greater than the actual point of complete trapping 
for any sample under consideration. 

The analysis summarized above describes concen­
trations, q(z), for layers in which the air is completely 
trapped. For concentrations, q(z), obtained in ice layers 
that are not completely closed off from the atmosphere, 
the expressions above must be modified. What is required 
(see EM) is to rescale S(z) so that it describes incomplete 
trapping. The age, z, of the ice layer replaces Zc in 
Equation (6) to give 

Z = z - S(Z)-l 1z 

S(z')dz' for Z < Zc. (9) 

This aspect of the model will not be considered III the 
present study. 
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4. THE LATTICE MODEL 

The application of the percolation model to firn closure is 
based on the following propositions: 

i. The snow grains of the firn form a random network 
of spaces and channels containing air. 

ii. As the firn is compressed, the narrowest gaps are 
closed, leaving bubbles of air in the larger spaces. A 
more detailed analysis of the changes occurring during 
firnification has been given by Stauffer (1982). 

iii. The closure of channels will be effectively a random 
process reflecting the random structure of the firn. 

iv. The percolation model is the appropriate tool for 
analysing the statistics of random closures. The 
vanous properties described in section 2 above will 
apply. 

v. Percolation modelling predicts a sharp transitIOn 
between the state where the firn is permeable and the 
impermeable ice. This transition reflects the long­
range statistics of connectivity and will occur before all 
channels are closed. 

vi. The universality property of percolation models 
predicts that the main features of the bubble trapping 
at the firn-to-ice transition will not depend on the 
details of the model. The only effect of changes in such 
details will be a smooth rescaling of model parameters. 
Among such "irrelevant" details are: (a ) the use of a 
regular lattice rather than a random network, (b ) 
local correlations in channel closure, (c) assigning all 
of the trapped volume to the larger spaces that 
become bubbles and ignoring the air in the channels. 

vii. While universality enables us to relate critical 
behaviour on different lattices, the comparisons will be 
most direct if the choice oflattice reflects the statistics 
of connectivity in the firn . On the basis of measure­
ments of firn structure (see Stauffer, 1982), Stauffer 
and others (1985) suggested that an appropriate 
lattice model for bubble trapping could be obtained 
by taking the ice grains as being on a body-centred­
cubic (b.c.c. ) lattice. 

viii. The statistics will exhibit large fluctuations near 
the firn-to-ice transition. 

ix. If the trapping times are sufficiently long compared 
to the times of mixing through the firn, then the age 
distribution of the trapped gas will correspond to the 
age distribution of the time of trapping. 

x. The percolation model considers the percolation 
probability, P. This is the probability that a given site 
will be part of an infinite cluster of connected sites 
rather than part of a finite cluster. The bubble­
trapping model regards sites in finite clusters as being 
cut off from the surface and so the proportion of 
trapped bubbles is 1 - P. 
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xi. The function 1 - P(u) gives the mean proportion 
of trapped bubbles in an infinite system. Enting (1986) 
applied series-expansion techniques in estimating this 
function. The present paper considers the extent to 
which the proportion of trapped bubbles in finite 
samples will show a sample-to-sample variability 
about the mean. 

xii. The most appropriate way to study the statistics of 
bubble trapping is through Monte Carlo simulation of 
a limited region of firn. 

Following the earlier work by Stauffer and others 
(1985) and Enting (1986), we model the firn by locating 
snow grains on a b.c.c. lattice with the interstitial sites 
representing the locations of air bubbles. The sites each 
are joined to their four nearest neighbours by bonds that 
are connected (with probability p) or broken (with 
probability u = 1 - p). We describe the lattice in terms 
of cubic cells containing 12 sites and 24 bonds as shown in 
Figure I, and consider arrays ofm X m x n of these cubic 
cells. We consider the statistics of connection to the upper 
boundary (layer I) as an approximate representation of 
long-range connection to the surface. We apply periodic 
boundary conditions in the horizontal (m x m ) layers, 
i.e . each horizontal cross-section is taken as being 
surrounded by identical copies of itself. The simulation 
procedure assigned each bond (connecting sites i and j) a 
randomly chosen "cut-off time", Ujj, which corresponded 
to the "time" at which bond (i, j) closed. The Ujj are 
described as "times" in order to give a more intuitive 
description but are more correctly regarded as the 
probabilities of site trapping and bond closure and 

"-
"- .... 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 1. The basic simple cubic cell and the 12 sites and 24 
bonds defining the lattice of b.c.c. interstitial sites. Each 
site lies on one of the square faces defined by two of the axes 
and two of the dashed lines. Dashed sites are regarded as 
rying in cells neighbouring the one shown. 

Enting: Simulated firn closure 

therefore the Ujj were selected uniformly from the range 
[0,1 ]. 

The model statistics of bubble trapping were obtained 
from the site-closure values Uj, the "time" beyond which 
site i was no longer connected to the surface, i.e. the 
"time" at which the last path of open bonds connecting 
site i to the surface was closed at some point. These Ui 

were calculated from the Uij using the algorithm 
described in the Appendix. The bubble-trapping statis­
tics were computed using a sub-set, A, of sites so as to 
reduce the influence of the finite size of the simulation. 
Specifically, the bubble-trapping distribution was 

(lOa) 

where 

X(U) = {Uj : i E A and U j ~ u} . (lOb) 

Consequently X(u) is the number of sites cut off from 
the upper boundary (i.e . trapped) at "time" U and S(u) is 
the proportion of trapped sites at "time" u. 

The lattice model involves several key approximat­
lOns: 

(i) It regards all the trapped gas as being in the sites 
rather than being partly in the bonds. 

(ii) It assumes independent closure probabilities for 
each bond. 

(iii ) It assumes a uniform lattice rather than a random 
structure. 

(iv) It applies only to uniform deposition conditions. 

The most important of these approximations is the 
assumption of uniform snow-deposition conditions. This is 
because, as noted in section 2 (point v), co-operative 
phase transitions such as the percolation transition, are 
characterized by divergent susceptibilities to external 
perturbations as well as divergences in the intrinsic 
fluctuations. The analysis of externally forced variations is 
largely outside the scope of this paper, except to note that 
changing conditions will mainly act to change Zc by 
changing the relation between z and u. Since the infinite 
size limit of S(z) has an infinite gradient at Zc, point-wise 
values of the trapping distribution near Zc can have finite 
responses to arbitrarily small perturbations. However, a 
change, Ll(zc) , in the critical point will induce only a 
change of the same order in the integral (8) defining the 
mean delay z. 

The first three model approximations listed above will 
limit the quantitative accuracy but not the qualitative 
results of the present study. Universality arguments 
indicate that the critical exponents, such as 11 (which 
describes correlation lengths and finite-size effects) and f3 
(which describes P(u)) will not be affected by such local 
details of the model. The amplitudes involved in the 
various critical phenomena will depend on the structure 
of the lattice. However, most of this dependence will 
involve gross features such as the mean number of 
neighbours for which the present model seeks to match 
observational data as closely as possible. 
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Fig. 2. Realizations of S( u), the proportion of trapped 
bubbles,jor finite samples of bubbles, plotted as functions 
of bond-closure probability, u. The smooth curve in each 
case is the infinite lattice estimate obtained from series 
expansions. Three or four realizations are shown in each 
case; the small roman numerals are a guide to 
distinguishing the lines. Some cases are on(y shown in 
part because of a high degree of overlap with other cases. 
( a) Case 1: sample of 324 sites from lattice of 4752 sites; 
(b) Case 3: sample of 20 736 from 290304 sites; (c) 
Case 5: sample of 324 sites from 36228 sites. 
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For the purposes of the simulation, the Ui and Uij were 
discretized at intervals of 0.0001 and represented by 16 
bit integers. The plots of S(u) are based on values 
tabulated as intervals of 0.00 l. In relating our simulations 
to actual ice cores, we have used estimates of 260 bubbles 
per cubic centimetre based on analysis of photographs of 
sections from the "ice" region of the BHD core analysed 
by Pearman and others (1986). We have analysed our 
results as though the closure probability U was directly 
proportional to z. This is interpreting the intuitive 
description, given above, of the Ui and Uij as times as 
literally true but it is a fairly crude approximation. The 
series-based estimate of the percolation probability P on 
the lattice of b.c.c. interstitial sites was obtained by 
Enting (1986, 1987). The estimate 1 - P is plotted as the 
solid curve in Figure 2 and suggests that the cha,nge from 
10% closed off to 90% closed off occurs over a period of 
.1u = 0.142 ~ 0.23uc while for the BHD core the change 
from 10% to 90% closure occurs over about .1z ~ 14 
years ~ 0.2zc. 

In order to relate the simulations more closely to 
actual ice samples, the points of 10% and 90% closure 
give a better basis for matching the scales of age z and 
closure probability, u. Thus, ranges expressed in terms of 
U should be converted to time ranges by multiplying by 
.1z/.1u with .1z determined for the particular core. 

We have performed a sequence of simulations for 
various sizes oflattice and the sample sub-set A. As noted 
in section 2, there are two different types of finite-size 
effect involved. The first of these, which has been most 
extensively studied by other workers, is the effect of using 
a finite size of lattice for the simulations. For the present 
study, this effect represents a source of error that must be 
taken into account when analysing the simulations. The 
second finite-size effect, in which we are primarily 
interested, is the degree of statistical variability that 
arises from using finite samples of bubbles. This is a 
question of sampling statistics, a topic that has not often 
been considered in lattice statistics. In order to estimate 
the importance of the two finite-size effects separately, we 

Table 1. Details of sizes of lattices and samples used in the 
simulations. The lattices always had a square cross-section 
with periodic boundary conditions in the horizontal plane. 
The samples used to determine the statistics were always 
cubes. All dimensions are given in terms of the cubic cell 
containing 12 sites, except that the sample size is given as 
the number of sites 

Case Lattice Lattice Sample Sample Sample Sample 
depth width width top bottom sIze 

1 13 6 3 7 9 324 
2 23 12 6 11 16 2592 
3 44 24 12 20 31 20736 
4 86 48 24 38 61 165888 
5 23 6 3 12 14 324 
6 44 24 3 25 27 324 
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have varied the lattice size and the sample size 
independently, considering the various cases listed in 
Table 1. 

The samples have their linear dimensions increasing 
by a factor of 2, and involve 324, 2592, 20736 and 
165888 sites. For comparison, we estimate that the 1 kg 
samples analysed in our laboratory contained about 
290000 bubbles (on the basis of260 bubbles cm-3 and a 
density of 0.9Mgm-3

). Stauffer and others (1985) 
estimated that the 35 cm3 samples used in their work 
and that of Schwander and Stauffer (1984) contained 
about 30000 bonds (i.e. 15000 sites on the ultramarine 
lattice). Earlier studies by the Bern group used samples as 
small as 1 g which would correspond to about 400-500 
bubbles. 

5. RESULTS 

The three parts of Figure 2 each show four realizations of 
S(z) for cases 1, 3 and 5 of Table 1. Also shown, as the 
smooth line on each figure, is the estimate of S(z) derived 
from the series expansions given by Enting (1986). The 
estimate is expressed as 1- [Vs(u)/W7(u)]0.454 where 
Vs(u) and W7 (u) are polynomals of degree 8 and 7, 
respectively. Specificallr' VS(u)/W7(u) is the Pade 
approximant to p(u)l/O.4 4 obtained from the series for 
P(u) given by Enting (1986). 

Figure 2a and b (cases 1 and 3) illustrate a systematic 
tendency (confirmed by the results of cases 2 and 4) for 
the smaller samples to produce small values for the cut-off 
probability so that, as the sample-size increases, the cut­
ofT tends towards the series estimate. This size dependence 
is primarily due to the finite size of the lattice used. 
Comparing Figure 2a and c shows that the cut-off 
probabilities for the smallest samples tend to increase as 
the size of the surrounding lattice increases. The degree of 
variability between the realizations remains essentially 
unchanged. This size dependence of the average cut-off 

c 1.0 
o 
:; 
.0 .;: 
U; 
"C 
Cl) 

.~ 
m 0.5 
::J 
E 
::J 
U 

0.52 0.53 
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seems to explain much of the discrepancy between the 
values of uc , estimated from series techniques as 
0.61 ± 0.01 (Enting, 1986), and from Monte Carlo 
simulations of up to 8748 bonds, as 0.58 (Stauffer and 
others, 1985). 

The various parts of Figure 2 show the variability 
(and size dependence of this variability) in the cumulative 
trapping distribution as a whole. As noted above, in 
studies of gas trapping, we are primarily concerned with 
the mean trapping time, Z, defined by Equation (6), and 
wish to determine how much sample-to-sample variation 
can occur in this quantity. It is to be expected that the 
mean trapping time will be less variable than the various 
aspects of S(z) because it can be defined as an integral 
over S(z). 

However, it must be emphasized that for any single 
sample, the deviations between S(z) and its ensemble 
mean are not independent for various z values. In 
particular, the deviations must be such that S(z) -+ 1 
for sufficiently large z. Indeed, the need to construct 
quantities based on the closure history of single samples 
was an important reason for using Monte Carlo 
simulation in this study. Alternative approaches such as 
using statistics of cluster size to determine finite-size effects 
would produce ensemble averages at each u value rather 
than statistics describing the closure histories of individual 
samples. 

Figure 3 shows the cumulative distributions of the 
mean trapping times based on 20 realizations for the three 
smallest cases. It will be seen that, except for the smallest 
(324 site) examples, the distribution of trapping times is 
small compared to the mean time over which closure 
takes place. These results indicate that the mean closure 
probability is relatively insensitive to the critical fluc­
tuations that affect finite-size samples. 

Finally, we consider the scaling properties of the 
distribution of trapping times shown in Figure 3. For 20 
L X L x L samples, we order the 20 mean trapping times 
Zj and, as a robust measure of the spread, consider the 

0.54 0.55 0.56 
Mean trapping probability 

Fig. 3. Cumulative distributions of mean trapping times obtained from 20 reali<.ations each of cases 1, 2 and 3. Solid 
curve, case 1; dashed curve, case 2; dotted curve, case 3. 
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Fig. 4. Interquartile range of the mean trapping time 
plotted against sample length L. The results were from the 
sets of 20 cases used to produce Figure 3. The scaling line 
aL-1

/
v with v = 0.9 is shown dashed. 

-

interquartile range T = (Z16 + Z15 - Z6 - z5)/2 . These are 
shown on a logarithmic plot against L in Figure 4. Finite­
size scaling would suggest T '" L -1/11 with IJ ~ 0.9 in three 
dimensions. The scaling line is shown on Figure 4 and is 
consistent with the data, although our samples are too 
small to give a precise estimate of v. What is clear is that T 

is decreasing far more slowly than the L -D/ 2 (with 
D = 3) that would occur for independently trapped 
bubbles. This emphasizes the co-operative nature of the 
bubble-trapping process. 

6. EXTENSIONS 

The analysis above has described the effect of finite 
sample size on the statistics of bubble-trapping time. 
Transferring these results to the statistics of gas age is only 
valid when the trapping time is long compared to the 
mixing time through the firn. For cores from areas of even 
moderately high snow accumulation this condition will 
cease to be valid. 

Schwander (1988) has performed some modelling 
studies of the cases where the effective gas age is 
influenced by the slowness of gas mixing through the 
firn. The firn properties were determined by laboratory 
measurements. The percolation model can shed further 
light on this problem of diffusive mixing through the firn 
near close-off. 

The relevant problem in percolation theory has been 
studied in terms of the problem of conductivity of random 
resistor networks . The conductivity is the analogue of the 
diffusivity in a network of channels. The conductivity 
problem in percolation theory is a matter of some 
difficulty. There is apparently no series-expansion 
formalism for calculating the conductivity, although 
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related statistical moments can be calculated and the 
critical behaviour of the conductivity can be inferred from 
these. It is also possible to determine the conductivity 
from Monte Carlo experiments, either by the tedious 
"brute-force" method of solving Kirchoffs equations on a 
set of random networks, or more elegantly through a 
"self-averaging" tl ansfer-matrix method described by 
Derrida and others (1984). The result is that, as 
expected, the conductivity goes to zero at the critical 
point. Most importantly for the ice-core application, the 
critical exponent is greater than 1 so that the gradient of 
the conductivity curve is zero at the critical point, in 
contrast to S(z) where the gradient is infinite. This means 
that the conductivity in a resistor network (and diffusivity 
in a network of channels) may be small throughout a 
significant fraction of the critical region and possibly 
beyond. 

These properties of the conductivity/diffusivity prob­
lem have important implications for gas dating, depend­
ing on the relative time-scales of diffusion and bubble 
closure. If the bubble trapping is slow relative to diffusive 
mixing, then only the trapping distribution need be 
considered. For somewhat faster trapping, the effect of 
restrictions on the diffusive mixing will be to produce an 
age distribution that is more rounded than the trapping 
distribution. This will reduce the extent to which changes 
in atmospheric composition can be resolved from the ice­
core record. 

The most significant effects of restrictions on diffusion 
occur when differences between summer and winter 
accumulation lead to "winter" layers sealing off the 
"summer" layers below them even though the "summer" 
layers may be still permeable and have only a small 
fraction of bubbles trapped by local closure. In such a 
case, it would be expected that the statistical variability of 
trapping in "summer" layers is largely due to variations 
in the overlying winter layer and so much of the 
variability will involve year-to-year differences rather 
than within-year differences. The sample size becomes a 
relatively unimportant issue. In contrast, within the 
"winter" layers where the effective closure is due to 
changes within that layer, local statistical fluctuations are 
likely to play a much more important role. 

7. CONCLUSIONS 

The simulations described in this paper were carried out 
in order to assess the influence of critical fluctuations in 
the firn-closure process on the dating of gas samples 
trapped in polar ice. Since it has been possible to perform 
simulations of systems whose size is comparable to those of 
actual interest, it has not been necessary to use finite-size 
scaling to extrapolate the results of the simulation. 

The main result of these studies is that the mean 
trapping time Z is relatively independent of sample size 
over the range of interest. Furthermore, over this range, 
the sample-to-sample variation in the z is largely confined 
to a range that is small compared to the time over which 
most of the closure (firnification) takes place, except for 
small samples of order 1 g. However, the simulations also 
suggest that for gases with rapid changes in atmospheric 
concentrations (and for which the mean trapping time is 
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not applicable) critical fluctuations may significantly 
affect the trapped gas concentrations. 

The simulations suggest that the one important way in 
which critical fluctuations will affect gas dating is through 
the process of relating closure properties to actual ages. 
The conventional specification of this relation is to 
determine times at which 10% and 90% of the trapping 
has occurred. The simulation results shown in Figure 2 
indicate that there can be a great deal of sample-to­
sample variation in these two times, arising purely from 
the inherent statistical variability of the trapping process. 
The variation in the 90% trapping point is larger than 
the interquartile range for the respective sample sizes. 
Near the u values corresponding to 10% trapping, there is 
much less variability in the trapped volume but the 
flatness of the trapping distribution makes the position of 
the 10% point rather uncertain. This "calibration" 
problem will be exacerbated by the fact, noted above, 
that the critical region is one in which the system will be 
highly susceptible to the influence of external pertur­
bations. As discussed above in connection with the effect 
of external perturbations, an uncertainty in the timing of 
the trapping due to the "calibration" will lead to 
pointwise values of S(z) being subject to large uncertain­
ties. It turns out that z does not reflect this sensitivity; the 
uncertainty remains comparable to the uncertainty in the 
timing of the trapping. 
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APPENDIX 

DETAILS OF THE SIMULATION 

In view of the potential for applying the model to 
simulations of other statistical aspects of firn closure, this 
Appendix gives additional details of the simulation 
procedure. 

As noted in the body of the paper, we model the firn 
using the b.c.c. (body-centred cubic) lattice to represent 
the snow grains with the interstitial sites representing the 
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locations of air bubbles. We describe the lattice in terms of 
cubic cells containing 12 sites and 24 bonds as shown in 
Figure I. In order to avoid duplication in the scanning 
process, the bonds are associated with the sites of even 
indices, as indicated by the arrows in Figure 1. We 
consider arrays of m x m x n of these cubic cells. We 
apply periodic boundary conditions in the horizontal 
(m x m) layers and consider the statistics of connection to 
the upper boundary (layer I) . The simulation procedure 
assigned to each bond (connecting sites i and j) a cut-off 
level Uij which corresponded to the value of the 
probability level U at which the bond (i,j) was regarded 
as closed. 

The model statistics of bubble trapping were obtained 
from the site-closure values Uj that represented the value 
ofu above which the site i was no longer connected to the 
surface. Thus 

Uj = max [ min (Ujk)] (A.I) 
all paths ai bonds (j,k)Eai 

where each path etj is a chain of connected bonds from 
site i to the upper boundary. The topmost (layer I) and 
bottommost (layer n) layers were dummy layers which 
were not analysed specifically but which provided 
boundaries so that each of the n - 2 active layers was 
surrounded by two layers. The Uj were initialized to I in 
layer I and to zero in all other layers. The Uij were set to I 
in layer I, 0 in layer n and pseudo-random numbers 
(selected uniformly from the range [0,1] in the n - 2 
active layers to represent the random times of bond 
closure. The Uj were calculated iteratively by repeatedly 
applying the transformations 

(A.2a) 

(A.2b) 

for all the bonds (i, j) until no further changes occurred. 
The scanning procedure worked through the sites of even 

index (see Fig. I) in each cell in the n - 2 active layers 
and considered each of the four bonds in turn, updating 
sites at either end of the bond as appropriate. This 
procedure will update a small number of sites (of types I 
and 3) in layer n and will neglect a small number of sites 
in layer 2. (In other words, the effective upper and lower 
boundaries are not exactly planar.) 

In practice, as the iteration evolved, almost half of the 
bonds could be removed from further consideration 
because they could not be part of any current or future 
maximal path. The criterion for this removal was 

and (A.3a) 

The further removal of bonds for which 

and (A.3b) 

was posssible because, although bonds satisfying (A.3b) 
but not (A.3a) were part of some maximal path, once 
(A.3b) was satisfied the states of the sites reflected this 
fact. Applying the transformations (A.2a and b) will not 
change either Uj or Uj once (A.3b) holds, even if either Uj 

or Uj subsequently changes. The bubble-trapping 
statistics were computed using a sub-set, A, of sites. 

As noted in the body of the paper, the bubble­
trapping distribution was 

(A.4a) 

where 

X(U) = {Uj : i E A and Uj ~ u}. (A.4b) 

This model can form the basis for refined calculations 
such as those which include the role of gas in the channels 
and the effects of density on the mean bubble size. 
However, it cannot be readily adapted for the more 
significant question of analysing the restriction on 
transport through the firn as the transition is ap­
proached. For this problem, the algorithm of Derrida 
and others (1984) would seem to be more suitable. 
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