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Stabilising nonlinear travelling waves in pipe flow
using time-delayed feedback
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We demonstrate the first successful non-invasive stabilisation of nonlinear travelling
waves in a straight cylindrical pipe using time-delayed feedback control working in
various symmetric subspaces. By using an approximate linear stability analysis and by
analysing the frequency-domain effect of the control using transfer functions, we find
that solutions with well-separated unstable eigenfrequencies can have narrow windows
of stabilising time delays. To mitigate this issue we employ a ‘multiple time-delayed
feedback’ approach, where several control terms are included to attenuate a broad range of
unstable eigenfrequencies. We implement a gradient descent method to dynamically adjust
the gain functions in order to reduce the need for tuning a high-dimensional parameter
space. This results in a novel control method where the properties of the target state are not
needed in advance, and speculative guesses can result in robust stabilisation. This enables
travelling waves to be stabilised from generic turbulent states and unknown travelling
waves to be obtained in highly symmetric subspaces.
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1. Introduction

In this study we consider the incompressible Navier–Stokes equations as a
high-dimensional dynamical system, where simple invariant solutions, or exact coherent
structures (ECSs), can be considered key building blocks of the spatio-temporal chaos
(see, e.g. Kawahara, Uhlmann & van Veen 2012; Graham & Floryan 2021). Exact coherent
structures take the form of equilibria, relative equilibria (or travelling waves), periodic
orbits, relative periodic orbits and invariant tori. The study of ECS has shed light on the
origin of turbulence statistics (Chandler & Kerswell 2013; Lucas & Kerswell 2015; Page
et al. 2024b), the physical mechanisms that play a role in sustaining turbulence (van Veen,
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Kida & Kawahara 2006; Lucas & Kerswell 2017; Yasuda et al. 2019; Graham & Floryan
2021; McCormack, Cavalieri & Hwang 2024), subcritical transition to turbulence (Skufca,
Yorke & Eckhardt 2006; Kreilos & Eckhardt 2012), mixing and layer formation in stratified
flow (Lucas & Caulfield 2017; Lucas, Caulfield & Kerswell 2017), pattern formation in
convection (Beaume, Bergeon & Knobloch 2011; Reetz & Schneider 2020) and drag
reduction (Bengana et al. 2022) amongst other applications. The fundamental objective
is to be able to describe a turbulent flow by using ECSs as a reduced-order description and
as a simple way to predict its statistics. Exact coherent structures in various fluid flows have
been successfully isolated using homotopy (Nagata 1990), bisection (Itano & Toh 2001;
Duguet, Willis & Kerswell 2008b) and quasi-Newton shooting (Viswanath 2007, 2009;
Chandler & Kerswell 2013). Newton–Krylov ‘shooting’ methods have proved the most
successful and efficient methods for converging these unstable states from the turbulent
attractor; however, as the Reynolds number or system size is increased, and the flow
becomes increasingly disordered, well-conditioned guesses become harder to identify.
Recent research has sought to address this issue, generally by identifying better starting
guesses (e.g. using dynamic mode decomposition (Page & Kerswell 2020; Marensi
et al. 2023), convolutional autoencoders (Page et al. 2024a) or improved recurrence
conditions (Redfern, Lazer & Lucas 2024)) and/or by ‘preprocessing’ guesses by gradient
descent (e.g. using automatic differentiation (Page et al. 2024b) to obtain derivatives).
An alternative to shooting is to converge closed loops using variational methods to
minimise cost functions (Azimi, Ashtari & Schneider 2022; Parker & Schneider 2022),
which ensures the governing equations are satisfied. This approach has a larger radius of
convergence but is much slower to converge than Newton shooting.

Here, our approach will be to dispense with an iterative or root-finding approach and
instead control the underlying ECSs, thereby allowing one to simply time step a modified
set of equations onto them. We will develop a time-delayed feedback control method to
stabilise travelling waves from turbulence in pipe flow. This method serves to complement
existing methods to find ECSs and provides new insight into flow control in general.

A relatively rich literature on ECSs in pipe flow exists, with many travelling-wave
solutions (Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Pringle, Duguet & Kerswell
2009; Viswanath 2009; Willis, Cvitanović & Avila 2013; Ozcakir et al. 2016; Ozcakir,
Hall & Tanveer 2019) and relative periodic solutions (Duguet, Pringle & Kerswell 2008a;
Budanur et al. 2017) reported. Moreover experimental observations suggest that these
solutions to the governing equations, even with idealised boundary conditions (periodicity
in the streamwise direction), do have relevance to real-world applications (Hof et al. 2006).
Feedback control has been used to great effect by Willis et al. (2017) to obtain ‘edge states’
in pipe flow. However, when applied to channel flow, Linkmann et al. (2020) discovered
that such control can induce new instabilities, even when the original unstable mode is
stabilised. It remains to be seen if more generalised control methods can obtain other
ECSs by stabilising more than one direction. For these reasons, pipe flow is an excellent
candidate system in which to test and develop this control approach.

The method of time-delayed feedback (TDF) control, sometimes called Pyragas control
(Pyragas 1992), is a well-known approach for stabilising invariant solutions in chaotic
systems and has been used to great effect in a variety of dynamical systems (Lüthje, Wolff
& Pfister 2001; Ushakov et al. 2004; Popovych, Hauptmann & Tass 2005; Yamasue &
Hikihara 2006; Stich, Casal & Beta 2013). A finite-dimensional autonomous dynamical
system with state vector X (t) can be expressed as

dX
dt

= f (X (t); p) + F , (1.1)

1005 A3-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1188


Stabilising travelling waves in pipe flow

where, in our case, the vector field f is given by the discretised Navier–Stokes equation
with parameters p; we denote F as the TDF ‘force’,

F (t) = G(t)[X (t − τ) − X (t)], (1.2)

where X (t) and X (t − τ) are the current state vector and the time-delayed state vector,
with delay period τ, and G(t) is the control gain, which in general could be some matrix
(thereby coupling feedback between degrees of freedom) but here is a function of time
only. Note that when a time-periodic state with period τ, or a time-independent state,
is stabilised successfully, the control force (1.2) will decay exponentially towards zero
(assuming G(t) remains bounded). This can only occur if the stabilised state is itself a
solution of the uncontrolled system, so that TDF is considered to be a non-invasive control
method.

One reason for the lack of application of TDF in fluid systems is likely due to the
so-called ‘odd-number’ limitation. This claims that states with an odd number of unstable
Floquet multipliers are unable to be stabilised by this method (Nakajima & Ueda 1998b;
Just et al. 1999). Nakajima (1997) explains the issue from a bifurcation perspective.
The non-invasive feature means that the number of solutions of period τ cannot vary
with G; however, any stabilisation requires a change of stability and hence bifurcation.
Such a bifurcation cannot, therefore, be of a pitchfork or saddle-node type (changing
τ -period solutions), and so must involve the crossing of a complex conjugate pair of
exponents in a Hopf or period-doubling bifurcation. There have been numerous studies
offering resolutions to this issue, including forcing oscillation of the unstable manifold
through G (Schuster & Stemmler 1997; Flunkert & Schöll 2011), an ‘act-and-wait’
approach (Pyragas & Pyragas 2019), using time-dependent gains more generically (Sieber
2016), using symmetries (Nakajima & Ueda 1998a; Lucas & Yasuda 2022) and a
notable counter-example where a transcritical bifurcation can be stabilised under certain
conditions (Fiedler et al. 2011).

Shaabani-Ardali, Sipp & Lesshafft (2017) report the application of Pyragas control
to suppress vortex pairing in a periodically forced jet. This work approaches the
control method as a frequency damping technique (Akervik et al. 2006), filtering out
non-harmonic frequencies, leaving only τ behind. Here the odd-number issue can be
viewed as a zero-mode limit where there is no incipient frequency to damp. Recently,
Lucas & Yasuda (2022) applied this method to two-dimensional turbulent Kolmogorov
flow, validating the stabilisation of the base flow via linear stability analysis and showing
successful stabilisation of several equilibria and travelling waves. This was achieved by
including the symmetries of the target solutions into the control force. In many examples,
including the stabilisation of the laminar solution, this was an effective means to avoid the
odd-number problem (not too dissimilar to, but different from, the ‘half-period’ approach
in Nakajima & Ueda 1998a). An adaptive, gradient descent, approach is also used to obtain
the relative translations of travelling waves so that the method can be successful without
any foreknowledge of the ECS.

Our main objective in this paper is to present an improved method for using TDF to
stabilise nonlinear travelling waves in pipe turbulence, where the flows are more physically
relevant, more unstable and have more spatial complexity.

The vast majority of TDF research has been devoted to investigating the linear stability
of a target solution, it being a necessary property for successful stabilisation (Nakajima
1997). However, this is not a sufficient condition as successful practical stabilisation
can also depend on the initial conditions. In high-dimensional systems, it would be
advantageous to design the control to also maximise the basin of attraction of the stabilised
state. Furthermore it will be necessary for the TDF control to stabilise several unstable
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directions, each with differing eigenfrequencies, without knowing what these frequencies
are before initiating the control. To achieve this, we develop an adaptive version of the
multi-frequency damping TDF control method (Ahlborn & Parlitz 2004), i.e. multiple
time-delayed feedback (MTDF), where several TDF terms are used. One drawback of the
MTDF approach is the need to optimise a separate control gain for each delay period
applied. In order to avoid a trial-and-error sampling of this high-dimensional parameter
space, we apply a gradient descent method (Lehnert et al. 2011) to evolve each G towards
its stabilising value.

This paper is organised as follows. In § 2, we describe the governing equations for
pipe flow with the control force, the numerical method and the continuous and discrete
symmetries and define relevant flow measures. In § 3, after introducing single TDF for
pipe flow and the adaptive translation method, we demonstrate some successful cases
stabilising an unstable travelling wave at low Reynolds numbers and in certain symmetric
subspaces. We predict the behaviour of TDF by using an approximate linear stability
analysis and control theory in such a way as to identify the optimal control parameters
for this solution. In § 4, we introduce MTDF control, demonstrate its effectiveness in
stabilising more highly unstable states and analyse its behaviour from the frequency
damping perspective. In § 5, we demonstrate successful stabilisation of travelling waves
from relatively high Reynolds number turbulence, using MTDF alongside the optimisation
methods for gains and translations. In the course of doing this, we demonstrate the
stabilisation of two unknown solutions from highly symmetric subspaces.

2. Numerical formulation

2.1. Pipe flow with time-delayed feedback
In this study, we consider incompressible, viscous flow in straight, cylindrical,
pressure-driven pipes. We treat the governing equations in cylindrical-polar coordinates
(r, θ, z), where r is the radius, θ is the azimuthal angle and z is the streamwise
(axial) position. We non-dimensionalise the equations with the Hagen–Poiseuille (HP)
centreline speed, Ucl, and pipe radius, R. This yields the dimensionless incompressible
Navier–Stokes equations

∂

∂t
U + (U · ∇)U = −∇P + 1

Re
∇2U + F , (2.1)

∇ · U = 0, (2.2)

with the no-slip condition on the boundary

U(1, θ, z) = 0. (2.3)

Here, U = (Ur, Uθ , Uz) is the three-dimensional velocity vector, with P being the
pressure; Re = RUcl/ν is the Reynolds number, ν is the kinematic viscosity of the fluid
and time t is defined in the unit of R/Ucl. Lastly, F is an external body force that, here,
will include the TDF control terms. With the aforementioned non-dimensionalisation, the
laminar HP flow is expressed by means of velocity and pressure as

UHP(r) = (1 − r2)ẑ, (2.4)

PHP(z) = −4z/Re, (2.5)

where ẑ is the unit vector in the streamwise direction. The laminar HP flow is found at low
Reynolds numbers and is linearly stable even at very large (or possibly infinite) Reynolds
numbers (Salwen, Cotton & Grosch 1980; Meseguer & Trefethen 2003).
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Stabilising travelling waves in pipe flow

Using (2.4) and (2.5), the velocity and pressure fields can be decomposed as

U(r, θ, z, t) = UHP(r) + u(r, θ, z, t), (2.6)

P(r, θ, z, t) = PHP(z) + p(r, θ, z, t), (2.7)

where u = (ur, uθ , uz) and p are the velocity and pressure deviations from the laminar
fields, respectively. Fundamental studies of pipe flow typically consider two driving
mechanisms: a constant mass flux (Darbyshire & Mullin 1995; Duguet et al. 2008a; Willis
et al. 2013) or a constant pressure gradient (Wedin & Kerswell 2004; Shimizu & Kida
2009). In what follows we will seek comparisons with ECSs enumerated in Willis et al.
(2013); therefore, we choose to use the same constant mass flux formulation. To consider
this formulation, we further decompose the pressure deviation, p, as p = p̂(r, θ, z) + ζ(t)z,
leading to the expression ∇p = ∇p̂ + ζ(t)ẑ (Marensi et al. 2020). Here, ζ(t) = −4β(t)/Re
represents an additional pressure gradient necessary to maintain a constant mass flux at all
times, whereas ∇p̂ denotes a pressure gradient that has no mean streamwise component.
The dimensionless variable, β(t), is an additional pressure fraction that can be determined
in experiments using the following equation:

1 + β(t) = 〈∂P/∂z〉V

〈∂PHP/∂z〉V
, (2.8)

where

〈(·)〉V :=
∫ L

0

∫ 2π

0

∫ 1

0
(·)r dr dθ dz. (2.9)

In our simulations, we compute β(t) through the spatially integrated force balance equation
between pressure and viscous wall shear stress in the streamwise direction

β(t) = −1
2

〈∂uz〉θ,z

∂r

∣∣∣∣
r=1

, (2.10)

where

〈(·)〉θ,z := 1
2πL

∫ L

0

∫ 2π

0
(·) dθ dz. (2.11)

Note that there is no contribution from an external body force in (2.10) since F has no mean
streamwise component in this study (cf. Marensi et al. 2020). Finally, the total pressure
gradient, ∇P, can be transformed using (2.5) and β(t) as

∇P = ∇PHP + ζ(t)ẑ + ∇p̂ (2.12)

= − 4
Re

(1 + β(t))ẑ + ∇p̂. (2.13)

2.2. Direct numerical simulations
We solve the system outlined in § 2.1 numerically using the open-source code openpipeflow
(Willis 2017) which allows the relatively easy implementation of our control terms. Our
computational domain is periodic in both azimuthal and streamwise directions, and the
streamwise length of the periodic pipe is L = 2π/α, e.g. with α = 1.25 corresponding
to L ≈ 5R. Here, u and p̂ are both expanded in discrete Fourier series in the streamwise
and azimuthal directions. Spatial derivatives with respect to r are evaluated based on a
nine-point finite-difference stencil with a non-uniform mesh, for which first-/second-order
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derivatives are calculated to eighth/seventh order (Willis 2017). With these spatial
discretisation schemes, u is expressed as

u(rn, θ, z, t) =
∑

|k|<K

∑
|m|<M

ũkm(rn, t) exp(i(αkz + mθ)), (2.14)

where ũkm are the Fourier coefficients of u, rn (n = 1 . . . N) denotes the radial grid points
(non-uniformly distributed on [0, 1]) and k and m are the streamwise and azimuthal
wavenumbers, respectively, with K and M being the de-aliasing cutoff (see Willis 2017).
The resolution of a given calculation is described by a vector (N, M, K) and is adjusted
until the energy in the spectral coefficients drops by at least five and usually six decades.
Time stepping is executed via a second-order predictor–corrector scheme, with the Euler
predictor method for the nonlinear terms and the Crank–Nicolson method for the viscous
diffusion.

2.3. Continuous and discrete symmetries
The equations of pipe flow are invariant under continuous translations in z

Tz(sz)[ur, uθ , uz, p](r, θ, z) → [ur, uθ , uz, p](r, θ, z + sz), (2.15)

continuous rotations in θ

Tθ (sθ )[ur, uθ , uz, p](r, θ, z) → [ur, uθ , uz, p](r, θ + sθ , z), (2.16)

and reflections about θ = 0

σ [ur, uθ , uz, p](r, θ, z) → [ur, −uθ , uz, p](r, −θ, z). (2.17)

Following the approach by Willis et al. (2013), we will restrict our investigations to the
dynamics restricted to the ‘shift-and-reflect’ symmetric subspace, S = σTz(L/2)

S[ur, uθ , uz, p](r, θ, z) → [ur, −uθ , uz, p](r, −θ, z − Lz/2), (2.18)

and the discrete ‘rotate-and-reflect’ symmetry Zmp = σTθ (π/mp)

Zmp[ur, uθ , uz, p](r, θ, z) → [ur, −uθ , uz, p](r, π/mp − θ, z). (2.19)

Note that mp = 1 denotes azimuthal periodicity (the full space), and mp-fold rotational
symmetry is enforced for mp � 2 (Wedin & Kerswell 2004; Pringle et al. 2009; Willis et al.
2013). By imposing S, the flow is ‘pinned’ in θ and continuous rotations are prohibited.
This means that our solutions are only permitted to travel in the streamwise direction due
to Tz.

2.4. Flow measures
In order to monitor the system behaviour, we consider the spatially integrated quantities
from the energy budget equation

dE
dt

= I − D + ITDF, (2.20)

where E is the total kinetic energy, I is the total energy input due to the imposed pressure
gradient and D is the total energy dissipation

E := 1
2

∫
|U |2 dV, I :=

∫
U · (−∇P) dV, D := 1

Re

∫
|∇ × U |2 dV, (2.21a–c)

1005 A3-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1188


Stabilising travelling waves in pipe flow

and ITDF is the total energy input due to feedback force F

ITDF :=
∫

U · F dV. (2.22)

For the laminar state, ITDF = 0 and the values of energy, input rate and dissipation rate,
Elam, Ilam and Dlam can be computed from (2.21a–c) with U = UHP.

3. Time-delayed feedback

3.1. Formulation
In this section we outline the application of the TDF control (1.2) to the pipe flow. In order
to effectively stabilise travelling-wave solutions, the delayed state must be translated by a
streamwise shift sz in relation to the phase speed, cz, such that cz = sz/τ for a given time
delay τ. Using the translation operator (2.15), the most basic form of TDF force in pipe
flow may be formulated as

F TDF(r, θ, z, t) = G(t)[Tz(sz)u(r, θ, z, t − τ) − u(r, θ, z, t)], (3.1)

where τ is the delay period, and G(t) is the gain. Note that the gain here is a simple scalar
function of time, but it may itself be an operator (matrix) or spatially inhomogeneous.
In the full space a rotation Tθ may also be applied. In order to avoid a discontinuity
propagating through the solution when the control is initiated, we set G(t) using the
following sigmoid function:

G(t) =
⎧⎨
⎩

Gmax

1 + exp[a(b + ts − t)]
, t > ts

0 t � ts.
(3.2)

Here, ts is the time TDF is initiated, Gmax is the maximum gain, a determines the slope of
G(t) and the half-height time, th = ts + b, set by b, is when G(th) = Gmax/2.

The value of the translation, sz, for successful stabilisation will be, in general, unknown
in advance, so we require a method to evolve sz towards the required value. We implement
the adaptive method developed in Lucas & Yasuda (2022). This method allows sz to vary
via gradient descent by solving an ordinary differential equation

dsz

dt
= γsδsz, (3.3)

where γs is a parameter controlling the speed of the descent and δsz is, near a
travelling-wave state, an estimate of the streamwise translation remaining between the
current state and the delayed and translated state. Specifically, δsz is computed as

δsz = sest
z − sz, (3.4)

where sest
z is a streamwise translation that is dynamically estimated. Here, sest

z can be
computed via the time series of cz(t) such that

sest
z (t; τ) =

∫ t

t−τ

cz(t′) dt′. (3.5)

We can compute cz(t) using complex phase rotations such that

cz(t) = 1
Ne

∑
k=±1

∑
m=±1

N−1∑
n=1

1
iαk�t

arg
[

ũkm(rn, t)
ũkm(rn, t − �t)

]
, (3.6)
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where Ne = 4(N − 1) is the number of the elements in the above summation and the wall
points (n = N) are excluded. Note that cz(t) is considered an average phase speed over
one time step, �t, in the streamwise direction. We solve the ordinary differential equation
(ODE) (3.3) while computing sest

z using (3.5) alongside the direct numerical simulation
with a second-order Adams–Bashforth time-stepping scheme. As will be seen in the later
sections, using long time delays can be essential in successful stabilisation of unstable
travelling waves in a straight cylindrical pipe. Computing estimated translations using
(3.5) is slightly different from the original version in Lucas & Yasuda (2022). The current
version is found to perform better than the original when encountering long delays.

3.2. Validation – stabilising weakly unstable solutions
In the absence of any simpler solutions to use for validation (the laminar HP flow is linearly
stable at least up to Re = 107, see Meseguer & Trefethen 2003), we attempt to stabilise
known unstable travelling waves (Willis et al. 2013) at low Re first. For the parameter
values of α = 1.25 (Lz ≈ 5R) and Re = 2400, we are able to stabilise the travelling
waves ML, UB, S2U in their respective symmetric subspace (see table 1). These travelling
waves have only complex unstable eigenvalues at α = 1.25 and Re = 2400 and in their
symmetric subspaces, meaning that the odd-number issue is not applicable, or rather is
avoided by projection into those subspaces (see Lucas & Yasuda 2022, for a discussion).
In order to investigate the effectiveness of TDF as the stability of a target solution
changes, we concentrate on the UB solution (in (S, Z2)) and vary Re, returning to the other
solutions in § 5.3. Figure 1 shows the bifurcation diagram with the continuation of the
UB solution branch (blue) as a function of Re (alongside ML and S2U). This is generated
numerically using the Newton–generalised minimal residual method (GMRES)–hookstep
method (Viswanath 2007, 2009) packaged with the openpipeflow code (Willis 2017). This
confirms that UB originates in a saddle-node bifurcation at Re ≈ 1150. On increasing Re,
the stable upper branch (solid line in figure 1) of UB becomes unstable via a supercritical
Hopf bifurcation at Re ≈ 1800 (unstable solution in dashed blue).

In figure 2, we plot the real and imaginary parts of the complex growth rates of the UB
solution, which demonstrates the expected increase in instability as the Reynolds number
increases. A sequence of further bifurcations is observed, and new unstable directions
are formed as more eigenvalues cross the imaginary axis. The solution has only complex
eigenvalues at least up to Re = 3050; therefore, it is free from the odd-number limitation
(Nakajima 1997).

Using this stability information we attempt to stabilise UB at various Re using TDF.
The initial condition is UB such that U(r, θ, z, 0) = UUB. We set ts = 10 such that the
trajectory is still close to the UB solution when TDF is activated, avoiding the need to
consider if our initial condition falls inside the basin of attraction for now. In this sense
this section verifies a necessary condition for stabilisation and we will investigate more
generic initial conditions later. In all cases where UB is stabilised an initial cz(0) = 0.65 is
used.

In order to quantify the size of the TDF force term, we define the relative residual, Rtot,
between the current state and the translated and delayed state, as

Rtot = ‖Tz(sz)U(r, θ, z, t − τ) − U(r, θ, z, t)‖2

‖U(r, θ, z, t)‖2
, (3.7)

where ‖A‖2 =
√

1
2 〈A · A〉V . Figure 3(a) shows time series in Rtot for seven Reynolds

numbers, Re = 1900, 2000, 2100, 2200, 2300, 2400, 2500, with τ = 2, Gmax = 0.5,
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Stabilising travelling waves in pipe flow

sol. Re α E/Elam I/Ilam Reτ cz sym. μi > 0 max(μi) min(ωi) s.t. μi > 0

ML 2400 1.25 0.88662 1.6970 90.3 0.71049 S, Z2 1c 0.0061985 0.018295
S 1r + 3c 0.0676 0.018295

3000 0.89649 1.5557 96.6 0.72406 S, Z2 1c 0.0087090 0.018675
UB 2400 1.25 0.85273 2.5102 110 0.64924 S, Z2 3c 0.056285 0.32393

S 9c 0.10689 0.048437
— 2r + 17c 0.10751 0.048437

3000 1.25 0.84886 2.6154 125 0.64669 S, Z2 4c 0.082009 0.29065
S2U 2400 1.25 0.89383 1.4695 84.0 0.64763 S 1c 0.014152 0.13040

— 1r + 2c 0.014152 0.12385
N3 2400 2.5 0.83421 3.0283 121 0.59508 S, Z3 — — —

S 1r + 6c 0.091251 0.084125
— 1r + 11c 0.091250 0.084125

N4U 2500 1.7 0.84911 3.2793 128 0.52575 S, Z4 4c 0.24623 0.10674
S 14c 0.24623 0.047864
— 1r + 28c 0.24623 9.9240 × 10−4

N5 2500 2 0.88591 3.0155 123 0.47483 S, Z5 3c 0.1999 0.0324
N7 3500 3 0.95849 3.2916 152 0.39523 S, Z7 2c 0.1775 0.0821

Table 1. Table summarising the properties of all travelling waves studied in this paper. Here, Re = RUcl/ν

is the Reynolds number, α is the streamwise wavenumber (L = 2π/α), E is the total kinetic energy, I is the
total energy input rate, Reτ = √

2ReI/Ilam is the friction Reynolds number, cz is the streamwise phase velocity,
‘sym.’ refers to the symmetric subspace, λi = μi ± iωi are the eigenvalues of the solutions such that the final
three columns are, respectively, the number and type of unstable eigenvalues, the most unstable growth rate
and the smallest unstable eigenfrequency.

1000 1500 2000 2500 3000

Re

1.0

1.5

2.0

2.5

D
/
D

la
m

UB/LB
S2U
ML/MU

Figure 1. Bifurcation diagram showing solution branches for flows with α = 1.25.

γs = 0.1, ts = 10, a = 0.1, b = 100. At Re = 1900, stabilisation of UB is achieved quickly
such that Rtot has decreased to O(10−12) by t = 2000. The rate of attraction of the
travelling wave decreases as Re increases with all other parameters held fixed, as one
might expect.

At Re = 2500, stabilisation is unsuccessful; even by increasing Gmax, we are unable
to stabilise the UB state at this Re, without adjusting the other TDF parameters. It turns
out that the growth rate is not the key quantity preventing stabilisation in this case, and
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Figure 2. The Re-dependence of leading eigenvalues of the UB solution. (a) Real part and (b) imaginary part
of unstable complex eigenvalues. No purely real eigenvalue exists; thus the ‘odd-number limitation’ is not
encountered.
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Figure 3. Time series in the relative residual, Rtot(t; τ) for attempted TDF stabilisation of UB. (a) Shows
Re = 1900, 2000, 2100, 2200, 2300, 2400, 2500 for TDF parameters τ = 2 and Gmax = 0.5, stabilisation fails
for Re > 2400. (b) Shows the Re = 2500 case with Gmax = 0.1 and 0.5, and τ = 2 (both of which fail to
stabilise) and τ = 5 (which stabilises successfully), demonstrating consistency with the linear analysis. The
simulations are initiated with UB at each Reynolds number. Note that recording Rtot(t; τ) initiates at t = τ .

neither is it the appearance of an odd-numbered eigenvalue (in contrast to the findings
in Lucas & Yasuda 2022). Here, UB at Re = 2500 has three unstable eigenfrequencies,
which are decreasing as a function of Re; it is these values which fall outside the domain
of stabilisation of our method. In the next subsection, we analyse the TDF control from
the perspective of ‘frequency damping’ (Akervik et al. 2006; Shaabani-Ardali et al. 2017)
and linear stability analysis.

3.3. Frequency damping and linear stability with TDF
Predicting the outcome of TDF in these scenarios is difficult due to the relatively high
dimension of the unstable manifold (of the uncontrolled solution) and the highly nonlinear
nature of the solution. Nevertheless we can approximate the effect of the TDF terms on
the unstable part of the eigenvalue spectrum. Starting from (1.1)–(1.2), assuming X = X̄ +
veλt, with X̄ a steady-state solution to (1.1), assuming G is now constant and linearising
in the usual way results in the modified eigenvalue problem

λv = J v + Gv
(
e−λτ − 1

)
, (3.8)
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Stabilising travelling waves in pipe flow
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Figure 4. Dependence of the largest real part of the eigenvalue spectrum maxi μi (λi = μi + iωi,) with (a) G
and (b) τ, for the Re = 2500 UB solution, according to the approximate linear theory.

with eigenvalue λ, eigenvector v and J being the Jacobian of f . The eigenvalue
problem is now transcendental and so requires some numerical root searching to obtain
the eigenvalues. Lucas & Yasuda (2022) tackled this difficulty by assuming |λτ | 
 1
and expanding the exponential, however, we are unable to make this assumption here.
Moreover, root searching for λ in the full problem, i.e. some numerical linearisation
of (2.1), would be impractical. Instead, we create a ‘synthetic’ J , which we design to
have the same unstable eigenvalues as the uncontrolled solution and some randomly
chosen eigenvectors. For instance, at Re = 2500, with three pairs of unstable, complex
eigenvalues, this amounts to a six-dimensional real-valued system. We can then solve the
transcendental characteristic equation numerically with a simple Newton search to obtain
all of the roots and hence eigenvalues. This procedure is able to predict well the effect
of TDF on the UB solution; across the parameters shown in figure 3(a), and using the
uncontrolled eigenvalues shown in figure 2, the analysis finds that the largest eigenvalue
crosses the imaginary axis at Re ≈ 2450. Moreover the method is sufficiently efficient that
we can explore the (G, τ ) parameter space. Figure 4 shows two plots of the largest real
part of the eigenvalues of our approximated TDF system at Re = 2500. We observe that
for τ = 2, no value of G results in stability. However, increasing slightly to τ = 5 results
in a region of stability for relatively small G; we see G ≈ 0.1 is roughly optimal. This is
slightly surprising as one would have assumed that as solutions become more unstable, the
remedy would be to apply larger gains to move eigenvalues back across the imaginary axis.
It should be noted that this analysis is only an approximation to the problem; in particular,
it does not predict whether TDF may destabilise stable modes (while it is possible for TDF
to destabilise stable modes or introduce new modes of instability, as found in Linkmann
et al. 2020, this is never observed when the uncontrolled modes are also stabilised and
only for large G and τ ).

We can verify these predictions by performing some additional numerical simulations
with TDF in the full Navier–Stokes equations. Figure 3(b) demonstrates that stability is
observed for τ = 5 and Gmax = 0.1. Moreover Gmax = 0.5 is less strongly stable, and
τ = 2, Gmax = 0.1 is more strongly unstable, all of which is consistent with the above
analysis. While this stability analysis is useful in validating and optimising TDF, it does
not offer much insight into, for instance, why τ ≈ 5 is optimal in this example. Following
the ‘frequency damping’ interpretation of TDF (Akervik et al. 2006; Shaabani-Ardali et al.
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Figure 5. Transfer functions for TDF (ε = 0) and ETDF (various ε /= 0). (a) Shows HETDF(ω/ω∗) where
ω∗ = 2π/τ demonstrating peaks at subharmonics and zeros at harmonics of τ. (b) Shows the product of Hn =
HETDF(ωn, τ ) for the three unstable eigenfrequencies of UB at Re = 2500. This indicates an optimal τ, for
TDF, of around 5.5. This is consistent with the linear analysis shown in figure 4(b).

2017), we define the transfer function

HTDF(iω, τ) = 1
G
L{F TDF}
L{u} = e−iωτ − 1, (3.9)

with L{.}(ω) = ∫ ∞
0 . e−ωt dt the Laplace transform. The Laplace transform of the control

term is L{F TDF}(ω) = −G(1 − e−ωτ )L{u}. Here, HTDF(iω) allows us to ascertain the
relative influence of the control term upon the temporal frequencies of the system in
general (unlike a specific linear stability analysis). Figure 5(a) plots the magnitude of
the transfer function against a normalised angular frequency. The first observation is
that any zero mode is undamped by TDF control; this is an alternative explanation of
the odd-number limitation where a purely real-valued eigenvalue cannot be stabilised in
isolation. The next observation is that any harmonic of the feedback frequency 2π/τ is
also unaffected by the control. The consequence of these facts means that any unstable
eigenmode of the target ECS with a frequency that is either close to zero, or close to the
feedback frequency (or harmonic thereof), will not be stabilised. For high Re travelling
waves, this means that careful tuning of the delay period τ may be necessary as the
likelihood of an unstable eigenfrequency falling near a zero of the transfer function will
increase.

We may use this analysis to interrogate the behaviour of TDF across a range of
delay periods for the UB solution at Re = 2500 discussed above. Defining Hn(τ ) =
|HTDF(iωn, τ )| with ωn the unstable eigenfrequencies of the uncontrolled solution, as
shown in figure 2(b), namely at Re = 2500, ω1 = 0.75, ω2 = 0.48, ω3 = 0.32, we plot
the product H1H2H3 in figure 5(b). This demonstrates clear agreement with the linear
analysis of figure 4 and therefore also the stabilisation of UB in figure 3(b). We see that the
product of transfer functions is maximised at τ ≈ 5 and distinct zeros at harmonics of the
eigenperiods, also coinciding with maxima of max(μ) in figure 4(b). More specifically, the
first zero of H1H2H3 is at τ = 2π/ω1 = 8.25 in the same location as the first maximum
of max(μ) for these parameters, indicating, as expected, TDF will fail for poorly chosen
time delays.
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Stabilising travelling waves in pipe flow

3.4. Diagnosing unstable frequencies
We have gained good insight into the behaviour of TDF in this example. However, this
analysis relies on knowledge of the unstable spectrum of the target solution. One goal for
a fully developed TDF method would be the ability to obtain new, unknown solutions,
without any knowledge of their properties in advance. In the example above, we began
our investigation under this assumption, i.e. the values of τ = 2 and Gmax = 0.5, used in
figure 3(a), are set speculatively after a little trial and error.

When |λτ | 
 1, we can substitute e−λτ ≈ 1 − λτ in (3.8), and we see that the effect
of TDF on eigenvalues of J is a rescaling by 1 + Gτ (i.e. the eigenvalue equation
becomes (1 + Gτ)λv = J v). In the example above, since τ is too small to effectively
damp the lowest-frequency eigenvalues, we observe an unstable oscillation with modified
frequencies ω′ ≈ ω/(1 + Gτ). In the linear analysis of UB, instability occurs at Re ≈
2450 with the τ = 2 and Gmax = 0.5 TDF term active, with two complex conjugate
pairs of eigenvalues crossing the imaginary axis with frequencies ω′ ≈ 0.16 ≈ ω2/2 and
ω′ ≈ 0.246 ≈ ω2/2. This means, if we can capture an estimate of these frequencies
in the numerical simulation where stabilisation has failed, it would be possible to
infer the original, unperturbed frequencies ω. This would enable one to perform the
frequency-domain analysis described earlier and choose more carefully tailored τ.

Taking the time series for the total kinetic energy E(t) for the Re = 2500 case with τ = 2
and Gmax = 0.5, as shown in figure 3, and performing a Fourier transform, we observe, in
figure 7(b) a low-frequency/zero mode associated with a transient growth/decay of energy,
but also two dominant modes at 0.246 and 0.16, as predicted. Similarly we show the case
with τ = 2 and Gmax = 0.1, which has peaks in the power spectrum at ω2/1.2 ≈ 0.4
and ω3/1.2 ≈ 0.266, as we have predicted, but also ω2/1.2 − ω3/1.2, indicating some
nonlinear interactions taking place at slightly larger amplitude from the bifurcation. This
approach allows one to obtain more effective time delays when TDF fails to stabilise a
solution and results in invasive, low-dimensional behaviour, near to a stabilisable state.

4. Generalising time-delayed feedback control

4.1. Extended time-delayed feedback
In the analysis of the previous section we observe relatively narrow operating windows for
which TDF will stabilise the target solution, which, as expected, decrease as Re increases.
A common way to address this problem is via ‘extended time-delayed feedback control’
(ETDF). This feeds an extended historical record into the control term by including times
t − kτ for increasing integers k as time evolves. For our implementation, this would read,
neglecting, for now, translations in z

FETDF(t) = G

[
(1 − ε)

∞∑
k=1

εk−1u(t − kτ) − u(t)

]
,

= G[u(t − τ) − u(t)] + εFETDF(t − τ), (4.1)

where 0 � ε � 1, see Socolar, Sukow & Gauthier (1994). When ε = 0 the control reduces
back to the standard Pyragas control. This has the effect of broadening and flattening the
transfer function

HETDF(iω, τ) = 1
G
L{FETDF}

L{u} = e−iωτ − 1
1 − εe−iωτ

; (4.2)
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see figure 5. This method is attractive as it is relatively simple to implement and in
practice only requires storing one additional history array for FETDF(t − τ) (over a period).
However, for our case, in particular for the analysis performed above with UB, we
observe that the flattening of the transfer function results in much less distinct maxima,
in particular, the peak at τ = 5.5 is much smaller (figure 5b) and is unlikely to result in
the same stabilisation observed with regular TDF. Moreover, we have seen that attempting
to stabilise states with several unstable eigenfrequencies is challenging, and ETDF gives
only a marginal advantage in this regard, particularly if the frequencies are well separated.

4.2. Multiple time-delayed feedback
In the previous example for UB the instability observed at Re = 2500 using τ = 2
was remedied following a careful analysis of the effect of TDF terms on the unstable
eigenvalues of the uncontrolled system. It was noted that the frequencies are key in
choosing an appropriate time delay and that they may be observed in an unsuccessful,
invasive TDF dynamics.

To attenuate oscillations across several frequencies, we introduce MTDF, F MTDF, such
that

F MTDF(r, θ, z, t) =
N∑
i

Gi(t)[Tz(sz)u(r, θ, z, t − τi) − u(r, θ, z, t)], (4.3)

where the ith time delay is τi (i = 1, 2, . . . , N) and we translate the ith delayed state,
u(r, θ, z, t − τi), by the streamwise shift, sz(t; τi). We adjust each streamwise shift for
every delay term using the gradient descent method outlined in § 3.1, however, we have
verified that adapting the i = 1 term only and using sz(t; τi) = cz(t)τi, to match the phases
speeds of the other terms is as effective. Delayed feedback with multiple delays was
previously used in the low-dimensional chaotic system of Chua’s circuit by Ahlborn &
Parlitz (2004), to stabilise a nonlinear steady solution. They reported that MTDF helped
to expand the basin of attraction of equilibrium solutions, being more efficient than ETDF
(Socolar et al. 1994; Sukow et al. 1997).

We can repeat the analysis of § 3.3 with MTDF by introducing a second TDF term into
(3.8). We will investigate the unstable Re = 2500 case, i.e. setting τ1 = 2, G1 = 0.5 and
varying τ2 and G2. Given that we have observed ω2/2 and ω3/2 in the TDF example, it
would be sensible to choose a τ2 to stabilise these modes. Via the transfer function analysis
of the previous section, now with H∗

n = |HTDF(iωn/(1 + G1τ1), τ2)|, we are again able
to predict an optimal τ2. The maxima of the product H∗

2H∗
3 line up with the minima of

max(μi) from the MTDF linear theory, indicating an optimal τ2 ≈ 16, see figures 6(b)
and 7(a). The interpretation here is that the second term should act to attenuate the
frequencies modified by the first term (or vice versa). It should also be noted that there
is now a far larger range of τ2 and G2 which stabilises UB, meaning less speculative tuning
of parameters, particularly of G2. This result is confirmed in the numerical simulation,
figure 8 shows very fast stabilisation of UB at Re = 2500 with τ1 = 2 and τ2 = 16. Success
is also observed with τ2 = 32 although with a slower rate of attraction, and τ2 = 40 shows
instability, all of which is consistent with the linear and frequency analysis shown in
figures 6 and 7.

Note one could define a transfer function HMTDF, for MTDF, given by

HMTDF(iω) = 1∑N
i Gi

L{FMTDF}
L{u} =

∑N
i Gi exp(−iωτi)∑N

i Gi
− 1. (4.4)
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Figure 6. Dependence of the largest real part of the eigenvalue spectrum maxi μi with (a) G2 and (b) τ2, for
the Re = 2500 UB solution with two-term MTDF and τ1 = 2 and G1 = 0.5. Most effective stabilisation is
observed with τ2 ≈ 16 and the rather modest G2 ≈ 0.05.
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Figure 7. (a) Shows the product of transfer functions H∗
1 H∗

2 as defined in the text, for the modified
eigenfrequencies when attempting to stabilise UB at Re = 2500 using τ = 2 and G = 0.5. Note that the peak
coincides with figure 6(b), i.e. τ2 ≈ 16 is around the optimal. (b) Shows the power spectrum of energy, Ê, for
the unsuccessful TDF cases at Re = 2500 with τ = 2 and G = 0.5 and 0.1. Vertical lines show that the peaks
in these spectra follow the expected scaling by 1/(1 + τG).

However, applying this to the case under discussion effectively yields a repeat of the single
TDF result, in that the optimal τ2 to stabilise the three eigenfrequencies, with τ1 = 2, is
around 5; HMTDF does not accurately predict the effect of combinations of time delays
upon a given state.

5. Stabilisation of nonlinear travelling wave from turbulence

Having described the ability of MTDF to successfully damp instability of nonlinear
travelling waves, in this section we will demonstrate that such stabilised states can have
suitably large basins of attractions and that it is possible to stabilise them from turbulence.
We proceed as though the properties of the target solutions are unknown and allow the
multiscale fluctuations of turbulence to fully develop before attempting stabilisation using
MTDF. Turbulent fluctuations may include much longer time scales than the eigenperiods
of the target solution. We imagine that some well-chosen delays can suppress sufficient
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Figure 8. The MTDF stabilisation of the UB travelling wave at Re = 2500, shown via time series of (a) E/Elam
and (b) Rtot. Comparison shows various choices of τ2 with τ1 = 2, G1 = 0.5 and G2 = 0.1. We see rapid
stabilisation for the optimal τ2 = 16, moderate stabilisation for τ2 = 32 and instability for τ = 40.

spatio-temporal fluctuations in turbulence, without relaminarising the flow completely, at
the same time as achieving stabilisation of the target solution. In other words, there is
some motivation for including MTDF terms to widen the basin of attraction of the target
state, as well as to force eigenvalues across the imaginary axis. However, this introduces
a challenge: the more delays we use, the more parameters we need to adjust to stabilise
nonlinear travelling waves successfully.

Without prior knowledge of the solution’s instability, we seek to exploit some automatic
techniques for obtaining stabilising parameter values. We have seen how τi may be chosen
by analysing the data; in the next section we discuss the adaptive gain method of Lehnert
et al. (2011), which automates the selection of G and seeks to avoid a laborious parameter
search.

5.1. Adaptive gain method
The speed-gradient method of Lehnert et al. (2011) seeks to find an optimal TDF gain by
dynamically adjusting G(t) by a ‘speed-gradient’ descent method. In order to exploit this
method, we need to extend it to handle multiple terms and the translation operator, which
is applied to the control term(s). We define the cost function, Qi(t), for the ith feedback
term as

Qi(t) = 1
2

∫
|Tz(sz)u(x, t − τi) − u(x, t)|2 dV, (5.1)

where x is the position vector and successful control yields Qi(t) → 0 as t → ∞. The
speed-gradient algorithm in the differential form is given by

d
dt

Gi(t) = −γ G
i ∇Gi

dQi

dt
, (5.2)

where γ G
i > 0 is a free parameter controlling the descent rate and ∇Gi denotes ∂/∂Gi.

By taking time derivative of (5.1), we have

dQi

dt
=

∫
gi(x, t) dV, (5.3)
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Stabilising travelling waves in pipe flow

where

gi(x, t) = [Tz(sz)u(x, t − τi) − u(x, t)] ·
[
Tz(sz)

∂u
∂t

(x, t − τi) − ∂u
∂t

(x, t)
]

, (5.4)

and we have assumed that γs is chosen such that dsz/dt 
 1, hence sz is approximately
constant for the purposes of updating Gi(t). Using the Navier–Stokes momentum
equations with MTDF in the form

∂

∂t
u(x, t) = f (x, t) +

N∑
i

Gi[Tz(sz)u(x, t − τi) − u(x, t)], (5.5)

where f includes all the terms from the right-hand side of the momentum equation,
alongside (5.2) and (5.3), we obtain the following formula:

d
dt

Gi(t) = −γ G
i

∫
hi(x, t) dV, (5.6)

where

hi(x, t) = [Tz(sz)u(x, t − τi) − u(x, t)]

· [u(x, t) − 2Tz(sz)u(x, t − τi) + Tz(2sz)u(x, t − 2τi)]. (5.7)

Note that, on taking ∇Gi , only the MTDF terms contribute to hi. Equation (5.7) indicates
that, when using this adaptive gain method, the code should store instantaneous velocity
field data over 2 delay periods, 2τi, hence doubling the storage requirements. However,
we implement a temporal interpolation procedure using cubic splines (Shaabani-Ardali
et al. 2017) to enable us to store longer historical records of u, albeit at the cost of some
approximation error in the interpolation method.

5.2. Stabilising UB with MTDF and adaptive gain
Here, we attempt to stabilise UB at Re = 3000 from a turbulent state, in the
(S, Z2)-symmetric subspace using MTDF. In this subspace, UB at Re = 3000 has 4 pairs of
complex unstable eigenvalues, and therefore it is unaffected by the odd-number limitation
(Nakajima 1997). We approach this problem as if the eigenvalues are unknown, and we
select τi values and other MTDF parameters without any linear analysis to steer our
choices.

We consider first an MTDF case with two delays, (τ1, τ2) = (2, 9). We set the
following parameters for τ1; (ts, Gmax, a, b, γ s) = (1000, 0.5, 0.1, 100, 0.1), i.e. TDF
becomes active at t = 1000, giving a period of turbulent activity, and an initial sigmoid
profile of G(t). The adaptive gain method for G1(t), with γ G

1 = 0.1, is then started at
t = 2000, and G1(t) evolves following the ODE (5.2). The second feedback term with
gain, G2(t), evolves from zero at t = 2000 through the adaptive gain method (γ G

2 = 0.1).
Without knowing successful values of Gi and sz(t; τi) in advance, we successfully stabilise
UB at Re = 3000 using this double-delay MTDF (see figure 9). In order to verify the
non-invasive nature of the stabilisation in the MTDF cases, the definition of Rtot requires
updating

Rtot = ‖∑N
i

[
Tz(sz)U(r, θ, z, t − τi) − U(r, θ, z, t)

] ‖2

‖U(r, θ, z, t)‖2
. (5.8)

Successful, non-invasive stabilisation is quantitatively confirmed by the very small
values of both Rtot (figure 9a) and ITDF/Ilam, the latter being of the order of 10−8 at
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Figure 9. Successful stabilisation of UB at Re = 3000 from a turbulent state using MTDF (4.3) with two
terms (τ1 = 2, τ2 = 9) and four terms (τ1 = 2, τ2 = 9, τ3 = 17, τ4 = 33). Panels show (a) Rtot, (b) cz, (c, top)
Gi with two terms, (c, bottom) Gi with four terms, (d) I/Ilam and ITDF/Ilam. The gain, G1(t), is switched on at
t = 1000. Here, G1(t) is initially increased following the sigmoid gain function (3.2) where (ts, Gmax

1 , a, b) =
(1000, 0.1, 0.1, 100). At t = 2000, the Gi parameters begin to evolve using the adaptive gain method as
described by (5.6), with a constant value of γ G

i = 0.1 applied to all delay terms. The adaptive shift method
is switched on at t = 5000, where γ s = 0.1 and cz(0) = 0.65.

t = 10 000 (see figure 9d). The phase speed, cz, is also evolved onto its exact value through
the adaptive translation method and we observe Gi being adjusted by the speed-gradient
method onto stabilising values. A snapshot of the stabilised UB at t = 20 000 is shown in
figure 10(b) with a turbulent field at t = 0 for comparison in figure 10(a).

Figure 9 also shows an MTDF case with four delays where τ1 = 2, τ2 = 9, τ3 = 17, τ4 =
33. Motivated by our frequency-domain analysis in § 3.3, these delays are carefully chosen
to be non-commensurate and provide broad coverage of the temporal spectrum. As in the
two-delay case, only G1(t) is switched on at t = 1000 following the sigmoid gain function
(3.2), where (ts, Gmax

1 , a, b, γ s) = (1000, 0.1, 0.1, 100, 0.1). The adaptive gain method is
switched on at t = 2000 with γ G = 0.1 for all the terms. Once the time-dependent gains
are turned on, ITDF/Ilam starts to fluctuate with an amplitude smaller than 0.02 and then
exhibits a damped oscillatory behaviour, similar to the case with two delays. There are
no significant qualitative differences between the two- and four-term MTDF cases; in the
four-delay case, G3 is the second largest (recall τ3 = 17) and G2 takes a smaller value at
stabilisation than the two-delay case. Gain G4 is the smallest but still makes a significant
contribution. This suggests that the terms are all influencing the stabilisation, while the
two-delay case demonstrates that not all terms are necessary for stabilisation. Figure 9(a)
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Figure 10. Two snapshots from the simulation using MTDF with two delays (see figure 9). (a) Turbulent
field at t = 0 and (b) stabilised UB at t = 20 000. The cyan isosurface denotes uz = −0.1. The red and blue
isosurfaces denote ωz = 0.15 and −0.15, respectively, where ωz = (∇ × u)z is the streamwise fluctuating
vorticity.

shows that the rate of attraction is of the same order in both cases, and saturation is reached
at roughly the same time. This may suggest that the principal benefit of additional terms
in MTDF is to widen the parameter windows under which UB is stabilised. If stabilising
Gi values are not obtained, it may be observed that the state is brought near the target
solution but then moves away from it along some unstable manifold, similar to the blue
curves in figure 8. The adaptive method gives the gains freedom to find values which
succeed in stabilisation, instead of this close approach. It is worth noting that the energy
injected by the forcing is only around 2 %–3 % of the energy injected by the imposed
pressure gradient (see figure 9d). This means that, even at early times when the MTDF
terms are largest, the overall energetic influence of MTDF on the flow is quite small. This
may provide motivation for the development of TDF or MTDF in real-world experimental
control situations; TDF does not need to intervene strongly to stabilise these travelling
waves.

5.3. Travelling waves S2U, ML, N3, N4U, N5 and N7

Having shown that UB is able to be stabilised from the turbulent state by our adaptive
MTDF approach, we now demonstrate the generality of these results by presenting the
stabilisation of the other travelling waves outlined in table 1; the stabilising parameters
can be found in table 2. First, we tackle S2U at Re = 2400 in the S symmetric subspace
where the solution has one pair of unstable eigenvalues λ± = 0.14 ± 0.13i (note in the full
space this solution violates the odd-number condition, see table 1). In theory it should be
possible to stabilise this solution with a single TDF term, provided τ and G take suitable
values. However, as in the previous case, we continue with MTDF as though we did not
know the stability information and start from the turbulent attractor. We use four terms
with the same choices for τi, i.e. 2, 9, 17 and 33, as before. In the course of calibrating our
adaptive methods, it was noted that starting Gi from 0 could lead to some slight instability;
individual ‘speed gradients’ begin with a large value (not only when targeting this solution
but in general). A simple way to avoid this is to begin with small non-zero gains before
starting to adapt, but again initialised with a sigmoid function (3.2). In this case we keep all
other parameters the same as the four-term UB case of figure 9, only with Gmax

i = 0.01 for
i = 2, 3, 4 and in the S subspace, see table 2. The stabilisation of S2U appears quite similar
to that of UB. Figure 11(a) shows rapid stabilisation with the residual becoming very small
O(10−11). Figure 11(b) shows the normalised energy input rate, which demonstrates the
large-amplitude turbulent fluctuations before MTDF is activated and the settling into the
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sol. sym. Re α τ1 τ2 τ3 τ4 Gmax
1 Gmax

i /= 1 γ G cz(0) γs

UB S, Z2 3000 1.25 2 9 17 33 0.1 0 0.1 0.65 0.1
ML S, Z2 3000 1.25 2 9 33 150 0.1 0.01 0.5 0.71 0.1
S2U S 2400 1.25 2 9 17 33 0.1 0.01 0.1 0.65 0.1
N4U S, Z4 2500 1.7 2 9 17 33 0.1 0.01 0.1 0.5 0.1
N5 S, Z5 2500 2 2 9 17 33 0.1 0.01 0.1 0.47 0.01
N7 S, Z7 3500 3 2 9 17 33 0.1 0.01 0.1 0.4 0.01

Table 2. Table summarising the parameters used in the four-term MTDF stabilisation of the travelling waves
discussed. In all cases the start time ts = 1000 is used, a = 0.1, b = 100 for the sigmoid initialisation of Gi
with adaptivity started at t = 2000 for all terms in all cases. Adaptivity of the translation (or phase speed) is
initiated at t = 5000, with the initial value shown in the table as cz(0).

final constant value at late times. It is observed that the residual only falls to small values
once cz is dynamically adjusted to its exact value, shown in figure 11(c). In this example,
the gains, plotted in figure 11(d), do not undergo any significant dynamical adjustment.
Figure 12(a) shows snapshots of this stabilisation in the (r, θ) plane. The travelling wave
ML is quite weakly unstable, in the (S, Z2) subspace at Re = 3000 and the solution has only
one unstable direction with λ± = 0.0087 ± 0.019i (see table 1). This provides a useful test
case to demonstrate that, in this subspace at this Reynolds number, multiple solutions can
be stabilised by only adjusting the MTDF parameters without requiring special treatment
of the initial condition. Note that the unstable eigenfrequency is very small for this
solution, which necessitates using larger delay periods, and tests with similar parameters
used to stabilise UB either restabilise UB or relaminarise. In this instance we choose
τi ∈ 2, 9, 33, 150 and initiate with cz(0) = 0.71, the only other difference from earlier
cases is that γ G = 0.5 for all terms (see table 2). As is shown in figure 11, ML, despite
being much less unstable than the other cases we have studied, shows weaker stabilisation.
In addition, we see that G4 undergoes significant growth once the speed-gradient method
is initiated at t = 2000, becoming the largest gain of the four. Only once G4 has grown
do we observe the solution stabilising, indicating that this term is dominant in ensuring
stabilisation. This fact is consistent with the frequency-domain analysis. In retrospect, a
larger starting Gmax

4 is likely to improve the stabilisation of ML. Nevertheless the adaptive
approach has been able to determine stabilising gains automatically. Figure 12(b) shows
snapshots of this stabilisation.

Noting that ML and UB have been successfully stabilised at the same Reynolds number,
in the same symmetric subspace and with quite similar MTDF parameters, we have
verified that taking the parameters used to stabilise ML (row 2 of table 2) and changing
only cz(0) = 0.65 results in the stabilisation of UB. In other words both solutions can be
obtained varying only cz(0).

In (S, Z3) at Re = 2500 and α = 2.5, a travelling wave, N3, is stable, meaning that
stabilisation is not necessary. However, we have confirmed that, by applying the symmetry
operator SZ3 to the TDF terms, e.g.

F MTDF(r, θ, z, t) =
N∑
i

Gi(t)[SZ3Tz(sz)u(r, θ, z, t − τi) − u(r, θ, z, t)], (5.9)

stabilisation can be obtained in the full space with some arbitrary (small) τ and Gi, from
a turbulent initial history. As explained in Lucas & Yasuda (2022), TDF or MTDF will
simply drive the dynamics onto the symmetric subspace where the travelling wave is an
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Figure 11. Plots showing successful stabilisation of S2U, ML, N4U, N5, N7 in their respective subspaces, from
a turbulent state using four-term MTDF (4.3). Specific parameter values can be found in table 2. (a) Shows the
residual Rtot, (b) the energy input I/Ilam, (c) the phase speeds cz dynamically converging to their exact values
and (d) the time-dependent gains Gi(t).

attractor. This result indicates that the MTDF results shown earlier could be repeated
in less-restrictive subspaces, with symmetry operators embedded in the MTDF terms,
similarly to Lucas & Yasuda (2022). The travelling wave N4U is stabilised in the (S, Z4)

subspace at Re = 2500, α = 1.7 with the same MTDF parameters used in the S2U case,
only now with cz(0) = 0.5, as outlined in table 2. There are few significant differences in
this case, G4 and G1 both grow to values ≈0.3 with G3 also becoming relatively large.
As with earlier examples, an analysis of the unstable eigenfrequencies would indicate
which terms are necessary in this case, but in the interests of brevity we will not repeat
a similar calculation here, noting that, even without this analysis, significant parameter
tuning was not necessary to stabilise this solution. As with the other travelling waves, the
residual Rtot only begins to fall to values for which MTDF may be considered non-invasive
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Figure 12. Snapshots of the (r, θ) plane at z = 0 in the frame of reference translating with cz of the travelling
waves for the MTDF cases outlined in table 2. From top to bottom (a) S2U, (b) ML, (c) N4U, (d) N5 and
(e) N7. Coloured contours represent uz (each with 7 contours evenly spaced in [−0.45, 0.45] except S2U,
which uses [−0.35, 0.35]) and arrows represent the in-plane velocity vector. The final snapshot at t = 10 000
shows the stabilised state. Supplementary movies for these examples are available at https://doi.org/10.1017/
jfm.2024.1188.
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Stabilising travelling waves in pipe flow

as the phase speed converges to its final value, i.e. t > 5000. Figure 12(c) shows snapshots
of this stabilisation.

In an effort to provide some evidence for the assertion that this method will enable
new, unknown, solutions to be obtained, we have conducted investigations in the (S, Z5)
and (S, Z7) subspaces. While solutions have been reported in the (S, Z5) subspace before
(Pringle et al. 2009), insufficient stability or phase speed data are tabulated or available
in databases to enable stabilising parameters to be predetermined (the previous states
discussed in this paper are available at Openpipeflow.org and/or are tabulated in Willis
et al. 2013). In the (S, Z7) subspace, we are unaware of any solutions having been reported.
Therefore, for these cases, we do not, or cannot, target any particular solutions, and so this
is a strong test of the ability of the method to obtain at least ‘unknown’ solutions, if not
ones which are new to the field. The only observations that we use to inform our attempt
are that, as the rotational symmetry order parameter, mp, increases, the minimal axial
wavenumber α should also increase for such travelling waves. In addition, we might expect
a reduction in the phase speed. Therefore for (S, Z5) we use α = 2 and the initial condition
will be cz(0) = 0.47. We leave all other parameters the same as the successful N4U case,
e.g. Re = 2500 and the same Gi and descent parameters. This results in a successful
stabilisation of a travelling wave, which we denote as N5. In this first attempt, we observe
a very slow rate of stabilisation, which appears to be a result of oscillation in the cz(t)
descent. Reducing γ s to 0.01 prevents this oscillation and results in a more acceptable
stabilisation rate; figure 11(a) shows the residual falling to 10−9 by time 20 000. Note
that we choose this reduction in γ s only so that the accompanying plots in figure 11 are
comparable to the other cases and are more easily interpreted (i.e. we avoid computing and
displaying very late times ∼50 000). Figure 12(d) shows snapshots of this stabilisation.

In (S, Z7), we study Re = 3500 and α = 3, where sustained turbulence is observed prior
to starting control. We use the same MTDF parameters as for N5 only our first attempt used
cz(0) = 0.45. This case was unsuccessful, and it was clear from the behaviour of cz(t) that
this initial condition was too large. Choosing cz(0) = 0.4 resulted in the successful case
displayed in figure 11, labelled N7. This was the extent of the trial-and-error required
to stabilise this new travelling wave. Figure 11(a) shows quite fast stabilisation, and the
energy input rate settles to its final value quite early (see figure 11b). This may be, in part,
due to 0.4 being a very good guess for the phase speed, as indicated by the evolution of
cz(t) in figure 11(c). Figure 12(e) shows snapshots of this stabilisation.

In the case of the N5 and N7 solutions, since they are unknown, we converge them
using the Newton–GMRES–hookstep method and obtain their leading eigenvalues by
Arnoldi iteration, as shown in table 1. Taking the final snapshot as the starting guess and a
translation of sz = τ1cz(T) from the MTDF result gives a starting Newton residual around
10−6 or 10−7 for these cases, with Newton converging in one step.

6. Conclusion

In this paper, we present the first successful non-invasive stabilisation of highly unstable
nonlinear travelling waves (having multiple unstable directions) in a straight cylindrical
pipe through the use of a control method involving TDF. Our novel TDF protocol allows
for the stabilisation of multiple nonlinear travelling waves at a range of Reynolds numbers
in a variety of symmetric subspaces from a generic turbulent history and with speculative
control parameters.

Furthermore, our development of the TDF method has led to a deeper understanding
of the principles governing TDF through an ‘approximate’ linear stability analysis and
frequency-domain analysis (see e.g. § 3.3). We have shown that the effect of TDF and
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MTDF on the unstable part of solution’s eigenvalue spectrum can be approximated
surprisingly well, enough to point a parameter study in the right direction. Moreover,
it has provided clearer insight into the frequency-domain interpretation of the control
method, which in turn gives a helpful means to choose delay periods in these cases. Finally,
we have shown that, if stabilisation is nearly achieved, it can be possible to diagnose
eigenfrequencies and hence pick more appropriate time delays, without the need for an
a priori stability analysis of the target solution.

In order to enhance the performance of our TDF method, we implemented several
optimisation methods that enable the feedback term(s) to vanish, as depicted in figure 9(b).
Because the bulk flow in pipe flow is driven by an imposed axial pressure gradient, all
invariant solutions take the form of relative solutions, such as travelling waves and relative
periodic orbits. Therefore, applying a translation operator to the delay term(s) is essential.
To achieve this, we utilised the adaptive shift method (see § 3.1), which dynamically
adjusts the translations to match the phase speeds of the target solution through a simple
ODE (3.3). We have demonstrated here, for the first time, that, by changing the initial
condition for sz or cz, different travelling waves can be stabilised.

In the chaotic pipe flow system, we find that MTDF control is effective at improving
the control’s ability to stabilise a wide range of unstable eigenfrequencies, as shown
in § 4.2. A helpful consequence of MTDF is that it will serve to damp very slow
temporal oscillations, which are typical in pipe flow (Shih, Hsieh & Goldenfeld 2016).
As demonstrated in the results of §§ 5.2 and 5.3, successful stabilisations are found when
MTDF is initiated with a short time delay (τ1 = 2 in all our cases), which acts for
some time period before the rest of the terms become active. The effect is to suppress
slow oscillations, importantly without relaminarising, giving the remaining terms a better
chance at controlling the target travelling wave. In other words, this initial delay is an
effective means to widen the basin of attraction. In some cases τ1 contributes directly to
altering the linear stability of the travelling waves; in others it only provides a nonlinear
effect.

We have also sought to avoid expensive parametric studies. To achieve this, we have
introduced the adaptive gain method (§ 5.1) into our TDF protocol. This method automates
our search for an appropriate gain, thereby avoiding an exhaustive parametric search for Gi
values. We have observed this approach to be highly effective; for instance in § 5.3 when
stabilising ML, the longest time delay gain, G4, is observed to grow significantly, compared
with the other terms, showing that τ = 150 was important in ensuring stabilisation. This
is consistent with our frequency analysis when noticing that this travelling wave has a very
large unstable eigenperiod of around 330.

During this work we have demonstrated that TDF, or more accurately MTDF, can
stabilise multiple states at the same parameter values. In other words, multiple attractors
can coexist; UB and ML are stabilised by varying only the initial cz. In this example, the
two states are relatively well separated in phase space (upper and lower branch solutions,
see figure 1) so it is perhaps surprising that ML is stabilised from a turbulent initial
condition. This is a promising result as it demonstrates that the method does not require
significant intervention to move from one solution to the next. However, it does open up a
number of interesting questions. In particular, how might one design a systematic search,
or data-driven approach, to explore basins of attraction of various potential solutions? For
instance, UB at Re = 2400 in the S subspace is highly unstable and has 9 complex pairs
of eigenvalues, in theory this could be stabilised by MTDF, however, it will ‘compete’
with S2U, which is much less unstable (1 unstable direction), is also upper branch and
has a very similar phase speed (see table 1). If any of the 9 eigenvalues has a particularly
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small eigenfrequency, necessitating a long time delay, then close proximity to the solution
is likely to be necessary for any stabilisation to be successful. We have also seen that
trialling various subspaces and/or embedding symmetry operators into TDF terms is a
useful way to obtain different solutions, avoid the odd-number issue and avoid dealing with
multiple attractors. However, we have not conducted an exhaustive search of all possible
subspaces, pipe lengths and Re. We expect that travelling-wave solutions, or even relative
periodic orbits, can be stabilised with TDF, at a wide range of Reynolds numbers, pipe
lengths and subspaces – not to mention in other wall-bounded shear flows or systems
with additional physics such as stratification or rotation where new dynamically important
temporal frequencies arise.

The experimental applicability of these results is not immediately obvious. In order to
address this, at least in a proof-of-concept manner, we have trialled a handful of cases
where the control force F TDF is premultiplied by the Kronecker delta function δri=rN−1 .
In other words, TDF is no longer acting as a full-state control method but is applied
only to the cylinder of grid points adjacent to the wall. For instance, the stabilisation of
UB shown in figure 3 (τ = 5, G = 0.1) is successful with this spatially localised control
without any further parameter tuning (figures not shown for brevity). The fact that TDF can
be successful when only applied to a subset of the degrees of freedom in the problem gives
some optimism that an experimental version of TDF may be successful. It is also worth
noting that TDF has been successful in an experimental Taylor–Couette flow (Lüthje et al.
2001) by applying a boundary forcing.

In this paper, we have not tackled the odd-number limitation (Nakajima 1997), which
is a contentious issue in the TDF literature. Further improvements to this method are
necessary in order to stabilise odd-number solutions. One possibility is the half-period
TDF (Nakajima & Ueda 1998a), which is similar in spirit to the use of symmetries
here and in Lucas & Yasuda (2022). Another is ‘act-and-wait’ TDF (Pyragas & Pyragas
2018, 2019), where a time-dependent switching of the TDF gain is applied, meaning
uncontrolled dynamics is always used in the delay period, or ‘unstable ETDF’ (Pyragas
2001), where an additional unstable degree of freedom is introduced into the problem to
create an even pair of exponents. We have demonstrated that there is some potential for
this method in controlling nonlinear states in spatio-temporal chaos, which will hopefully
serve as motivation for further developments tackling both the odd-number issue and even
higher-dimensional problems at large Reynolds numbers and in large domains. Potentially,
the most promising avenue for TDF in fluid flows is as a control method in a real physical
system where a non-trivial flow state, perhaps of a specific dissipation or mixing rate, is
desired but full spatio-temporal chaos is not. We have shown that, with careful application
of a time-delayed approach, various kinds of target solutions can be relatively easily
obtained with minimal intervention.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1188.
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