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Summary

Imputation of moderate-density genotypes from low-density panels is of increasing interest in genomic selection,
because it can dramatically reduce genotyping costs. Several imputation software packages have been developed,
but they vary in imputation accuracy, and imputed genotypes may be inconsistent among methods. An
AdaBoost-like approach is proposed to combine imputation results from several independent software
packages, i.e. Beagle(v3.3), IMPUTE(v2.0), fastPHASE(v1.4), AlphaImpute, findhap(v2) and Fimpute(v2), with
each package serving as a basic classifier in an ensemble-based system. The ensemble-based method computes
weights sequentially for all classifiers, and combines results from component methods via weighted majority
‘voting’ to determine unknown genotypes. The data included 3078 registered Angus cattle, each genotyped
with the Illumina BovineSNP50 BeadChip. SNP genotypes on three chromosomes (BTA1, BTA16 and BTA28)
were used to compare imputation accuracy among methods, and the application involved the imputation of
50K genotypes covering 29 chromosomes based on a set of 5K genotypes. Beagle and Fimpute had the greatest
accuracy among the six imputation packages, which ranged from 0.8677 to 0.9858. The proposed ensemble
method was better than any of these packages, but the sequence of independent classifiers in the voting scheme
affected imputation accuracy. The ensemble systems yielding the best imputation accuracies were those that
had Beagle as first classifier, followed by one or two methods that utilized pedigree information. A salient
feature of the proposed ensemble method is that it can solve imputation inconsistencies among different
imputation methods, hence leading to a more reliable system for imputing genotypes relative to independent
methods.

1. Introduction

Single nucleotide polymorphism (SNP) genotyping
chips have enabled an era of genomic selection, in
which dense SNP genotypes covering the genome are
used to predict the genetic merit of candidate in-
dividuals or lines for breeding purposes (Meuwissen
et al., 2001; Heslot et al., 2012). In cattle, for example,
genomic estimated breeding values (GEBVs) can be
predicted with a considerably good accuracy (Saatchi
et al., 2011). However, commercial moderate density

SNP arrays, such as the Ilumina BovineSNP50
Beadchip (Matukumalli et al., 2009), are costly, which
have limited their applications to males and elite
females. Although high predictive accuracy has been
documented, e.g. by Weigel et al. (2009), using low-
density assays with 300–2000 selected SNPs, validity
of each of these low-density genotyping panels
is usually intrinsic to a specific trait and a given
breed. As a cost-effective alternative solution to gen-
erating moderate density genotypes, various impu-
tation strategies have been sought. The idea is to
genotype candidate animals with a low-density plat-
form comprising equally spaced SNPs, and then to
impute moderate-density genotypes via appropriate
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statistical models (e.g. Habier et al., 2009; Weigel
et al., 2009; Zhang & Druet, 2010).

Several software packages have been developed for
genotype imputation in humans or livestock. Based
on the sources of information used to infer missing
genotypes, imputation methods can be divided into
family-based or population-based, or those that
make use of both sources. The family-based approach
makes use of linkage and Mendelian segregation
rules, and is most accurate for animals having geno-
typed relatives. The population-based approach
utilizes linkage disequilibrium (LD) information be-
tween missing SNPs and the observed flanking SNPs,
and is well suited for a set of unrelated individuals
or for animals whose close ancestors have not been
genotyped. In practice, however, choosing an appro-
priate method is not always an easy decision. One
may wish to choose a method that yields the greatest
imputation accuracy, but such information is not
available before the data at hand are actually ana-
lysed. In addition, none of the current methods pro-
vide perfect imputation, and imputed genotypes may
be inconsistent among programs. Solving such in-
consistencies poses another challenge in imputation.
From the viewpoint of machine learning, genotype
imputation can be considered as a classification
problem, and each imputation method can be viewed
as an independent classifier. Ensemble learning algo-
rithms (e.g. Polikar, 2006) can be helpful for com-
bining predictions from alternative models, and can
yield final classification results that are more robust
than those from individual classifiers.

Ensemble learning is a machine learning paradigm
where multiple learners are trained to solve the
same problem. Unlike ordinary machine learning ap-
proaches, which learn about a sole hypothesis from
training data, an ensemble method constructs a set of
hypotheses and combines them in the final decision.
Dasarathy & Sheela (1978) discussed the problem of
partitioning the feature space using two or more
classifiers, and this was one of the earliest studies on
ensemble systems. A wave of research on ensemble
learning started in the 1990s. Hansen & Salamon
(1990) showed that the generalization performance
of a neural network can be improved by using an
ensemble of similarly configured neural networks;
Schapire (1990) proved that a strong classifier (i.e.
approximately correct) can be generated by combining
weak classifiers through boosting, which was the pre-
decessor ofAdaBoost algorithms. Thereafter, research
in ensemble systems has expanded rapidly, leading
to many methods (Polikar, 2006). Within these,
AdaBoost (Freund & Schapire, 1996) became one of
the most widely used ensemble methods, since it can
improve generalization performance relative to indi-
vidual methods or classifiers (Sewell, 2011). The basic
principle of AdaBoost is to combine multiple base

classifiers to produce a committee, whose performance
is better than that of any of the base classifiers. The
latter are trained in sequence using a weighted form of
the dataset in which the weights associated with each
data point depend on the performance of the previous
classifiers. Points that are misclassified by one of
the base classifiers are given greater weight when used
to train the next classifier in the sequence. Once all
classifiers have been trained, their predictions are
combined through a weighted majority voting scheme
(Bishop, 2006). At present, no reports are available on
the application ofAdaboost to genotype imputation in
animal genetics and breeding.

The objective of this study was to investigate the
performance of an ensemble approach to imputing
moderate-density SNP genotypes. This approach was
used to impute 50K genotypes from 5K genotypes in a
registered Angus cattle population.

2. Materials and methods

(i) Data

Data were from Merial Limited and consisted of 3078
Angus animals, each genotyped using the Illumina
BovineSNP50 BeadChip. Quality control and data
editing were carried out by Merial Limited, and we
further deleted the individuals and markers that had
more than 10% missing genotypes. The final dataset
has 3059 animals and 51 911 SNPs across the whole
genome. All animals are sires with known parents,
and a pedigree file including 10 163 individuals was
created by tracing ancestors. Since all genotyped ani-
mals were male, we traced their sire, paternal-grand-
sire and maternal-grandsire among all genotyped
animals, and found that there were 2919 individuals
with more than one genotyped relative, and 140 in-
dividuals did not have any genotyped relatives.

To assess imputation accuracy, cross-validation
was used, with the dataset randomly divided into
three approximately equal portions. Two of the por-
tions were used for training the imputation models,
and the remaining portion was used for testing im-
putation accuracy. To compare imputation accuracy
among methods, we focused on three representative
chromosomes: 1 (longest), 16 (moderate size) and 28
(one of the shortest). After data editing and quality
control, there were 3348 SNPs on chromosome 1,
1628 SNPs on chromosome 16 and 944 SNPs on
chromosome 28 in the training sets. In the testing
sets, there were 357, 192 and 103 SNPs with known
genotypes on these three chromosomes, respectively,
which corresponded to subsets of 5K (now known as
the Illumina BovineLD 7K assay; Boichard et al.,
2012) genotypes. All of the remaining genotypes for
animals in the testing set were treated as ‘missing’ and
were subsequently imputed (Table 1).

C. Sun et al. 134

https://doi.org/10.1017/S001667231200033X Published online by Cambridge University Press

https://doi.org/10.1017/S001667231200033X


(ii) Imputation programs

The six imputation software packages used to impute
‘missing’ genotypes in the testing set were Beagle3.3
(Browning & Browning, 2009), IMPUTE2.0 (Howie
et al., 2009), fastPHASE1.4 (Scheet & Stephens,
2006), findhap version 2 (VanRaden et al., 2011),
AlphaImpute (Hickey et al., 2011) and Fimpute ver-
sion 2 (Sargolzaei et al., 2011).

The first three packages use population-based ap-
proaches. fastPHASE (version1.4) package (fPH) is
based on the idea that haplotypes in a population tend
to cluster into groups of similar haplotypes over short
regions. This package allows membership in haplo-
type clusters to change as the analysis moves along the
chromosome, using a hidden Markov model (HMM)
to describe each observed haplotype as a mosaic of a
small number of common haplotypes. Beagle3.3 (Bgl)
is based on a graphical model that constructs a tree
of haplotypes that are present in the reference popu-
lation, and then summarizes it in a direct acyclic
graph (DAG) by joining nodes of the tree based on
haplotype similarity. When imputing biallelic markers
with alleles A and B in unrelated individuals, for ex-
ample, posterior genotype probabilities are calculated
by summing the probabilities of the HMM states that
correspond to each of the AA, AB and BB genotypes.
The probability of a missing genotype is computed by
averaging posterior genotype probabilities over mul-
tiple iterations (Browning & Browning, 2009). This
method is attractive because it can adapt to the local
haplotype diversity that occurs in the data, similar to
fastPHASE, but with a variable number of clusters
across a region (Marchini & Howie, 2010). Most
HMM-based imputation methods simultaneously es-
timate missing genotypes and analytically integrate
over the unknown phase of SNPs typed in both the
study sample and the reference panel. However,
IMPUTE2.0 (Imp) proposes to alternately estimate
haplotypes at SNPs which are typed in both the
study and the reference samples and imputes alleles
at SNPs which are not typed in the study sample,
but are typed in the reference panel. Separating
the phasing and imputation steps allows Imp to
place more computational effort on phasing, and
the extra computation used in this step is largely

balanced by the quick haploid imputation in the step
that follows.

In the second group of imputation packages,
AlphaImpute (Alp) calculates allele probabilities
using segregation analysis based on long-range phas-
ing (Kong et al., 2008) and haplotype library impu-
tation. Alp uses information from multiple surrogate
parents and a more robust definition of surrogacy
using the concepts of cores and tails (Hickey et al.,
2011). Missing alleles are imputed by matching the
allelic probabilities from the segregation analysis to
the haplotypes from the phasing step. Hence, Alp is
viewed primarily as a family-based imputation pack-
age, though it can use information from unrelated
animals as well. The findhap version 2 package (fhap)
accounts for both population-based and family-based
haplotypes in two steps. In the first (population-
based) step, it divides chromosomes into blocks of ‘x’
SNPs and generates a library of haplotype blocks,
which are sorted by frequency. Haplotypes from low
density panels are searched in the library until a
match is found. Unknown alleles are replaced by al-
leles from the matched haplotype. The animal’s se-
cond haplotype is obtained by removing its first
haplotype from its genotype and matching the second
haplotype with haplotypes in the library. In the fol-
lowing step, both pedigree and population methods
are used to locate matching haplotypes. Fimpute
version 2 (Fimp) reconstructs haplotypes using family
information, and uses information from parents,
ancestors, progeny and sibs to perform family impu-
tation. Next, it performs population imputation
using a haplotype search based on a sliding window
approach (i.e. walking along each chromosome using
different window sizes).

(iii) AdaBoost-like ensemble algorithm

An AdaBoost-like algorithm was designed to
combine imputed results from the aforementioned
software packages. A wrapper program was used to
coordinate individual packages and to implement
computations for the proposed ensemble method. Let
X be a set of imputed genotypes, and y be a vector of
observed (‘ true’) genotypes at a given SNP locus.
Define T=6 to be the number of independent

Table 1. Number of animals and number of SNP markers with known genotypes in the training and testing sets

Partition

Chromosome

1 16 28

Training Testing Training Testing Training Testing

No. of markers 3348 357 1628 192 944 103
No. of animals 2281 777 2281 777 2281 777
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classifiers (i.e. the imputation software). Given a
training set of N individuals, we have S=[(x1, y1), … ,
(xi, yi), … ,(xN, yN)], where xisX=(xi1, xi2, xi3|i=1,
2, … , N), yisy=(g1, g2, g3), and g1, g2 and g3 are the
three genotypes at the SNP, in question, for individ-
ual i in the training sample.

Initialize : each individual was assigned with an
equal weight, W1(i)=1/N, for i=1, … , N.

Training : For t=1, 2 , …, T classifiers

1. Call classifier t, which in turn generates hypothesis
ht (i.e. inferred haplotypes and genotypes in the
training set).

2. Calculate the error of ht :

"t=
gN

i=1Wt(i)I(ht(xi)lyi)

gN

i=1Wt(i)
,

where I(ht(xi)lyi) is an indicator function that is
equal to 1 when ht(xi)lyi and 0 otherwise.
Looping is aborted if st>1/2.

3. Set bt= log 1x"t
"t

� �
:

4. Update the weight distribution Wt(i) for next
classifier as

Wt+1(i)=Wt(i) exp (btI(ht(xi)lyi)):

Testing : In the testing set, each ‘unknown’ geno-
type is classified via the so-called ‘weighted majority
voting’. Briefly, the wrapper program:

1. Computes the total vote received by each genotype
(class)

vi= g
T

t=1
{btI

0(ht(xi)=gj)}, for j=1, 2, 3,

where Ik(ht(xi)=gj) is an indicator function that is
equal to 1 when ht(xi)=gj and 0 otherwise.

2. Assigns the genotype (class) that received the
largest total vote as the final (‘putative ’) genotype.

Above, the algorithm maintains a weighted distri-
bution Wt(i) of training samples xi, for i=1, …, N,
from which a sequence of training data subsets St is
chosen for each consecutive classifier (package) t.
Initially, the distribution of weights is uniform,
meaning that all samples contribute equally to the
error rate. Next, the logit bt of the rate of correctly
classified samples is calculated for classifier t. A higher
bt is an indicator of better performance; for instance,
when et=0.5, bt takes the value 0, and increases as
etp0. Then, the distribution update rule is as follows:
the weights of samples that are classified correctly by
the current method are unchanged, whereas the
weights of the misclassified instances are increased
by a factor of ebt . Hence, by iterating classifiers, the
algorithm tends to focus on increasingly difficult
samples. At the end, a weighted majority voting is
used, and the class (genotype) that receives the largest

total vote from all classifiers is the ensemble decision.
This voting scheme is like that used in AdaBoosting.

(iv) Bootstrap sampling and parallel computing

Bootstrapping was used to generate empirical confi-
dence intervals of imputation accuracy for the six
packages and for the ensemble systems as well. For
each method, 50 replicates were created by drawing
random samples with replacement from the original
testing set, each conducted on the genotype data for
one of the three chromosomes, and the size of each
bootstrap sample equalled the size of the original
testing set. Finally, summary statistics were computed
from the 50 bootstrap samples. Note that the distri-
bution is conditional on the training set.

Given six independent packages, there were
6!=720 combinations, each defining a unique en-
semble system. The computing task was formidable.
For example, given this design, there were a total of
(720+6)r50r3=1 08 900 independent jobs. Hence,
distributed high-throughput computing solutions
were utilized, and these jobs were submitted to run on
the University of Wisconsin Condor Systems and
Open Science Grid (Wu et al., 2012).

(v) Evaluation of imputation accuracy

Genotype error was scored as 0 when the imputed
and observed marker types were identical or 1 for
otherwise. In other words, only when the two imputed
alleles were the same as the observed two alleles was
regarded as correct. Here, the genotypes ‘A/B’ and
‘B/A’ were considered to be the same. Error counting
only considered markers/animals where observed
marker types were not missing in the original non-
imputed dataset. The error rate was calculated as the
total number of errors divided by the number of im-
puted loci. This gives the number of falsely predicted
genotypes. The imputation accuracy is one minus the
error rate. Zhang & Druet (2010) and Dassonneville
et al. (2011) reported other ways of measuring error
rate.

3. Results and discussion

(i) Comparing imputation accuracy among software
packages

The six packages varied in imputation accuracy
when evaluated on Angus chromosomes 1, 16 and 28
(Table 2). Bgl had the greatest imputation accuracy
on all three chromosomes, followed by Fimp and
fhap. On chromosome 1, for example, mean impu-
tation accuracy obtained with Bgl was 0.9858 and that
obtained with each of the remaining five packages
ranged from 0.9084 (Alp) to 0.9788 (Fimp). Similar
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patterns were observed on the other two chromo-
somes: imputation accuracy varied from 0.9092 (Alp)
to 0.9837 (Bgl) on chromosome 16, and from 0.8677
(fPh) to 0.9712 (Bgl) on chromosome 28.

Bgl, Imp and fPh, which impute missing SNP gen-
otypes using LD information, were primarily devel-
oped for humans (Li et al., 2009; Marchini & Howie,
2010), but have been applied to animals as well
(Weigel et al., 2010; Calus et al., 2011; Hayes et al.,
2011; Johnston & Kistemaker, 2011; Saatchi et al.,
2011). Within the three population-based packages,
we found that Bgl consistently yielded the best impu-
tation accuracy on all three chromosomes. In the
present study, Bgl was used with the assumption that
all animals were unrelated, although this package
could handle parent–offspring trios and parent–
offspring pairs. The latter option, however, was not
used because making use of such information would
consume a high amount of memory with our data
size. Nevertheless, imputation accuracy was high even
when relationship information was ignored. This is in
agreement with observations by Browning &
Browning (2009).

Alp, Fimp and fhap can utilize both pedigree and
LD information in imputation. Within these, impu-
tation accuracy was the greatest with Fimp and the
poorest with Alp. Overall, these three packages did
not show any obvious improvement in imputation
accuracy over the population-based packages.

Although Fimp and fhap yielded better imputation
accuracy than two of the population-based packages,
Imp and fPH, none outperformed Bgl, which had the
greatest imputation accuracy overall. Our results im-
ply that simple, sequential utilization of population
and family information, as we did with Fimp and
fhap, does not necessarily produce better imputation
accuracy than population-based methods. An expla-
nation may be the existence of a considerable amount
of LD in this Angus population; Bgl can capture
familial information using long identical haplotypes
(from close relatives) and is efficient with both close
and distant relatives. Hence, well-designed popu-
lation-based algorithms could predict the missing
genotypes fairly well.

We observed that imputation accuracy was posi-
tively associated with chromosome size. Chromosome
1 is the longest, chromosome 16 has moderate size
and chromosome 28 is the shortest of the chromo-
somes studied, and imputation accuracy was greatest
for chromosome 1, intermediate for chromosome 16
and poorest for chromosome 28. This association
with size may be due to the fact that longer chromo-
somes harbour more markers, and hence provide
more information for inferring unknown haplotypes
and imputing missing genotypes. Another reason,
possibly related, is that imputation accuracy suffers
at the beginning and end of the chromosomes. In
longer chromosomes, these two problem regions are

Table 2. Summary statistics of the bootstrap distribution of imputation
accuracy obtained using each of the six software packages on chromosomes
1, 16 and 28*#$

Method Min Median Max Mean SD

Chrom_1 Bgl 0.9844 0.9858 0.9869 0.9858 0.0006
Imp 0.9346 0.9375 0.9403 0.9375 0.0013
fPh 0.9253 0.9286 0.9314 0.9286 0.0014
Fhap 0.9619 0.9649 0.9681 0.9648 0.0014
Alp 0.8972 0.9083 0.9164 0.9084 0.0039
Fimp 0.9771 0.9789 0.9803 0.9788 0.0007

Chrom_16 Bgl 0.9826 0.9836 0.9851 0.9837 0.0006
Imp 0.9291 0.9323 0.9358 0.9325 0.0012
fPh 0.9173 0.9207 0.9237 0.9208 0.0015
Fhap 0.9498 0.9537 0.9580 0.9536 0.0018
Alp 0.8968 0.9098 0.9159 0.9092 0.0041
Fimp 0.9701 0.9728 0.9751 0.9728 0.0010

Chrom_28 Bgl 0.9691 0.9712 0.9740 0.9712 0.0011
Imp 0.8824 0.8890 0.8938 0.8887 0.0024
fPh 0.8618 0.8679 0.8718 0.8677 0.0021
Fhap 0.9293 0.9355 0.9401 0.9354 0.0025
Alp 0.8852 0.8937 0.9022 0.8937 0.0039
Fimp 0.9542 0.9592 0.9613 0.9589 0.0015

*Bgl, Beagle3.3 ; Imp, IMPUTE2.0; fPh, fastPHASE1.4; fhap, findhap version 2;
Alp, AlphaImpute; Fimp, Fimpute version 2.
#Min, minimum value; Max, maximum value; SD, standard deviation.
$Accuracy obtained from 50 boostrap replicates for each imputation package.
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relatively less important than in shorter chromo-
somes, leading to higher accuracy. Although the 7K
has been specifically designed to overcome this issue
by having more low density markers at the ends, the
issue seems to remain. Weigel et al. (2010) reported
mean imputation accuracy from 80 to 95% when
animals were genotyped with a medium-density panel
comprising 2000–4000 SNPs; less than 80% when
animals were genotyped for 1000 SNPs or less, and
greater than 95% when animals were genotyped for
more than 8000 SNPs. However, their study was
performed with a single chromosome.

Computational requirements are also one import-
ant issue in imputation. Bgl, Imp, fPH and Alp run on
a per chromosome base, whereas fhap and Fimp are
both parallel programs that can impute all chromo-
somes simultaneously. In this study, all jobs were
submitted to run in parallel in the University of
Wisconsin Condor Systems and the Open Science
Grid (OSG). Each chromosome could be imputed by
a different CPU, so we did not record the specific
computing time for each of the jobs. In general, Fimp
and fhap consume the least computing time due to
their parallel nature. Alp is faster than Bgl and fPH,
and fPH is the slowest software. Take chromosome 1
as the example, the imputation took around 1 week
with fPh, one day or so with Bgle, and not more than
1 h with Fimp and fhap. Memory consumption also
varied dramatically with these software packages.
Imp needs to break chromosomes into pieces of more
manageable size, hence it does not pose computing
time and memory problems for parallelized running.
In contrast, Bgl had a memory problem – it required
more than 6G memory for chromosome 1 in this
study.

(ii) Comparing imputation accuracy between ensemble
methods and individual packages

As none of the software packages provides perfect
imputation, combining results from two or more
packages may bring an improvement in accuracy. As
previously noted, while many animals have moderate-
density genotypes for both parents, the proportion of
correctly imputed genotypes could increase with more
relatedness between genotyped ancestors and target
animals (Weigel et al., 2010; Johnston & Kistemaker,
2011). For this reason, a two-step approach has been
proposed, in which animals with genotyped parents
(or other close ancestors) are processed first using
a family-based method, and animals lacking such in-
formation are processed subsequently using a popu-
lation-based algorithm (Druet & Georges, 2010).
However, as indicated by our results, simply utilizing
family- and population-based information sequen-
tially will not necessarily give the best predictions.
Further, Weigel et al. (2010) suggested that such an

approach could be considered as a form of ‘boosting’,
in which two or more complementary models, each
of which treats a significant percentage of the data
optimally, are implemented jointly to solve the impu-
tation problem.

AdaBoost, which is a more general version of the
original boosting algorithm (Freund & Schapire,
1996), is flexible and can ensemble results from vari-
ous weak classifiers, resulting in an improved accu-
racy. The ensemble method proposed here resembled
AdaBoost, yet it had some slight differences. Like
AdaBoost, our ensemble method computed weights
sequentially for all the individual imputation packa-
ges, and combined results through weighted majority
voting of the genotype classes predicted by individual
packages. The results indicated that the proposed en-
semble method was better than each of the individual
imputation methods (Fig. 1). The extent of improve-
ment, however, was small, possibly because all six
packages imputed ‘missing’ genotypes with high ac-
curacy, so there was not much space for further im-
provement.

Within the 720 unique ensemble systems, impu-
tation accuracies of the top five ensemble systems,
evaluated on each of the three chromosomes,
were compared with those of each of the individual
packages (Fig. 1). These ensemble systems performed
similarly to each other, and all were at least as good as
each of the six individual imputation packages. Their
performance over the 50 bootstrap samples is shown
in Fig. 2. We observed that imputation accuracy
varied with the order of the software packages in the
ensemble system. For each of the three chromosomes,
all top 120 ensemble systems with the highest accu-
racy of imputation had Bgl as the first classifier
(Appendix Tables A1–A3). The ranks of the top 120
ensemble systems, however, differed by chromosome.
For example, ensemble system 67 (Bgl-Alp-Fimp-
Imp-fPH-fhap, Appendix Table A4) ranked second
with data from chromosomes 1 and 28, but it ranked
first with data on chromosome 16. This consistency
was also true with ensemble system 61 (Bgl-Alp-fhap-
Imp-fPH-Fimp): it ranked fifth on chromosome 1,
fourth on chromosome 16 and first on chromosome
28. Nevertheless, there were also ensemble systems
that showed relatively large changes in rank between
chromosomes. For example, ensemble system 109
(Bgl-Fimp-Alp-Imp-fPH-fhap) ranked fourth on
chromosome 1 and third on chromosome 16, but it
was 38th on chromosome 28. Ensemble systems with
Fimp and Bgl as the first two classifiers also had high
imputation accuracy (data not presented). The lowest
imputation accuracy was observed with fPH and
Imp appearing as the first two classifiers (data not
presented). Similarly, Johnston & Kistemaker (2011)
reported varied imputation accuracy arising from
different sequences of imputation packages in their
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two-step approach. They first conducted imputation
using Fimp, and then exported results to either fhap
or Bgl for a second-step imputation. They found
that Fimp plus Bgl could provide more accurate
imputation than the team represented by Fimp and
fhap.

Our results indicate that an ensemble method
starting with the best individual classifier (i.e. Bgl)
could have the best overall performance. Also,
alternating population-based and family-based ap-
proaches could enhance imputation as well. There-
fore, optimal ensemble systems, as supported by the
present data, turned out to be those starting with Bgl,
followed by one or two of the packages that can use
pedigree information for imputation (e.g. fhap, Fimp
and Alp). For examples, ensemble systems 67 and 61
satisfied the above-mentioned feature, and ranked
within the top five when evaluated with genotype data
on the three chromosomes.

We proposed an ensemble-based imputation meth-
od that involves using several imputation software
packages jointly. Alternatives would include either
developing a single method that combines all sources
of information in some optimal manner, or perhaps
using a pair of existing methods that exploit com-
plementarity between sources. We did not explore the
latter approach because our study focused on testing
whether ensemble methods behave as expected from
theory, in comparison with some commonly used
imputation software packages. Boosting algorithms
have been developed for enhancing weak learners, so
when the extant methods are strong classifiers, there is
little room for improvement. This was confirmed in
our study, the first of its kind in the context of geno-
type imputation. We conjecture that the same situ-
ation would hold if the comparison involved a
method that can utilize all sources of information.
Our study showed that the proposed ensemble meth-
od can perform as well as, if not better, than any of
the individual imputation methods. At the same time,
the ensemble method provides a solution to solving
inconsistencies among different imputation methods.
In order to decrease computational cost, it is not
necessary to include all the six imputation software
packages in practice. The paper recommended some
general conclusions on how to combine different in-
dependent imputation packages in ensemble-based
methods.

(iii) An application: imputation of moderate-density
genotypes in Angus cattle

Based on a 5K-genotype panel, moderate-density
(50K) genotypes on 29 chromosomes were imputed
for 3078 animals using the aforementioned six impu-
tation packages and five ensemble systems. All five
selected ensemble systems had Bgl and Alp as the first
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Fig. 1. Box plots of imputation accuracy on
(a) chromosome 1, (b) chromosome 16 and (c) chromosome
28, obtained using six imputation software packages and
five ensemble methods. Results are obtained from 50
bootstrap replicates. For x-axis labels, 1 = ‘Beagle3.3’ ;
2 = ‘IMPUTE2.0’ ; 3 = ‘ fastPHASE1.4’ ; 4 = ‘findhap
version 2’; 5 = ‘AlphaImpute’; 6 = ‘Fimpute version 2’;
7 - 11 = five ensemble systems.
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two classifiers, and were as follows: (1) Bgl-Alp-fhap-
Imp-fPH-Fimp, (2) Bgl-Alp-Fimp-Imp-fPH-fhap, (3)
Bgl-Alp-Fimp-fPH-Imp-fhap, (4) Bgl-Alp-Imp-fhap-
fPH-Fimp and (5) Bgl-Alp-Imp-Fimp-fPH-fhap.
Imputing accuracies using the six packages and the
five ensemble systems are illustrated in Fig. 3. The five
ensemble systems gave similar imputation results, and
were consistently better than each of the six impu-
tation packages. Among the 29 autosomes, impu-
tation accuracy ranged from 0.9715 (chromosome 28)
to 0.9855 (chromosome 1) with the five ensemble sys-
tems, and it varied from 0.8869 (Alp, chromosome 10)
to 0.9853 (Bgl, chromosome 1) with the six indepen-
dent packages.

We did not observe a 100% imputation success rate
in any of the 29 chromosomes. This could be due to,
for example, small training sample size, density of
markers, or degree of genetic similarity between the
training and testing samples. Genotyping error rate
may also be a crucial factor that affects imputation
accuracy. As there are genotype errors in the refer-
ence populations, using these genotypes in training
would cause errors in imputation results. Genotyping
errors might also be present in the testing set.

It would seem that attaining 100% imputation ac-
curacy may not be possible in practice with current
genotyping technologies and imputation methods.
Zhang & Druet (2010) reported error rates of 3–4%
using DAGPHASE (Druet & Georges, 2010).
Daetwyler et al. (2011) reported slightly higher
error rates with their implementation of the long-
range phasing algorithm, possibly because they used a
smaller reference population. Other factors that may
be crucial for enhancing imputation accuracy are as
follows. First, it is important that there is a strong
genetic similarity between the training and testing
populations, since imputation accuracy is likely to
depend on the genetic distance of target individuals
from the reference population (Zhang & Druet, 2010).
If an individual does not have parents or relatives in
the training sample, and if there is no intervening re-
combination, the chance of observing a haplotype of
this individual in the training set would be small.
Next, given considerable genetic similarity between
training and testing populations, the training set
should be large enough to capture all of the haplo-
types in the testing set. If a target haplotype is en-
countered which has not been previously observed
in the training sample, the imputation of missing
genotypes is unlikely to be accurate. Using a large
training sample is also important to ensure that
rare alleles are captured and accurately imputed into
target individuals. Finally, a sufficient number of
markers is essential for accurate imputation using
population-based methods, to assure that there is
substantial linkage disequilibrium between markers.
Otherwise, population-based algorithms such as
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Fig. 2. Kernel density plots of imputation accuracy for
720 ensemble methods obtained on (a) chromosome 1,
(b) chromosome 16 and (c) chromosome 28.
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those implemented in Bgl, Imp and fPH will perform
poorly.

Again, we observed a slight decrease in imputation
accuracy for the shorter chromosomes, but this trend
was not as evident as in the previous applications
involving chromosomes 1, 16 and 28 only. These re-
sults were obtained as the averages of 50 replicates for
each chromosome, but the results in this section were
obtained from a single analysis. This could partially
explain the difference. As no replication was per-
formed, chance could contribute non-trivially to im-
putation results, leading to random fluctuation in
accuracy. It is possible that the trend could become
more evident if the results were obtained as averages
across a large number of bootstrap replicates.

4. Conclusions

Genotype imputation can be viewed as a classification
problem. Several imputation methods (i.e. software
packages) are available, but results may be inconsist-
ent among them. Ensemble methods can be used to
solve such inconsistencies, and thus further improve
imputation accuracy. This was corroborated in our
study. The proposed ensemble method resembles
AdaBoost, in that weights for each of the classifiers
are computed sequentially and imputed genotypes are
decided by weighted majority voting. The idea is
intuitive: classifiers that have a good performance
during training are rewarded with higher voting
weights than the others. Our ensemble systems com-
bined results from six imputation packages: Bgl, Imp,

fPH, Alp, fhap and Fimp. In this set, Bgl and Fimp
had the highest imputation accuracy. The proposed
ensemble systems improved imputation accuracy in
our data, but the degree of improvement depended on
the order of these classifiers in the ensemble systems.
The best ensemble systems were those with Bgl as the
first classifier, followed by one or two software
packages that used pedigree information during im-
putation. Rotating different types of imputation
packages in the ensemble systems is desirable, because
training by consecutive classifiers may be better
geared towards increasingly hard-to-classify instances
(Polikar, 2006).

Further improvements through adjustment of the
proposed ensemble method may be possible. First,
one may form a committee of classifiers with higher
diversity, each focusing on a different scenario guid-
ing imputation. This is an essential idea of AdaBoost,
which works well provided that each classifier can
produce an imputation that is slightly better than a
random guess. We have included two types of impu-
tation packages, i.e. family-based and population-
based. Some more options include imputation based
on population frequencies only (a weak classifier) and
imputation based on posterior probabilities of un-
known genotypes given observed phenotypes and
prior information about the genotypes (also a weak
classifier). The latter two options, however, were
not investigated, because the six packages we used
provided relatively accurate imputation, and includ-
ing these two weak classifiers would have made little
difference in imputation accuracy. Also, individual
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Fig. 3. Comparison of imputation accuracy evaluated on 29 autosomes in registered Angus cattle using 6 independent
imputation packages and 5 ensemble systems. For EnS1-5, the figure gives the average accuracy of the 5 ensembles.
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packages can be modified so that a set of classifiers
can be trained more efficiently and adaptively, but this
may not always be possible due to the lack of avail-
ability of source code. Nevertheless, there are some
ensemble methods that do not require modification
of each independent imputation package, such as
stacked generalization (Wolpert, 1992; Polikar, 2006)
or mixture of experts (Jacobs et al., 1991; Jordan &
Jacobs, 1994). These two ensemble methods can use
the outputs of a set of individual classifiers as inputs
to a second level meta-classifier, which then learns the
mapping between the ensemble outputs and the cor-
rect classes. These methods may be worth investigat-
ing in future studies.

Finally, while AdaBoost is well known for its ca-
pacity to boost the classification performance of a set
of weak classifiers, we proposed an AdaBoost-like
ensemble algorithm for combining results from vari-
able imputation methods (packages), each of which
may not necessarily be weak classifiers. Given the fact
that some of the current methods, if not all, produce
highly accurate imputation results, the scope for im-
proving imputation accuracy may be limited for en-
semble-based systems. On the other hand, because no
independent method can make a perfect imputation,
the proposed ensemble provides a more-robust system
for solving inconsistencies among existing imputation
methods.
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Appendix A. Summary statistics of imputation accuracy for 720 ensemble systems

Table A1. Evaluated on bovine chromosome 1 (BTA1)

BTA1
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

99 0.9851 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
67 0.9851 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
92 0.9852 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
109 0.9851 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
61 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
53 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
68 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
75 0.9851 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
85 0.9851 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
116 0.9851 0.9860 0.9865 0.9869 0.9874 0.9864 0.0006
102 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
110 0.9851 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
51 0.9851 0.9860 0.9865 0.9869 0.9875 0.9864 0.0006
101 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
100 0.9851 0.9860 0.9865 0.9869 0.9874 0.9864 0.0006
69 0.9851 0.9861 0.9864 0.9869 0.9874 0.9864 0.0006
91 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
62 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
86 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
115 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
11 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
97 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
78 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
95 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
111 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
77 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
98 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
21 0.9851 0.9860 0.9865 0.9869 0.9874 0.9864 0.0006
119 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
9 0.9851 0.9860 0.9865 0.9869 0.9874 0.9864 0.0006
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Table A1. (Cont.)

BTA1
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

70 0.9851 0.9860 0.9864 0.9868 0.9875 0.9864 0.0006
71 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
76 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
94 0.9851 0.9860 0.9865 0.9868 0.9875 0.9864 0.0006
93 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
113 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
112 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
65 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
63 0.9850 0.9860 0.9864 0.9868 0.9875 0.9864 0.0006
117 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
118 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
54 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
15 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
89 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
96 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
120 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
87 0.9851 0.9860 0.9864 0.9868 0.9875 0.9864 0.0006
19 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
107 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
105 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
73 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
72 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
20 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
114 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
74 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
64 0.9850 0.9859 0.9864 0.9868 0.9875 0.9864 0.0006
66 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
52 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
103 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
104 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
88 0.9851 0.9859 0.9864 0.9868 0.9875 0.9864 0.0006
90 0.9851 0.9860 0.9864 0.9869 0.9875 0.9864 0.0006
50 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
49 0.9850 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
23 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
108 0.9851 0.9859 0.9864 0.9869 0.9874 0.9864 0.0006
106 0.9850 0.9859 0.9864 0.9869 0.9875 0.9864 0.0006
14 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
7 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
13 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
17 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
8 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
18 0.9851 0.9859 0.9864 0.9869 0.9874 0.9864 0.0006
22 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
24 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
12 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
81 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
83 0.9851 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
16 0.9851 0.9860 0.9864 0.9869 0.9874 0.9864 0.0006
10 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
80 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
79 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
84 0.9851 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
57 0.9850 0.9859 0.9864 0.9868 0.9875 0.9864 0.0006
59 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
82 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
56 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
6 0.9851 0.9860 0.9864 0.9868 0.9874 0.9864 0.0006
3 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
5 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
4 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
55 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
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Table A1. (Cont.)

BTA1
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

2 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
1 0.9850 0.9859 0.9864 0.9868 0.9874 0.9864 0.0006
58 0.9850 0.9859 0.9864 0.9868 0.9875 0.9863 0.0006
60 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
37 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
44 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
43 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
38 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
39 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
33 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
45 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
35 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
41 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
47 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
32 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
31 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
29 0.9849 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
26 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
25 0.9849 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
30 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
28 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
27 0.9849 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
42 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
48 0.9850 0.9859 0.9864 0.9868 0.9874 0.9863 0.0006
40 0.9849 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
46 0.9849 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
36 0.9850 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006
34 0.9849 0.9859 0.9863 0.9868 0.9874 0.9863 0.0006

Table A2. Evaluated on bovine chromosome 16 (BTA16)

BTA16
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

67 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
99 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
109 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
61 0.9831 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
69 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
68 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
75 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
85 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
63 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
70 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
53 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
62 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
91 0.9831 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
97 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
116 0.9831 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
93 0.9831 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
72 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
71 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
92 0.9831 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
111 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
101 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
117 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
87 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
98 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
51 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
115 0.9831 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
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Table A2. (Cont.)

BTA16
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

110 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
100 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
120 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
77 0.9831 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
65 0.9831 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
114 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
113 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
86 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
94 0.9831 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
118 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
96 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
102 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
66 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
119 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
95 0.9831 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
112 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
103 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
105 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
90 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
64 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
21 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
89 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
9 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
11 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
15 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
107 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
74 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
88 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
49 0.9830 0.9838 0.9841 0.9846 0.9855 0.9842 0.0006
78 0.9831 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
73 0.9830 0.9838 0.9841 0.9846 0.9855 0.9842 0.0006
76 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
19 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
20 0.9830 0.9838 0.9841 0.9846 0.9856 0.9842 0.0006
50 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
104 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
59 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
7 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
54 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
14 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
81 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
8 0.9830 0.9838 0.9841 0.9847 0.9855 0.9842 0.0006
13 0.9830 0.9838 0.9841 0.9846 0.9855 0.9842 0.0006
108 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
57 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
83 0.9831 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
79 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
52 0.9830 0.9838 0.9841 0.9847 0.9856 0.9842 0.0006
106 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
23 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
80 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
17 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
56 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
22 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
55 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
24 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
12 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
5 0.9829 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
16 0.9830 0.9838 0.9840 0.9846 0.9854 0.9842 0.0006
84 0.9830 0.9837 0.9840 0.9846 0.9855 0.9842 0.0006
6 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
10 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
1 0.9829 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
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Table A2. (Cont.)

BTA16
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

58 0.9830 0.9837 0.9840 0.9846 0.9855 0.9842 0.0006
2 0.9829 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
60 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
18 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
82 0.9830 0.9838 0.9840 0.9847 0.9855 0.9842 0.0006
3 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
4 0.9830 0.9838 0.9840 0.9846 0.9855 0.9842 0.0006
43 0.9829 0.9838 0.9840 0.9846 0.9855 0.9841 0.0006
33 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
35 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
32 0.9830 0.9838 0.9840 0.9846 0.9855 0.9841 0.0006
31 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
44 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
37 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
29 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
39 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
45 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
25 0.9830 0.9838 0.9840 0.9846 0.9855 0.9841 0.0006
38 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
26 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
30 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
28 0.9830 0.9838 0.9840 0.9846 0.9855 0.9841 0.0006
27 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
47 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
41 0.9830 0.9837 0.9840 0.9846 0.9855 0.9841 0.0006
34 0.9830 0.9837 0.9839 0.9846 0.9855 0.9841 0.0006
48 0.9829 0.9837 0.9840 0.9846 0.9854 0.9841 0.0006
36 0.9829 0.9837 0.9840 0.9846 0.9854 0.9841 0.0006
42 0.9830 0.9837 0.9840 0.9846 0.9854 0.9841 0.0006
46 0.9829 0.9837 0.9839 0.9846 0.9854 0.9841 0.0006
40 0.9829 0.9837 0.9840 0.9846 0.9854 0.9841 0.0006

Table A3. Evaluated on chromosome 28 (BTA28)

BTA28
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

61 0.9698 0.9711 0.9721 0.9726 0.9747 0.9720 0.0011
67 0.9698 0.9711 0.9721 0.9725 0.9747 0.9720 0.0011
51 0.9697 0.9711 0.9721 0.9726 0.9747 0.9720 0.0011
63 0.9697 0.9710 0.9721 0.9725 0.9746 0.9720 0.0011
53 0.9698 0.9711 0.9721 0.9725 0.9747 0.9720 0.0011
9 0.9697 0.9711 0.9721 0.9726 0.9746 0.9719 0.0011
68 0.9698 0.9710 0.9721 0.9725 0.9747 0.9719 0.0011
62 0.9697 0.9711 0.9720 0.9725 0.9747 0.9719 0.0011
75 0.9698 0.9711 0.9721 0.9725 0.9746 0.9719 0.0011
85 0.9697 0.9711 0.9721 0.9725 0.9746 0.9719 0.0011
69 0.9698 0.9711 0.9721 0.9725 0.9746 0.9719 0.0011
15 0.9697 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
87 0.9698 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
11 0.9697 0.9711 0.9721 0.9725 0.9747 0.9719 0.0011
64 0.9697 0.9711 0.9721 0.9724 0.9746 0.9719 0.0011
77 0.9698 0.9711 0.9721 0.9725 0.9745 0.9719 0.0011
72 0.9697 0.9711 0.9721 0.9725 0.9746 0.9719 0.0011
93 0.9698 0.9711 0.9721 0.9724 0.9746 0.9719 0.0011
70 0.9697 0.9711 0.9720 0.9724 0.9746 0.9719 0.0011
71 0.9698 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
91 0.9697 0.9711 0.9721 0.9725 0.9746 0.9719 0.0011
49 0.9697 0.9710 0.9721 0.9725 0.9747 0.9719 0.0011
7 0.9697 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
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Table A3. (Cont.)

BTA28
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

86 0.9697 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
13 0.9697 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
50 0.9697 0.9710 0.9720 0.9725 0.9747 0.9719 0.0011
65 0.9697 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
8 0.9697 0.9711 0.9721 0.9725 0.9747 0.9719 0.0011
66 0.9697 0.9711 0.9720 0.9724 0.9745 0.9719 0.0011
99 0.9697 0.9711 0.9721 0.9724 0.9746 0.9719 0.0011
101 0.9698 0.9711 0.9721 0.9725 0.9745 0.9719 0.0011
54 0.9698 0.9711 0.9720 0.9725 0.9747 0.9719 0.0011
94 0.9698 0.9711 0.9721 0.9725 0.9745 0.9719 0.0011
21 0.9698 0.9711 0.9720 0.9724 0.9746 0.9719 0.0011
20 0.9698 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
73 0.9697 0.9711 0.9720 0.9725 0.9745 0.9719 0.0011
52 0.9697 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
109 0.9698 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
111 0.9698 0.9711 0.9720 0.9724 0.9746 0.9719 0.0011
115 0.9697 0.9711 0.9720 0.9724 0.9745 0.9719 0.0011
19 0.9697 0.9711 0.9720 0.9724 0.9746 0.9719 0.0011
14 0.9697 0.9711 0.9720 0.9725 0.9745 0.9719 0.0011
92 0.9698 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
88 0.9698 0.9711 0.9720 0.9724 0.9745 0.9719 0.0011
23 0.9698 0.9711 0.9721 0.9725 0.9745 0.9719 0.0011
90 0.9697 0.9711 0.9720 0.9724 0.9745 0.9719 0.0011
17 0.9697 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
76 0.9697 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
97 0.9697 0.9711 0.9721 0.9724 0.9746 0.9719 0.0011
116 0.9697 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
57 0.9697 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
110 0.9698 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
117 0.9697 0.9711 0.9720 0.9725 0.9746 0.9719 0.0011
74 0.9698 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
96 0.9697 0.9711 0.9720 0.9724 0.9745 0.9719 0.0011
98 0.9697 0.9711 0.9720 0.9724 0.9746 0.9719 0.0011
81 0.9698 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
100 0.9698 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
55 0.9697 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
78 0.9697 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
89 0.9697 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
118 0.9697 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
59 0.9698 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
56 0.9697 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
102 0.9697 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
12 0.9697 0.9711 0.9720 0.9724 0.9746 0.9719 0.0011
1 0.9697 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
79 0.9697 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
114 0.9697 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
10 0.9696 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
95 0.9698 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
105 0.9697 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
103 0.9697 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
112 0.9697 0.9711 0.9720 0.9724 0.9746 0.9719 0.0011
113 0.9698 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
2 0.9697 0.9710 0.9720 0.9724 0.9747 0.9719 0.0011

120 0.9697 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
16 0.9696 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
3 0.9697 0.9710 0.9720 0.9725 0.9746 0.9719 0.0011
80 0.9698 0.9710 0.9719 0.9724 0.9745 0.9719 0.0011
119 0.9697 0.9710 0.9720 0.9725 0.9745 0.9719 0.0011
18 0.9696 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
104 0.9697 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
83 0.9698 0.9710 0.9719 0.9724 0.9745 0.9719 0.0011
107 0.9697 0.9711 0.9720 0.9724 0.9745 0.9719 0.0011
4 0.9697 0.9710 0.9719 0.9724 0.9745 0.9719 0.0011
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Table A3. (Cont.)

BTA28
Ensemble
system ID Min 1st QU Median 3rd QU Max Mean SD

22 0.9698 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
24 0.9698 0.9710 0.9720 0.9724 0.9745 0.9719 0.0011
6 0.9698 0.9710 0.9719 0.9724 0.9745 0.9719 0.0011
5 0.9697 0.9710 0.9720 0.9724 0.9746 0.9719 0.0011
60 0.9697 0.9710 0.9719 0.9724 0.9746 0.9718 0.0011
58 0.9697 0.9710 0.9720 0.9724 0.9745 0.9718 0.0011
31 0.9697 0.9709 0.9720 0.9724 0.9745 0.9718 0.0011
82 0.9697 0.9710 0.9719 0.9723 0.9745 0.9718 0.0011
33 0.9697 0.9709 0.9720 0.9724 0.9745 0.9718 0.0011
25 0.9697 0.9709 0.9720 0.9724 0.9745 0.9718 0.0011
108 0.9698 0.9710 0.9719 0.9724 0.9745 0.9718 0.0011
32 0.9697 0.9709 0.9720 0.9724 0.9746 0.9718 0.0011
84 0.9698 0.9710 0.9720 0.9724 0.9745 0.9718 0.0011
106 0.9697 0.9710 0.9720 0.9723 0.9745 0.9718 0.0011
26 0.9697 0.9709 0.9720 0.9724 0.9746 0.9718 0.0011
39 0.9697 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
37 0.9697 0.9709 0.9719 0.9724 0.9745 0.9718 0.0011
27 0.9697 0.9709 0.9719 0.9724 0.9745 0.9718 0.0011
35 0.9697 0.9709 0.9719 0.9724 0.9745 0.9718 0.0011
38 0.9697 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
28 0.9697 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
43 0.9697 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
44 0.9697 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
30 0.9697 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
29 0.9697 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
41 0.9697 0.9709 0.9718 0.9723 0.9745 0.9718 0.0011
45 0.9697 0.9709 0.9719 0.9723 0.9744 0.9718 0.0011
47 0.9696 0.9709 0.9719 0.9723 0.9744 0.9718 0.0011
36 0.9696 0.9709 0.9719 0.9724 0.9745 0.9718 0.0011
34 0.9696 0.9709 0.9719 0.9723 0.9745 0.9718 0.0011
40 0.9696 0.9708 0.9718 0.9723 0.9745 0.9717 0.0011
46 0.9696 0.9709 0.9718 0.9723 0.9744 0.9717 0.0011
42 0.9696 0.9709 0.9718 0.9722 0.9744 0.9717 0.0011
48 0.9696 0.9709 0.9718 0.9723 0.9744 0.9717 0.0011

Table A4. List of the top 120 ensemble systems and combinations

ID Combination ID Combination

1 Bgl-Imp-fPH-Alp-fhap-Fimp 61 Bgl-Alp-fhap-Imp-fPH-Fimp
2 Bgl-Imp-fPH-Alp-Fimp-fhap 62 Bgl-Alp-fhap-Imp-Fimp-fPH
3 Bgl-Imp-fPH-fhap-Alp-Fimp 63 Bgl-Alp-fhap-fPH-Imp-Fimp
4 Bgl-Imp-fPH-fhap-Fimp-Alp 64 Bgl-Alp-fhap-fPH-Fimp-Imp
5 Bgl-Imp-fPH-Fimp-Alp-fhap 65 Bgl-Alp-fhap-Fimp-Imp-fPH
6 Bgl-Imp-fPH-Fimp-fhap-Alp 66 Bgl-Alp-fhap-Fimp-fPH-Imp
7 Bgl-Imp-Alp-fPH-fhap-Fimp 67 Bgl-Alp-Fimp-Imp-fPH-fhap
8 Bgl-Imp-Alp-fPH-Fimp-fhap 68 Bgl-Alp-Fimp-Imp-fhap-fPH
9 Bgl-Imp-Alp-fhap-fPH-Fimp 69 Bgl-Alp-Fimp-fPH-Imp-fhap
10 Bgl-Imp-Alp-fhap-Fimp-fPH 70 Bgl-Alp-Fimp-fPH-fhap-Imp
11 Bgl-Imp-Alp-Fimp-fPH-fhap 71 Bgl-Alp-Fimp-fhap-Imp-fPH
12 Bgl-Imp-Alp-Fimp-fhap-fPH 72 Bgl-Alp-Fimp-fhap-fPH-Imp
13 Bgl-Imp-fhap-fPH-Alp-Fimp 73 Bgl-fhap-Imp-fPH-Alp-Fimp
14 Bgl-Imp-fhap-fPH-Fimp-Alp 74 Bgl-fhap-Imp-fPH-Fimp-Alp
15 Bgl-Imp-fhap-Alp-fPH-Fimp 75 Bgl-fhap-Imp-Alp-fPH-Fimp
16 Bgl-Imp-fhap-Alp-Fimp-fPH 76 Bgl-fhap-Imp-Alp-Fimp-fPH
17 Bgl-Imp-fhap-Fimp-fPH-Alp 77 Bgl-fhap-Imp-Fimp-fPH-Alp
18 Bgl-Imp-fhap-Fimp-Alp-fPH 78 Bgl-fhap-Imp-Fimp-Alp-fPH
19 Bgl-Imp-Fimp-fPH-Alp-fhap 79 Bgl-fhap-fPH-Imp-Alp-Fimp
20 Bgl-Imp-Fimp-fPH-fhap-Alp 80 Bgl-fhap-fPH-Imp-Fimp-Alp
21 Bgl-Imp-Fimp-Alp-fPH-fhap 81 Bgl-fhap-fPH-Alp-Imp-Fimp
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Table A4. (Cont.)

ID Combination ID Combination

22 Bgl-Imp-Fimp-Alp-fhap-fPH 82 Bgl-fhap-fPH-Alp-Fimp-Imp
23 Bgl-Imp-Fimp-fhap-fPH-Alp 83 Bgl-fhap-fPH-Fimp-Imp-Alp
24 Bgl-Imp-Fimp-fhap-Alp-fPH 84 Bgl-fhap-fPH-Fimp-Alp-Imp
25 Bgl-fPH-Imp-Alp-fhap-Fimp 85 Bgl-fhap-Alp-Imp-fPH-Fimp
26 Bgl-fPH-Imp-Alp-Fimp-fhap 86 Bgl-fhap-Alp-Imp-Fimp-fPH
27 Bgl-fPH-Imp-fhap-Alp-Fimp 87 Bgl-fhap-Alp-fPH-Imp-Fimp
28 Bgl-fPH-Imp-fhap-Fimp-Alp 88 Bgl-fhap-Alp-fPH-Fimp-Imp
29 Bgl-fPH-Imp-Fimp-Alp-fhap 89 Bgl-fhap-Alp-Fimp-Imp-fPH
30 Bgl-fPH-Imp-Fimp-fhap-Alp 90 Bgl-fhap-Alp-Fimp-fPH-Imp
31 Bgl-fPH-Alp-Imp-fhap-Fimp 91 Bgl-fhap-Fimp-Imp-fPH-Alp
32 Bgl-fPH-Alp-Imp-Fimp-fhap 92 Bgl-fhap-Fimp-Imp-Alp-fPH
33 Bgl-fPH-Alp-fhap-Imp-Fimp 93 Bgl-fhap-Fimp-fPH-Imp-Alp
34 Bgl-fPH-Alp-fhap-Fimp-Imp 94 Bgl-fhap-Fimp-fPH-Alp-Imp
35 Bgl-fPH-Alp-Fimp-Imp-fhap 95 Bgl-fhap-Fimp-Alp-Imp-fPH
36 Bgl-fPH-Alp-Fimp-fhap-Imp 96 Bgl-fhap-Fimp-Alp-fPH-Imp
37 Bgl-fPH-fhap-Imp-Alp-Fimp 97 Bgl-Fimp-Imp-fPH-Alp-fhap
38 Bgl-fPH-fhap-Imp-Fimp-Alp 98 Bgl-Fimp-Imp-fPH-fhap-Alp
39 Bgl-fPH-fhap-Alp-Imp-Fimp 99 Bgl-Fimp-Imp-Alp-fPH-fhap
40 Bgl-fPH-fhap-Alp-Fimp-Imp 100 Bgl-Fimp-Imp-Alp-fhap-fPH
41 Bgl-fPH-fhap-Fimp-Imp-Alp 101 Bgl-Fimp-Imp-fhap-fPH-Alp
42 Bgl-fPH-fhap-Fimp-Alp-Imp 102 Bgl-Fimp-Imp-fhap-Alp-fPH
43 Bgl-fPH-Fimp-Imp-Alp-fhap 103 Bgl-Fimp-fPH-Imp-Alp-fhap
44 Bgl-fPH-Fimp-Imp-fhap-Alp 104 Bgl-Fimp-fPH-Imp-fhap-Alp
45 Bgl-fPH-Fimp-Alp-Imp-fhap 105 Bgl-Fimp-fPH-Alp-Imp-fhap
46 Bgl-fPH-Fimp-Alp-fhap-Imp 106 Bgl-Fimp-fPH-Alp-fhap-Imp
47 Bgl-fPH-Fimp-fhap-Imp-Alp 107 Bgl-Fimp-fPH-fhap-Imp-Alp
48 Bgl-fPH-Fimp-fhap-Alp-Imp 108 Bgl-Fimp-fPH-fhap-Alp-Imp
49 Bgl-Alp-Imp-fPH-fhap-Fimp 109 Bgl-Fimp-Alp-Imp-fPH-fhap
50 Bgl-Alp-Imp-fPH-Fimp-fhap 110 Bgl-Fimp-Alp-Imp-fhap-fPH
51 Bgl-Alp-Imp-fhap-fPH-Fimp 111 Bgl-Fimp-Alp-fPH-Imp-fhap
52 Bgl-Alp-Imp-fhap-Fimp-fPH 112 Bgl-Fimp-Alp-fPH-fhap-Imp
53 Bgl-Alp-Imp-Fimp-fPH-fhap 113 Bgl-Fimp-Alp-fhap-Imp-fPH
54 Bgl-Alp-Imp-Fimp-fhap-fPH 114 Bgl-Fimp-Alp-fhap-fPH-Imp
55 Bgl-Alp-fPH-Imp-fhap-Fimp 115 Bgl-Fimp-fhap-Imp-fPH-Alp
56 Bgl-Alp-fPH-Imp-Fimp-fhap 116 Bgl-Fimp-fhap-Imp-Alp-fPH
57 Bgl-Alp-fPH-fhap-Imp-Fimp 117 Bgl-Fimp-fhap-fPH-Imp-Alp
58 Bgl-Alp-fPH-fhap-Fimp-Imp 118 Bgl-Fimp-fhap-fPH-Alp-Imp
59 Bgl-Alp-fPH-Fimp-Imp-fhap 119 Bgl-Fimp-fhap-Alp-Imp-fPH
60 Bgl-Alp-fPH-Fimp-fhap-Imp 120 Bgl-Fimp-fhap-Alp-fPH-Imp
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