
29

Renormalons

29.1 Introduction

The renormalon problem is related to the well-known fact [372,375] (for more complete
reviews, see for example [162,154]) that the QCD series is unfortunately divergent (no
finite radius of convergence) like n!, which is the number of diagrams of nth order. Indeed,
a given observable can be expressed as a power series of the coupling g as:

F(g) =
∑

n

fngn , (29.1)

where the series are divergent:

fn(n → ∞) ∼ K ann!nb , (29.2)

and where the nth order grows like n!, such that it is not practicable to have a quantitative
meaning of Eq. (29.1). For the approximation to be meaningful, the approximation should
asymptotically approach the exact result in the complex g-plane, such that:

∣∣∣∣∣F(g)exact −
N∑

n=0

fngn

∣∣∣∣∣ < KN+1gN+1 , (29.3)

where the truncation error at order N should be bounded to the order gN+1. If fn behaves
like in Eq. (29.2), KN usually behaves as aN N !N b. The truncation error behaves similarly
as the terms of the series. It first decreases until:

N0 ∼ 1

|a|g , (29.4)

beyond which the approximation to F does not improve through the inclusion of higher-
order terms. For N0 � 1, the approximation is good up to terms of the order:

KN0 gN0 ∼ e−1/|a|g . (29.5)

Provided fn ∼ Kn , the best approximation is reached when the series is truncated at its
minimal term and the truncation error is given by the minimal term of the series.
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316 VII Power corrections in QCD

One can use the well-known technique (Borel transform) for improving the convergence
of a power series whose nth order grows like n!, by considering the related series:

B(z) ≡
∑

n

fn
zn

n!
. (29.6)

If fn grows not faster than n!, then B(z) will at least have a finite radius of convergence.
Using the usual formula: ∫ ∞

0
exp(−z/g)zndz = n!gn+1 , (29.7)

one can see that:

F̃ ≡ gF(g) =
∫ ∞

0
exp(−z/g)B(z)dz . (29.8)

The relation in Eq. (29.8) is true order by order in perturbation theory, but there are
arguments that it cannot be true for the full Greens functions. From Eq. (29.8), in order
to calculate F(g), one needs B(z) only for real positive values of z less than or of the
order g, which can be obtained from the series in Eq. (29.1) if the singularities of B(z) in
the complex plane are all at distances from the origin much greater than g. Even if a few
poles z1, z2, . . . have moduli of order g, one can calculate B(z) by using power series for
(z − z1)(z − z2) . . . B(z), where we should know the position of the poles. Singularities of
B(z) on the positive real axis are much worse, as they invalidate Eq. (29.8). One can distort
the contour integral to avoid singularities on the positive real axis, but the ambiguities
come from the question of distortion of the contour below or above the singularity? In
the following, we will show that some of the singularities of the Borel transform B(z) are
associated with terms in the OPE (renormalons) and the others with solutions of the classical
field equations (instantons).

In order to illustrate this discussion, let us assume that:

F(g)exact = K an�(n + 1 + b) (29.9)

For positive b, its Borel transform is:

B[F](z) = K
�(1 + b)

(1 − az)1+b
, (29.10)

while for negative integer b = −l, one can write:

B[F](z) = (−1)l

�(l)
(1 − az)l−1 ln(1 − az) + polynomial in z. (29.11)

In the case of QCD and QED, where one expects a > 0 (non-alternating series), one has
singularities in the positive z axis, such that the Borel integral does not exist. However, it
may still be defined by taking the contour above or below the singularities, where it acquires
an imaginary part:

Im F̃(g) = ∓π
K

a
e−1/(ag)(ag)b , (29.12)

https://doi.org/10.1017/9781009290296.040 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.040


29 Renormalons 317

+ . . . + . . . ... ... ...

Fig. 29.1. Renormalon chains contributions to the QCD Adler D-function.

where the sign depends on whether the integration is taken in the upper or lower complex
plane. The difference in the two definitions is the so-called ambiguity of the Borel integral.
As it behaves as an exponential in the coupling, it is of non-perturbative origin and induces
power corrections.

In the following, we shall discuss for definiteness, the Adler D-function in QCD:

D(Q2 = −q2) ≡ −4π2 Q2 d�(Q2)

d Q2
, (29.13)

built from the electromagnetic current Jµ(x) = ψ̄γµψ and which governs the e+e− →
hadrons total cross-section. For the D-function, the unnecessary ν-dependence appearing
in the two-point correlator �(q2) from the leading-log term is not there, i.e., D is RGI.
Therefore, its perturbative expansion reads:

D
(

as ≡ αs

π

)
=

∑
n

Knan
s , (29.14)

where as(Q2) is the running coupling and Kn are pure numbers which are, however,
RS-dependent.

Renormalon effects are associated to the insertion of n bubbles of quark loops into gluon
lines (gluon chains) exchanged between the two quark lines in the D-function built from
the quark current as shown in Fig. 29.1.

It is well-known that they induce a n! growth into the perturbative series. This difficulty
can be (in principle) cured by working with the Borel transform D̃ of the correlator D(s):

D(as) − D(0) =
∫ ∞

0
db D̃(b) exp(−b/as) , (29.15)

which possesses an explicit 1/n! suppression factor. However, life is not so simple because
of the features described in the following.

29.2 Convergence of the Borel integral

The b-integral does not converge for b → ∞. This can be seen from the fact that, in the
chiral limit, hadrons have a non-zero mass in QCD, such that D̃ should have singularities at
Q = M0, where M0 is the mass of any hadrons having the quantum number of the photon
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318 VII Power corrections in QCD

Fig. 29.2. Singularities in the Borel plane of the QCD Adler D-function.

(or gluons). As for large Q, D̃ is only function of:

as(Q2) = 1

(−β1/2)[ log Q2/	2 + (2n + 1)iπ ]
, (29.16)

one can see that it has an infinite number of singularities in αs , where αs = 0, corresponding
to M0 = ∞, is an accumulation point of these singularities. However, the singularities at
αs = αs(M0) can arise through the behaviour:

lim
b→∞

D̃ ∼ exp −bβ1[ log Q2/	2 + (2n + 1)iπ ] , (29.17)

which indicates that the b-integral does not converge for b → ∞. However, a large b-region
corresponds to large Q2 where D̃ decreases rapidly like αs , such that the αs-singularities are
very weak and justify the uses of the Borel integral for studying, without any ambiguities,
the asymptotic behaviour of QCD at large Q2. In general, D̃ develops singularities at
b = kb0 ≡ 2πk/(−β1) in the real b-axis, where the integral is also ambiguous.

29.3 The Borel plane in QCD

There are three known types of singularities in the Borel plane of QCD as shown in Fig. 29.2.

� UV renormalons occur in the negative real axis (β1 is negative in our notation.), and are harm-
less since the integration contour in Eq. (29.15) is along the positive b-axis. At the nth order of
perturbation theory, integrand of the form:

d4 p

p6
lnn p2 , (29.18)

gives a n! factor and reflects the fact that such integrals are less convergent for large n.
� IR renormalons are singularities in the positive b-axis, which are due to the IR region of the Feynman

integrals.
� Instanton–anti-instanton singularities occur because far separated instanton–anti-instanton pairs

which can exist cannot be properly treated in a perturbative expansion around αs = 0.

29.4 IR renormalons

The IR renormalons correspond to the singularities at k = +2, + 3, . . . , and are generated
by the low-energy behaviour of these higher-order diagrams, where fermion bubbles are
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29 Renormalons 319

inserted into the internal gluon line exchanged between the two fermion lines. In order
to illustrate this feature, let us consider the one-gluon exchange diagram with a gluon of
momentum p, where we shall focus on the low-p region R.1 Then:

D (as(Q)) ∼
∫

R

d4 p

p2
as(p2)F(p) . (29.19)

where F(P2 ≡ −p2) behaves as P2. Using:

as(p) � as(Q)

1 − β1as(Q) log (P2/Q2)
, (29.20)

and:

D̃(b) = 1

2iπ

∫ as+i∞

as−i∞
d(1/as)eb/asD(as) , (29.21)

one obtains:

D̃(b) ∼
∫

R
P2d P2

(
P2

Q2

)−b/b0

, (29.22)

which gives the singularity near b = −4π/β1:

D̃(b) ∼
(

1 + bβ1

4π

)−1

, (29.23)

or to two loops, i.e., for two gluons-exchange:

D̃(b) ∼
(

1 + bβ1

4π

)−1+2β2/β
2
1

, (29.24)

for b > 2b0 ≡ −4π/β1. This indicates that the pole at b = 2b0 gives rise to an IR ambiguity,
if one tries to reconstruct D(as) from D̃(b) taken from perturbation theory. Converting
the as-dependence into a Q-one, one can expect that the non-perturbative corrections to
perturbation theory are of the size 1/Q4. More generally, diagrams with one chain of gluons
contribute as:

D(as) ∼
∑

n

n

(
αs

kb0

)n

=⇒ B (D) ≡ D̃(b) ∼ − kb0

b − kb0
, (29.25)

for b > kb0, which indicates that the pole at b = kb0 gives rise to an IR ambiguity:

δD(as) ∼ exp

(
−kb0

αs

)
∼

(
	2

−q2

)k

, (29.26)

if one tries to reconstruct D(as) from D̃(b) taken from perturbation theory. However, dif-
ferent prescriptions for defining D in perturbation theory for b > kb0 can be compensated
by the changes in the value of the non-perturbative condensates introduced via the SVZ

1 IR renormalons have been studied in the O(N ) non-linear σ model [374] and in QCD [376,377]. Here, we shall limit ourselves
to the QCD case.
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320 VII Power corrections in QCD

expansion, which one must add to perturbation theory in order to obtain a reliable result
[162,342].

The absence of a k = 1 singularity is related to the absence of any gauge invariant
operator of dimension 2. The absence of this singularity has been proved [331] from an
explicit calculation in the limit of large n f -number of flavours, where it has been shown
that the relation:

B (Im�) (b) ∼ sin (πb/b0)

(πb/b0)
D̃(b) , (29.27)

implies thatB (Im�) has only a zero at k = 1 but not the other alternative where D̃ has a pole
at this point, which follows from the simple factorization of the Q2 dependence in the Borel
transform of the D-function in the large β-limit. Then, one can conclude that no 1/Q2-
ambiguity can be generated by the IR renormalons and they are intimately connected to the
gauge invariant condensates in the SVZ-expansion. Restricting to the lowest IR renormalon
pole, one can derive the perturbative contribution to the gluon condensate [378]:

〈0|αs G2|0〉ren

24π Q4
=

∑
n large

3

2π

(
αs(Q2)

π

)n+1 (−β1

4

)n

. (29.28)

One should notice that renormalons are target-blind:

〈p|αs G2|p〉ren = 〈0|αs G2|0〉ren . (29.29)

They cannot also produce a non-vanishing quark condensate 〈q̄q〉 as they respect the
symmetries of the QCD Lagrangian, and cannot bring some insights on confinement due to
their ‘perturbative’ origin.

However, at the one-loop level, renormalons are not the only way to probe the IR regions
perturbatively. Another possibility is the introduction of the gluon mass λ [478] as a fit
parameter, while an IR perturbative contribution to the gluon condensate has been obtained
in [479]:

〈0|αs G2|0〉pert = 3αs

π2
λ4 ln λ2 . (29.30)

A similar result has been obtained in a QCD-like model [369,374], which is an alter-
native to the renormalon contribution for massless gluon. Phenomenology using gluon
mass has been developed [366], while in [162], a one-to-one correspondence between the
two approaches has been proposed. Keeping only IR-sensitive contributions, a one-loop
calculation with a gluon mass λ can be translated as:

C0αs ln λ2 + C1αs

√
λ2

Q
+ C2αs

λ2 ln λ2

Q2
+ · · · →

C ′
0αs ln 	2 + C ′

1αs
	

Q
+ C ′

2αs
	2

Q2
+ · · · . (29.31)

where Ci , C ′
i are coefficients.

https://doi.org/10.1017/9781009290296.040 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.040


29 Renormalons 321

29.5 UV renormalons

The UV renormalon singularities correspond to k = −1, −2, . . . , and are generated by the
high-energy behaviour of the virtual momenta. They lead to a Borel-summable series thanks
to the asymptotic freedom property of the theory. After a Borel sum, they cannot limit the
applicability of perturbation theory [377,379], although they can induce an uncertainty in
the truncated perturbative series when the Borel sum is not done. Their contributions are
dominated by the leading singularity at k = −1:

Kn ∼ n!

(−b0)n , (29.32)

which gives rise to an asymptotic series:

|K1a| > |K2a2| · · · > KN−1aN−1 ∼ |KN aN | < |KN+1aN+1| < · · · , (29.33)

where the successive terms decrease like N ∼ b0/a, at which the minimum value is attained,
while the series explodes afterwards. The alternating sign of Kn guarantees that the series is
Borel summable. For a truncated series, the accuracy is limited by the size of the minimum
term:

4π2δD(a) ≡ |KN aN | ∼ N ! nN ∼
√

2π Ne−N ∼ exp(−b0/a) ∼ 	2/ − q2 , (29.34)

which indicates that the UV renormalon can contribute as 1/Q2 [161,162,297–300].
However, this result is subtraction-scale dependent [162], as a more careful analysis

shows that the ambiguity scales as:

A
√

αs(ν)

(
	2 Q2

µ4

)
, (29.35)

where A and 	 absorb this renormalization scheme (RS)-dependence, whilst µ is an arbi-
trary UV cut-off. However, it can be shown that the results obtained in the limit of infinite
numbers of flavours within the one-chain approximation, can be strongly affected by the
UV renormalon induced by the two-, three-, . . . chains of gluons [342,343], such that, it
is premature to deduce any reliable quantitative estimates from this approach. However,
some more optimistic authors have considered a more refined version of the one-chain of
gluons approximation, involving next-to-leading β functions and RS-invariant quantities.
The analysis indicates that the UV renormalon effect is much smaller [339,340] than naı̈vely
expected [344,331], and than that of the perturbative error based on the last calculated coef-
ficient term of the series (theorem of divergent series [337]) [338,323]. Taking into account
the different existing (qualitative) estimates of UV renormalon effects [331–340], one can
conclude that the estimate of the perturbative errors based on the last calculated term of the
QCD series [338,323] gives a reasonable or presumably an overestimate of the true error. It
is also clear that the UV renormalon contribution cannot be considered as a new source of
uncertainty, but it is of the same nature as the perturbative error. An independent extraction of
such a contribution is needed. The only available alternative attempt for doing this, is its phe-
nomenological extraction from the e+e− → I = 1 hadrons data [341,329](Section 52.10)],
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322 VII Power corrections in QCD

from QSSR. It has been noticed from the analysis of [329], that the obtained constraint is
strongly correlated to the value of the gluon condensate. Postulating that a new term of
dimension-two exists in the QCD series, the OPE is modified as:

D(Q2) = 1 +
(αs

π

)
+ · · · + d2

Q2
+ · · · (29.36)

one obtains [329]:

d2 ≈ (0.03 ∼ 0.05) GeV2 , (29.37)

if one uses the value of the gluon condensate 〈αs G2〉 � 0.08 GeV4. This term would induce
an effect of about 1% in the QCD expression of the τ -width [325], which is a negligible effect.

29.6 Some phenomenology in the large β-limit

The large β-limit corresponds to the case where one takes large numbers of quark flavours
and neglect the remainder terms of the β-function:

β1(n f → ∞) � n f /3 , (29.38)

and then corresponds to the abelianisation of QCD.

29.6.1 The D-function

In this limit the D-function can be expressed as:

D(Q2) = 1 +
(αs

π

) ∑
n=0

αn
s

[
dn

(
β1

2π

)n

+ δn

]
, (29.39)

where d0 = 1 and δ0 = 0. The coefficient dn comes from the bubble diagrams. Its Borel
transform reads:

B(D)(b) =
∑
n=0

dn

n!
bn = 32

3

(
Q2

ν2
eC

)−b
b

1 − (1 − b)2

∞∑
j=2

(−1) j j

( j2 − (1 − b)2)2
, (29.40)

where in the M S scheme C = −5/3. The UV renormalon poles at b = −1, −2, . . . are
double poles, while the IR renormalon poles at b = 3, 4, . . . are double poles and a single
pole at b = 2. It is informative to decompose the Borel transform into the sum of leading
poles:

B(D)(b) = e−5/3

[
4

9

1

(1 + u)2
+ 10

9

1

(1 + u)

]
+ e10/3 2

(2 − u)

e−10/3

[
− 2

9

1

(2 + u)2
− 1

2(2 + u)

]
+ · · · (29.41)
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Working in the M S scheme, the ambiguity in summing the series can be quantified as
(see e.g. [154]):

δD(Q2)ren =
(

4

−β1

)
e10/3

π

	4

Q4
≈ 0.06 GeV4

Q4
. (29.42)

This effect is smaller than the non-perturbative gluon condensate contribution:

δD(Q2)cond � 2π

3

〈0|αs G2|0〉
Q4

� 0.14 GeV4

Q4
, (29.43)

where we have used the most recent QSSR determination [313,329]. This result is not
significant for raising doubts on the existence of the non-perturbative gluon condensate in
the SVZ expansion [1], although it can contribute to its perturbative component.

29.6.2 Semi-hadronic inclusive τ decays

Semi-hadronic tau decays have been discussed in details in BNP [325]. We shall be interested
here in its asymptotic perturbative expansion, which have been discussed by many authors
[331–345]. In the large β-function limit, one can write, the branching ratio [154]:

Rτ = 3(|Vud |2 + |Vus |2)

{
1 +

(αs

π

) ∑
n=0

αn
s

[
dτ

n

(
β1

2π

)n

+ δτ
n

]}
, (29.44)

where one can neglect the remainder δτ
n . The Borel transform is [154]:

B(Rτ )(b) = B(D)(b) sin(πb)

[
1

πb
+ 2

π (1 − b)
− 2

π (3 − b)
+ 1

π (4 − b)

]
, (29.45)

where the sinus attenuates all renormalon poles except those at b = 3, 4. The point b = 1 is
regular but will not be suppressed by a factor αs when one uses the Cauchy contour integral
for evaluating Rτ .

Taking the leading renormalon poles, one can approximately have:

B(Rτ )(b) � e−5/3 2

15(1 + u)
+ e−10/3 2

135(2 + u)
+ e5

[
8

3(3 − u)2
− 8

9(3 − u)

]
+ · · ·

(29.46)

Expressing the rate as in BNP:

Rτ = 3(|Vud |2 + |Vus |2)SEW [1 + δPT + δEW + δN P ] , (29.47)

one can compare the measured value of δPT with the one obtained from the large β-limit
prediction. One can notice that the value of αs(Mτ ) can reduce by 15% compared to the
one from the truncated series but this effect is smaller than one obtained by adding the α3

s

correction. Another point is that the error induced by the 	2/M2
τ term which arises when
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the series is truncated at the onset of UV renormalon divergence is numerically very small
due to the smallness of its coefficient. Therefore, the induced uncertainty is negligible in
the M S scheme.

29.7 Power corrections for jet shapes

The phenomenology of power corrections in jets and DIS has been developed [162,366],
while numerous experimental studies have been devoted for measuring these contributions
[480,481]. Renormalons are most useful in these frameworks as they can fix unambiguously
the power n of the corrections (	/Q)n . However, in order to find relations between various
corrections, models are still needed as one expects [342,162] that any number of renormalon
chains gives power corrections of the same order, and there is no way to evaluate all of them.
Some other reservations to be made in the renormalon approach are also the extrapolation
of the small QCD coupling expansion in the UV regime down to the IR domain where the
QCD coupling is of order one, and where, terms which dominate in the UV region do not
necessarily dominate in the IR region.

For definiteness, let us consider the thrust variable defined in the previous chapters
dedicated to jets:

T =max
n

∑
i |pi · n|∑

i |pi| , (29.48)

where p is the momenta of particles produced and n is a unit vector. From perturbation
theory T �= 1 due to the emission of gluons from quarks. The contribution due to a soft
gluon emission can be quantified as [162]:

〈1 − T 〉soft ∼
∫ 	

0

dω

ω

ω

Q
αs ∼ 	

Q
, (29.49)

where dω/ω is the standard factor for the gluon emission; ω/Q comes from the definition
of T while αs is of the order one. Alternatively, if one attributes to the gluon an intrinsic
invariant mass squared ζ Q2, and evaluate the thrust mean value, one obtains [366,154]:

〈1 − T 〉 = CF

(αs

π

)
[0.788 − k

√
ζ + · · · ] , (29.50)

where
√

ζ ∼ 	/Q, and its coefficient depends on the definition of thrust used (k = −7.32
with the previous definition, while it is 4 for the definition used in [366]). One can generalize
the previous result by using an universality picture. That can be done by keeping terms which
contributes perturbatively as αn

s lnk Q and extrapolating such terms in the IR region where,
however, they no longer dominate! In this way, the 1/Q correction can be expressed in
terms of the universal factor [162]:

Esoft =
∫

dk⊥γeik(αs(k2
⊥)) , (29.51)

where γeik is the so-called eikonal anomalous dimension, and the integral over the
Landau pole is understood as the principal value. In this way, on gets the different relations
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among the event-shape variables (see the definitions in the jet chapters from Eqs. (24.32)
to (24.37))[162]:

〈1 − T 〉1/Q = 2

3π
〈C〉1/Q

=
(〈

M2
h + M2

l

〉
Q2

)
1/Q

(29.52)

and: (〈
M2

h

〉
Q2

)
1/Q

≈
(〈

M2
l

〉
Q2

)
1/Q

. (29.53)

These relations are well verified experimentally [480]:

1

2
〈1 − T 〉1/Q = C

Q
(0.511 ± 0.009)

1

3π
〈C〉1/Q = C

Q
(0.482 ± 0.008)

2

(〈
M2

h

〉
Q2

)
1/Q

= C

Q
(0.616 ± 0.018) , (29.54)

where C is a constant.

29.8 Power corrections in deep inelastic scattering

Power corrections in deep inelastic scattering have been developed at the single renormalon
chain level [482], and an alternative derivation using Landau pole of the power corrections
has been given in [162].

29.8.1 Drell–Yan process

The inclusive cross-section can be expressed in terms of the moments:

∫
dτ τ n−1 dσ (Q2, τ )

d Q2
= Mn

[
1 + αsCλ

√
λ

2

Q

]
, (29.55)

where Q is the invariant mass of the lepton pair;
√

s is the invariant mass of the q̄q from
the initial hadrons h1,2 and τ = Q2/s; λ is the gluon mass. To one loop, one finds [154]:

Cλ = 0 for n · 	/
√

s � 1 . (29.56)

An understanding of this result from general arguments based on the inclusive nature of
momenta has been given in [162].
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29.8.2 Non-singlet proton structure functions F2

A systematic measurement of power corrections in DIS for the moments of the non-singlet
structure functions F2 has been performed [481]. The moments:

M(n)
2 (Q2) ≡

∫ 1

0
dx xn−2 F2(x, Q2) , (29.57)

have been parametrized as:

M(n)
2 (Q2) = M(n)

2,PT

(
1 + C (n)

2

τ 2

Q2
+ C (n)

4

λ4

Q4
· · ·

)
, (29.58)

where M(n)
2,PT is the perturbative QCD prediction. The n-dependence of the power cor-

rections has been included into C (n)
2,4. In the range of Q2 values from 5 to 260 GeV2, and

studying different figures, the analysis leads to a non-vanishing contribution:

τ 2 � (0.2 ± 0.1) GeV2 , (29.59)

if λ4 = 0 and (0.25 ± 0.2) GeV2 if λ4 �= 0. This result and the n-dependence agree with
the renormalon-based result [162].

29.8.3 Gross–Llewellyn Smith and polarized Bjorken sum rules

Power corrections to other DIS sum rules (Gross–Llewellyn Smith (GLS), polarized Bjorken
(PBj) sum rules) have been also analysed from the renormalon approach [331]. In the
large β-limit, one can approximately assume them to be the same because the perturbative
contributions differ only by light-by-light scattering starting at α3

s . Let’s remind ourselves
of the GLS sum rule given in Eq. (29.60):∫ 1

0

dx

x
[F ν̄ p

3 (x, Q2) + Fνp
3 (x, Q2)]

= 3
{
1 − as(Q2) − 3.58 a2

s (Q2) − 19.0 a3
s (Q2) + δGL S

}
, (29.60)

to which we add the power correction (twist-4) term δGL S . In the large β-limit, one obtains
in the M S scheme [154]:

δGL S � e5/3

(
− 16

9β1

)
	2

Q2
≈ 0.1 GeV2

Q2
, (29.61)

which is comparable in strength but differs in sign with the twist-4 QSSR estimate [483]
and fit using the CCFR data [249]:

δH T ≈ − (0.10 ± 0.05) GeV2

Q2
. (29.62)

However, an extraction of this power correction from the polarized Bjorken sum rule
[260] leads to an inaccurate value consistent with zero as given in Eq. (19.8).
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29.9 Power corrections to the heavy quark pole mass

We have defined in the chapter on perturbation theory the notion of pole mass, which is
defined at the pole of the propagator. We have seen that this definition is not renormalized
[141,147,133], independent of the regularization procedure [148] and free from IR singu-
larities [133]. However, when this mass is related to the short distance M S running mass,
one can notice its sensitivity to long distances. In the renormalon approach, this difference
is given by the self-energy diagram with one-gluon chain:

M(p2 = m̄2) = m̄(ν) + (−i)
∫

dnk

(2π )n
αs(ke−5/6)

γ µ( p̂ + k̂ + m)γµ

k2[(p − k)2 − m2]

∣∣∣∣
p2=m2

. (29.63)

It shows that for p2 = m2, the integral behaves for small k like d4k/k3, which implies
that the series gives an IR renormalon singularity at b = −π/β1. The asymptotic behaviour
of the series expansion reads [331,154]:

M(p2 = m̄2) = m̄(ν) + CF
e5/6

π
ν

∑
n

(−β1

π

)n

n!αn+1
s . (29.64)

Writing:

δm ≡ Mpole ≡ M(p2 = m̄2) − m̄(m̄) = m̄(m̄)
CF

4

(αs

π

) ∑
n=0

[dn(−β1/π )n + δn]αn+1
s ,

(29.65)

its Borel transform reads, in the large β-limit, [331]:

B[δm/m̄] =
(

m̄2

ν2

)−u

e5u/36(1 − u)
�(u)�(1 − 2u)

�(3 − u)
+ · · · , (29.66)

where · · · indicates subtraction terms which are rapidly convergent and give negligible
contributions to the coefficients dn for increasing n. Comparisons of the values of dn with the
available calculations [151,153] show that the asymptotic series reproduce approximately
the first two coefficients [331]. One can also notice that the series is rapidly dominated by
the IR renormalon contributions and the series start to diverge to order α3

s for the charm
quark mass, and to order α4

s for the bottom. An intuitive derivation of this IR effect can
be obtained from the Coulomb potential. In this way, the IR correction to the heavy quark
mass is [162]:

δm

m̄
= − 1

2m̄

∫
|�q|<µ

d3�q
(2π )3

V (�q) � −CFαs
µ

m̄
, (29.67)

where:

V (�q) = −4πCF
αs(�q)

�q2
. (29.68)
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It has also been noticed [158,159] that the IR singularity of the Borel transform for the pole
mass in Eq. (29.66) is cancelled by that of the potential [486,162]:

B[V (�r )] = −(4πCF )(ν2e−C )u
∫

d3�q
(2π )3

ei �q·�r

(�q2)1+u

= −CF

r
(ν2r2e−C )u �((1/2) + u)�((1/2) − u)

π�(1 + 2u)
. (29.69)

This leads to the proposal of a new mass definition that is less IR sensitive than the pole mass
in this approximation (see Section 11.13). In, for example, the derivations of the inclusive
B-decays using a 1/mb expansion, which behaves to leading order as m5

b, it has been noticed
that the use of the pole mass definition introduces an ambiguity of the order of 	/mb when
summing the series, which does not match with any non-perturbative parameters of the heavy
quark expansion. This problem does not appear when one expresses the width in terms of
the short distance M S-mass, where a cancellation of the leading divergence between that
of the width and of the relation between the pole and running mass occurs.
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