the solution of "homogeneous quadratics."
Let M be the mid point of $P Q$.
$\mathrm{AM}^{2}+\mathrm{PM}^{2}=\mathrm{AO}^{2}+r^{2}$,
$\therefore \mathrm{AM}^{2}+r^{2}-\mathrm{OM}^{2}=\mathrm{AO}^{2}+r^{2}$,
$\therefore \angle \mathrm{AOM}=90^{\circ}$
But

$$
\angle \mathrm{OMP}=90^{\circ}
$$

$\therefore \mathrm{PQ}$ is parallel to OA.
I venture to say that 99 per cent. of casual readers will see nothing wrong about this. But what if M is at the centre?
(The student of elementary geometrical conics will easily prove that if, more generally, $\mathrm{AP}^{2}+\mathrm{AQ}^{2}=c^{2}$, then PQ envelopes a parabola with focus at O. In the special case the parabolic envelope breaks down into a couple of points, one at infinity, the other the centre).

John Dougall.

The solution of " homogeneous" quadratics.

$$
\left.\begin{array}{rl}
2 x^{2}-5 x y+4 y^{2} & =4 \\
3 y^{2}-x^{2} & =3 \tag{1}
\end{array}\right\}
$$

A common method is to put $y=m x$.

$$
\left.\begin{array}{ll}
x^{2}\left(2-5 m+4 m^{2}\right) & =4 \\
x^{2}\left(3 m^{2}-1\right) & =3 \tag{2}
\end{array}\right\}
$$

By division $\frac{x^{2}\left(2-5 m+4 m^{2}\right)}{x^{2}\left(3 m^{2}-1\right)}=\frac{4}{3}$

$$
\begin{equation*}
\text { or } \quad \frac{2-5 m+4 m^{2}}{3 m^{2}-1}=\frac{4}{3} \tag{3}
\end{equation*}
$$

$$
m=\frac{2}{3}
$$

and from either of (1), $x= \pm 3, y= \pm 2$.
The point is that we have missed the obvious solutions $x=0, y= \pm 1$. We dropped them at the passage from (3) to (4). In fact from (3) we can only infer (4), if x is not zero, so that we should say, either $x=0$, or

$$
\frac{2-5 m+4 m^{2}}{3 m^{2}-1}=\frac{4}{3}
$$

and then try $x=0$ in (1).

Instead of putting $y=m x$, it is therefore perhaps preferable to form a homogeneous equation from the two given equations, by multiplying them by 3 and 4 and subtracting.

Thus

$$
\begin{gathered}
6 x^{2}-15 x y+12 y^{2}=12 y^{2}-4 x^{2}, \\
\text { or } \quad x(2 x-3 y)=0, \\
x=0, \text { or } 2 x-3 y=0 .
\end{gathered}
$$

The example illustrates the danger of cancelling a common factor from numerator and denominator of a fraction without considering the possibility of that factor being zero.

It may also be found useful (as the Editor remarks to me) as the basis of a lesson on infinite roots of an equation. The equation for m, which we expect to be a quadratic, turns out to be of the first degree. The second value of $\frac{y}{x}$ is here $\frac{1}{0}$ or infinity.

It may even happen that both values of m are infinite. A boy with $y=m x$ as his only resource would be rather nonplussed with the example

$$
\begin{gathered}
x^{2}+x y+y^{2}=1 \\
2 x^{2}+3 x y+3 y^{2}=3
\end{gathered}
$$

Infinite roots appear in another way in this class of equations, namely, in the case when the quadratic functions in the two given equations have a common factor.

Take

$$
\begin{align*}
(x+y)(x-y) & =3 \tag{1}\\
(x+y)(2 x+y) & =15 . \tag{2}
\end{align*}
$$

Here

$$
\begin{gathered}
(x+y)(2 x+y)=5(x+y)(x-y), \\
x+y=0 \quad \text { or } \quad x=2 y .
\end{gathered}
$$

If we pat $x+y=0$ in (1) we get $0=3$, and we say that the equations have no solution which makes $x+y=0$.

But if we use the $y=m x$ method, we find $m=-1$ or $\frac{1}{2}$.
Then from (1), $x^{2}\left(1-m^{2}\right)=3$,

$$
x^{2}=\frac{3}{1-m^{2}} .
$$

If $m=\frac{1}{2}$, this gives $x= \pm 2, y= \pm 1$; but if $m=-1, x= \pm \infty$, $y=\mp \infty$.

John Dougall

