ONTARIO MATHEMATICAL MEETINGS - Winter, 1969

The details of the two meetings (time, place and invited address) are
given as follows:

Tenth meeting: January 18, University of Waterloo (Abstracts 69.1 to 69.7)
R.M. Redheffer (U.C.L.A.), Some recent results on inequalities.

Eleventh meeting: March 15, University of Toronto (Abstracts 69.8 to 69.15)
G.-C. Rota (M.I1.T.), Foundations of combinatorial theory, a progress report.

69.14 F.V. Atkinson (University of Toronto)
Definiteness Properties of Arrays of Operators

Let Gj, ey Gk be complex linear spaces, endowed with conjugate-linear

maps to their duals (indicated by asterisks), and let
(1) A, r=1,...,k, s=0,...,k,

be hermitian-symmetric endomorphisms of the Gr' respectively, so

that the quadratic forms
2 *
@) & Arsgr ’ g, € G

are real-valued. We suppose the array (1) of operators to be definite in
the sense that the matrix (2), with k rows (r =1,...,k) and k+1
columns (s = 0,...,k) has its maximal rank k, for all choices of

g € Gi’ e By € Gk’ none being zero. The question is posed of whether

we can then augment (2) to a square array by a row of k+1 real scalars,
so that this array has determinant of fixed sign. The answer is affirmative
in the cases k = 1,2 only. The counter-example for k=3 is based ona
geometrical interpretation in terms of convex bodies. It is necessary to
find three such bodies with the properties that no line meets all three,
while through every point a plane can be drawn to meet all three bodies.

69.2 B. Banaschewski (McMaster University)
Essential Extensions and Injectivity for Metric and Banach Soaces

In some categories K (e.g. abelian groups; see also [2,3,4,6]) one
has the following situation with respect to injectivity and essential
extensions:

I. The following are equivalent for X ¢ K:
(1) X 1is injective.

(2) For any extension Y D X there exists a morphism
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f: Y = X mapping X identically.

{3) X has no proper essential extensions, i.e. no proper extensions
Y D X for which any f: Y= Z whose restriction to X is an
embedding is itself an embedding.

II. For any X ¢ K and any extension Y of X in K, the following are
equivalent:

(1) Y is injective and an essential extension of X.
(2) Y is a maximal essential extension of X.
(3) Y 1is a minimal injective extension of X.

II. Any X e K has an injective essential extension ¥ DX in K. (Such
an extension is essentially unique; it is called the injective hull of X.)

In [1] it is shown that a certain set of conditions on a class E of morphisms
in a category K implies that E-injectivity and essential E-extensions have
properties analogous to those described by I- III, where E-injectivity is
injectivity with respect to the f ¢ E in place of arbitrary monomorphisms,
and an essential E-extension of X is given by f: X+ Y where f¢ E and

gf ¢ E implies ge¢ E, for any g. The conditions are as follows:

(E1) E is closed under composition.

(E2) I fc¢E is a left inverseof a gec E then f is an isomorphism;
conversely, an isomorphism belongs to E.

(E3) For any f ¢ E there exists a g ¢ K such that gf ¢ E¥, i.e.
gf ¢ E and, for all he¢ K, hgf ¢ E implies he¢ E.

(E4) K has pushouts, and these preserve E in the sense that for any
pushout diagram

u ¢ E whenever f¢ E.
(E5) Any well-ordered direct system in E has an upper bound in E.

(E6) For any X e K, the classes of all f: X~ Y in E* and of all
f: Y-+ X in E* are small, and all f ¢ E¥ are monomorphisms.

Here, we are concerned with the category MS of all metric spaces and
mappings f: X - Y such that d(f(x), f(x')) < d(x, x') for all x,x'eX (d(.,.)
the metrices in either space), and the analogous category BanS of all
Banach spaces (either field of scalars) and linear mappings f: X = Y with
lfx)]| < || x]|. For each of these it is known that every X has a minimal
injective extension Y D X [5, 7], and that this is essential [8]. The proofs
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in [5] and [7] are ad hoc, and essential extensions do not occur explicitly.
A different approach can be based on the above conditions, in view of:

PROPOSITION. In MS and BanS, the isometric embeddings satisfy (E1) -
(E6).

It follows that I - III hold in both MS and BanS.
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69.3 J.B. Miller (Trent University)
Some Formulae for Resolvents

In some cases, continuous linear operators mapping a Banach algebra

with unit into itself can be shown to satisfy one or more algebraic identities
involving the elements of the algebra. It is then usually possible to deduce
from the identities a formula for the resolvent, and some spectral properties

Known cases include averaging operators, Reynolds operators, and Baxter
operators, specified respectively by the identities

T(Tx.y) = Tx.Ty = T(x.Ty),
Tx. Ty = T(Tx.y + x.Ty - Tx. Ty),
Tx. Ty = T(Tx.y + x.Ty - 8.x.y) .

Here T is the operator, and x and y range over the Banach algebra;
6 is a fixed parameter from the algebra.
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The formulae for the resolvents can be put in forms not involving the
algebra elements, other than the unit e, its image t = Te, and functions
of t.

69.4 M.A. McKiernan (University of Waterloo)
A Less Formal Approach to Kaluza-Klein Formalism

T
. 1 —
The "action' integrals (a) )‘(Ti) = f g )'rl )?J dr+ and
TO J
T4 T ;
(b) )‘(Ti) = f hijfi 2 - Bi y dr, corresponding respectively
T
0

to gravitational and gravitational-electromagnetic phenomena, are shown
to be related under continuous groups of null translations. This relation
motivates a modified Kaluza-Klein formalism for which the classical
5 . .
cylindrical metric preserving transformations (c) y = X5+ fs(x‘,), y1 =
A 5 5 i A
fl(xJ) for 1=1,2,3,4 arereplaced by (d)y =x, y1 = fl(xJ s xs). The

5
cylindrical metric of V~ is nevertheless preserved under (d), since it

is assumed that v° admits a metric of the form ()'rs)2 - gij(yk) §vi {rj
(corresponding to (a)) and that (d) defines a continuous group of null
translations in the V4 metric defined by gij when x5 is considered
the group parameter. Application of (d) leads to the cylindrical metric
J

(;';5 + Bi:'{l)z - hijizlfc corresponding to (b). The resulting electromagnetic

4
fields Fij = Bi i” Bj ; are then related to the curvatures of the V
corresponding to gij and hij; ‘in particular it is shown that
B.B.RY = - %F.,FIJ and FJ = B, RY. When R;; = 0 itis shown
ijg ij ) jg g™

that Fij is a null electromagnetic field which is generally non-trivial.

Some physical and geometric interpretations of the mathematical results
are also presented.

69.5 Tomasz Pietrzykowski (University of Waterloo)
A Language for the Computer Assisted Theorem Proving

The paper outlines the main features of a proposed language (called the
TPL language) for the computer assisted theorem proving. The TPL is
destined to describe formal theories in a form suitable for an eventual
computer processing. The class of theories which can be written in the
TPL includes the predicate calculus of an arbitrary high (but finite) order.
The possible applications of the TPL are: mechanical theorem proving,
computer theorem checking, algebraic symbol manipulation.

A theory written in the TPL consists of a sequence of statements. There
are the following kinds of statements: letter and separator stt (stt denotes
statements) for optional expanding the standard TPL alphabet, type stt

for declaring the types of objects of a theory, generality stt for establishing
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the hierarchy of generality between types, schema stt for providing © e
rules of creating objects, and constant stt for specifying the constan
the theory. The objects of a TPL theory are the modified functional
expressions where the function head may be placed arbitrarily (not ¢ 'y
on the right most end of the expression). The right parentheses are
compulsory, the left are optional.

Proofs are realized by means of the proof statement, which consists { a
sequence of substatements of the following kinds: assumption, instan-e,
deduction, conclusion and theorem. The proof procedure of the TPL is
very tedious and cannot be expected to be used practically by a human.
But there are many ways of defining a reduced proof procedure, where the
user will only write certain proof substatements and the rest will be
automatically produced by an appropriate mechanical theorem proving

procedure.

69.6 V. Dlab (Carleton University)
Lattice Representation of Algebraic Dependence

The linear dependence in vector spaces can be studied in terms of
LA-dependence structures (cf. [1]):

A LA-dependence structure is a pair (S.,J) of the fundamental set S and
a system T of ("independent') subsets I, Ii’ I which (i) is inductive

2’
and (ii), defining

eM=IU{x|xeS &1U {x} ¢3} .,
satisfies the following implication

I1 < c(IZ)—- C(Ii) c c(IZ) .

In order to meet needs for wider applicability the concept of a LA-dependence
structure has been generalized to that of a GA-dependence structure

(cf. [1]):

A GA-dependence structure is a triple (S, U, J) of the fundamental set S,

""canonic zone" U C S and a system J C 2s which satisfies (i), (ii) for

11 € U and (iii) which has a maximal ¥ ¢ J such that ¥ C U .

As in the case of a LA-dependence structure, one can prove the invariance
of a certain cardinal attached to (S, U, J) - the rank of the structure

(see [1]).

Now, the LA-dependence structures can be characterized in terms of
c-dependence in certain lattices.

A subset I of atoms of a lattice £ is said to be c-independent if

x £ N (I~ {x}) for every x ¢ L

120

https://doi.org/10.1017/5S0008439500030228 Published online by Cambridge University Press


https://doi.org/10.1017/S0008439500030228

The characterization can be formulated as follows (comp. [2]):

THEOREM. Given a regular (i.e. ¢($¢) = 6 ) LA-dependence_structure
(S, 9, there exists a complete algebraic atomic semimodular lattice £ and

an (order-preserving) mapping & of the power set 2s into £ such that

(a) ®(d)=0, &(S)=1 and, for every system {Xw[weﬂ} of subsets of S,

(U X )= \/6()();
weQw w e ©

(b) {b({x})!xeS} C G, - the subset of all atoms of £;

g

(c) I¢3 ifandonlyif {8({x})]| x ¢I} is c-independent.

A natural extension of the definition of c-dependence
concept of d-dependence.

A subset I of a lattice £ (with 0) is said to be d-independent if
x/\\/(F) = 0 for every x el and every finite F C I\N{x} .

And, using this concept we can derive the following two THEOREMS.

Given a regular
LA -dependence structure (S, J)

GA -dependence structure (S, U, 3’)}

: : atomic .
there exists a complete algebraic — lattice £
semimodular balanced

. S
and a one-to-one (order-preserving) mapping & of the power-set 2
into £ such that (a) holds;

(b') {&({x}) |xesy c ‘U.£ - the subset of all uniform elernents of ¢;

(¢") 1e¢3J if and only if {&({x})|x¢1I} is d-independent.

REFERENCES
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69.7 D. Solitar (York University)
On Finitely Generated Subgroups of a Free Group

M. Hall, Jr. [Trans. A.M.S. 67 (1949) 421-432] proved the following
theorem:
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Let H be a finitely generated subgroup of a free group F and suppose
ﬁi' ... p_ are in F but no B is in H. Then we may construct a
n i

subgroup H of finite index in F containing H and not containing any ﬁi.

His proof actually shows more, viz., that H is a free factor of ﬁ In
particular, taking the set of ﬁi's to be empty one obtains the following:

¥ H is a finitely generated subgroup of a free group F, then H is a
free factor of a subgroup H of finite index in F.

We show how a number of results about finitely generated subgroups of a
free group follow in a natural way from the above special case of the
theorem of M.Hall Jr. In particular, we derive the following: a finitely
generated subgroup H is of finite index F if and only if H has a non-
trivial intersection with every non-trivial normal subgroup of F (this
includes the case, when H contains a non-trivial normal subgroup of F

[ Proc. A.M.S. 8 (1957) 696-697], and the case, when H contains a
non-trivial sub-normal subgroup of F [Canad. J. Math. 12 (1960) 414;425];
a generalization of this for a pair of subgroups H, K; other types of
conditions for a finitely generated H to be of finite index in F (first proved
by L. Greenberg for discrete groups of motions of the hyperbolic plane
(which include free groups); and Howson's result that the intersection of

two finitely generated subgroups of F is finitely generated. We also derive
a quick way of obtaining the precise index of H in F from inspection of a
Nielsen reduced set of generators for H.

69.8 Wai-Mee Ching (Louisianna State University)
Non-isomorphic Non-hyperfinite Factors

A von Neumann algebra is called hyperfinite if it is the weak closure of
an increasing sequence of finite-dimensional von Neumann subalgebras;
both hyperfinite and non-hyperfinite factors of type II1 exist. Murray

and von Neumann proved that all hyperfinite factors of type Il1 are

isomorphic; J.T. Schwartz has shown that there exists a pair of non-
isomorphic non-hyperfinite factors of type 111. We will show the

existence of three non-isomorphic non-hyperfinite factors of type Hi'

In order to construct the new factor, we first study the notion of crossed
product of a von Neumann algebra with a certain group. Earlier, Nakamura
and Takeda, Suzuki, and Turumaru developed the idea of crossed product
for a finite von Neumann algebra with the coupling constant equal to one,
generalizing Murray-von Neumann's measure construction of factors. We
extend the notion of crossed product to a von Neumann algebra with a cyclic
separating vecter. This extension includes the measure construction and
the group construction of factors both due to Murray and von Neumann. We
give a systematic construction of the crossed product. We then establish
a set of sufficient conditions for a crossed product of a von Neumann
algebra to be a factor; and classify the type of a factor obtained by the
crossed product.

We introduce the following algebraic property of a von Neumann algebra:

Definition. A von Neumann algebra R is said to have property C, if
for each sequence Uk(k =1,2,...) of unitary operators in R with the

property that strong lim Ui‘:'I‘Uk = T for each T € R, there exists a
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sequence Vk(k =1,2,...) of mutually commuting operators in R such

that strong lmn(Uk - Vk) =0.

Using the technique of crossed product, a factor of type I_'[1 is constructed
which is the crossed product of a factor of type I.I1 with an abelian group
of outer automorphisms. We prove that this new factor of type II1 has the

new property C as well as the property I of Murray and von Neumann.
Finally, we establish the non-isomorphism of three non-hyperfinite factors
of type II1 by showing that neither the hyperfinite factor of type Z[.Ii nor the

non-hyperfinite factor of type II, of Schwartz has the property C.

1

69.9 Kevin Clancey (Carleton University)
An Example of a Semi-normal Operator whose Spectrum is not a Spectral
Set

2
Let K be a real Cantor set of positive measure. Consider for f ¢ L (K)
the operator

ml

Te(s) = si(s) +i (> £(t) dt> seK .

If the singular integral is interpreted as a Cauchy principal value then T

is semi normal and the spectrum of T is the set K X[ -1, 1]. The
operator T has the following properties: (i) T is hyponormal and non-
sub-normal; (ii) the spectrum of T is not a spectral set; (iii) for some
polynomial p, the operator p(T) is non-normaloid. The example
motivates a construction which proves that every subnormal and non-normal
operator is a strong limit of a sequence of hyponormal and non-subnormal
operators.

69.10 G. Gasper (University of Toronto)
Linearization of the Product of Jacobi Polynomials, II

(a, B)
n
a, B >-1, andlet g(k,m,n;e B) be defined by

Let P (x) denote the Jacobi polynomial of degree n, order (o, ),

a,B)

R P ) R P ) = 5 gtominiep) RO P,

where R (a’ﬁ)(x) = Pn(a’ ‘3)(x) /P (a,B)“) . In [Linearization of the

n n
product of Jacobi polynomials I, Can. J. Math. (to appear)] we proved
that if ¢ > and a + B > -1 then g(k,m,n; a,p) >0 for all k,m,n.
In this paper we prove -

THEOREM 1. Let a=a+f +1, b=a-p and V= {(a,B): 2P,

a(a +5) (a +3)2 > (a2 - 7a- 24)b2 } . X (aB) eV then g(k,m,n; a,B)> 0
for all k,m,n. However, if (@, f) ¢ V then there exist positive integers
k,m and n suchthat g(k,m,n; a,p)< 0.
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THEOREM 2. Let W= {(a,p)ia>p> -1, -a(a+3) <26} U{(-%, -1)}.
I (e,B) ¢ W then Zk[ gk, m, n; a,ﬁ),g G, where G is independent

of m and n. ¥ B>a>-1 cr -1 >a> -1, then Zk[g(k,m,n;a',ﬁ)!

is unbounded.

COROLLARY 1. Suppose (a,B)e W, f(x) = Z::o c(n) Rn(“’ﬁ)(x),
Ec:_o |a(n)|< =, and 6 is a function holomorphic on an open set containing
the range of f. Then O(f(x)) = Z;O d(n) Rn(a’ ﬁ)(x) with Z::O | d(n) l< o0,

69.14 W.A. Coppel (University of Toronto)
The Asymptotic Behaviour of Second Order Linear Differential Equations

A result of F. V. Atkinson (see Coppel, Stability and asymptotic behaviour
of differential equations. D.C. Heath, Boston, 1965) is given the following
stronger form:

THEOREM. Let g(x) be a continuous real-valued function for x > x
o o

and let the integrals g (x) = [ g(£)dg, g,(x) = [ g(€)cos 26 dt, g, (x) =
X

0

0
J [el¢)sin 2¢ - h(€) Jd¢ converge, where h(x) is a continaous non-negative
x

o )
function such_that f hix)dx = o, I f ]ggj Jdx < o (j = 0,1,2) then

of solutions

the eguation y" +[1+ g(x)]y = 0 has a fundamental syste

¥yr¥, suchthat for x>,

yi(x) = r(x) [cos x + o(1)], YZ(X) = [r(x)]-i [sin x + o(1)]

y ‘1(x): r(x) [-sin x + o(1)]}, y'z(x) = [r(x)]-1 [cos x + o(1)]

X

where r(x) = exp{} f gl€) sin 2¢ dE} .

*o

£9.12 E. Stamm (University of Toronto)
Sections of Holomorphic Vector Bundles

P
Let E - B be a holomorphic vector bundle over the connected Stein
manifold B. A section is a holomorphic map s:B-—- E such that p-s = idB.
Let M(E) be the set of these sections. It is a module over the ring H(B)
of holomorphic functions on B.

THEOREM. M(E) is a finitely generated projective H(B)-module. It can
be generated by N X(1+n) generators, where N=fibredimension and_
n=dimension of the basemanifold B.
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COROLLARY: a) It is possible to introduce the notion of stable equivalence
classes of holomorphic vector bundles over a Stein manifold B.

b) One has canonical isomorphisms of H(B)-modules

M(E, ® E,) = M(E,) ® M(E,), M(\'E) » ANM(E), ete.

69.13 Tae Ho Choe (McMaster University)
Notes on a Locally Compact Connected Topological Lattice

E. Dyre and A. Shields, [Pacific J. Math. 9] conjectured that if L is

a compact connected metrizable distributive topological lattice, then

the dimension of L. is equal to the breadthof L . L. Anderson

[Pacific J. Math. 9] showed that the breadth of the L < the codimension
of L (in the sense of Cohen [Duke Math. J. 21)]. A locally compact
topological lattice L of dimension n is called regular if the subset of
L, made up of the points at which L has dimension n, has non-void
interior. We shall show that if L is a connected distributive regular
topological lattice then the inductive dimension (or codimension) and the
breadth of L are the same.

L. Anderson conjectured that if L is a locally compact connected
topological lattice, then L is chain-wise connected. We shall prove this
conjecture is true. As an immediate corollary of this we can extend a
Wallace result [Summa Brazil M. 3] that any compact connected topological

lattice L is acyclic, i.e., Hp(L) = 0 for all p >0, where H¥( )
denotes the cohomology group of Alexsander Kolmogrof. Our result is
that any locally compact connected topological lattice with 0 and I is
acyclic.

69.14 V. Dlab (Carleton University)
A New Characterization of Perfect Rings

J.P. Jans has shown in [4] that if a ring R is right perfect (cf. H. Bass [1]),
then a certain torsion (cf. [2]) in the category Mod R of left R-modules

is closed under taking direct products. In fact, it can be easily shown that
every (hereditary) torsion in Mod R is closed under taking direct products
provided that R is right perfect. Moreover, making use of a one-to-one
correspondence between torsions in Mod R and certain sets of left ideals

of R (see [3]) we can give a characterization of perfect rings along these
lines:

A ring R is right perfect if and only if every hereditary torsion in Mod R
is fundamental (i,e. derived from 'prime'' torsions) and closed under taking

o n . .
direct products; then there is a finite number 2 (n natural) of torsions in

Mod R .
REFERENCES
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69.15 C.T. Ng (University of Waterloo)

Uniqueness Theorems for a General Class of Functional Equations on
Topological Vector Spaces

In a previous paper J. Aczél has shown the following:

THEOREM 41: If in the interval <A, B> we have

) f[F(x, y)] = Hf(x), f(y), x, y]

and there f, F are continuous, F intern (the value F(x, y) lies
strictly between x and y) and u- H(u, v, x, y) or v-= H(u, v, %, y)
are injective, then the functional equation (*) with the initial conditions

f(a) = ¢, f(b) =d (a, b € <A, B>)

has at most one solution.

The above result has been established for functions with real variables.
In the sequel we extend the notion of internness to vector spaces and
derive results in topological spaces.

Definitions and Notations: For two distinct points x and y of a vector
space (v.s.) E over the real field R, we denote the (open) line segment
joining x and y by

Lix, y) = {y+tlx-y): te (0, 1)}
A mapping F defined on some subset S of E X E into E is said te
be intern if F(x, y) ¢ L(x, y) whenever (x,y) e S with x # y.
We have the following results:

THEOREM 2: Let E, be a closed subset of a topological vector space

1
(t.v.s.) E and let F : .'EI1 X E1 - E1 be intern, continuous in both
variables. Let N be a set and f1,f? : Ei -+ N be mappings satisfying
the functional equation
(*) f[F(x, y)] = H[i(x), fly), = y]
where the mapping H: N X N X E1 X Ei ~» N is injective either in its first

variable or in its second variable. If fi and fz are identical on some
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Ei—neighbourhood V of a point a eEi, then fi and f2 are identical

on the entire domain Ei.

THEOREM 3: Let F : l?.1 X E1 d E1 be an intern function defined on a

closed subset E1 of at.v.s. E over R, and let N be a Hausdorff

space. Suppose f1,f2: E1 == N are continuous mappings satisfying

(*) f[F(x, y)] = H f(x), fly), x, y],

where H is a mapping from N X N X E1 X E1 into N. Then the set
S = {x:x EEi’ fi(x) = fZ(X)}

is convex.

THEOREM 4: Let E1 be a closed subset of a t.v.s. E, and let

F: E1 X E1 - E1 be intern, continuous in both variables. Let N be

a Hausdorff space. Suppose f{

: E1 - N are continuous mappings

£
172
satisfying the functional equation

(*) f[F(x, y)] = H[f(x), fly), x, y]

where the mapping H: N X N X E1 X E1 -+ N is either injective in its

first variable or injective in its second variable. I fi and fz are

identical on some subset A of E, whose convex hull I'A has non-empty

1
interior (interior taken in Ei)’ then f1 and f2 are identical on the entire

domain E1 .

COROLLARY: If in Theorem 4, E is locally convex Hausdorff of dimension
n and A={ai :i=1,2,...,n+1} is such that {ai— a, :i=2,3,...,n+1}

1
is linearly independent, then there exists at most one continuous solution
of (*) satisfying the n+1 initial conditions

fla)y=b i=1,2,...,n+1.
1 1
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