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ON THE CLASSIFICATION OF LIE 
PSEUDO-ALGEBRAS 

NGÔ VAN QUE 

Introduction [5]. For every (^°° differentiable) bundle E over a manifold 
M, Jjc(E) denotes the set of all &-jets of local (differentiable) sections of the 
bundle E. Jk(E) is a bundle over M such that if X is a section of E, then 

j*X:M-+Jk(E) 

x y->jx
kX 

is a (differentiable) section of Jjc(E). If £ is a vector bundle, Jjc(E) is a vector 
bundle and we have the canonical exact sequence of vector bundles 

0 -> E <g) S\T*) -> Jk(E) - ^ Mi(E) -> 0 

where Sk(T*) is the symmetric Whitney tensor product of the cotangent 
vector bundle T* of M. and TT is the canonical morphism which associates to 
each &-jet of section its jet of inferior order. In the case where E is the trivial 
vector bundle Rp over an open set M of R*\ for every k the preceding sequence 
admits a canonical splitting; therefore, there exists an isomorphism 

MRP) - = + Rp + Rp (x) Rn* + . . . + Rp (x) S\Rn*), 

which is the trivial bundle over M. The k-]etjx
kX of a vector-valued function X 

will be represented under this isomorphism by X(x) + DX
1X + . . . + Dx

kX\ 
the last is a polynomial function on Rn and represents the usual Taylor 
expansion of the function X at the point x: 

X(x + h) = Z(x) + ZV*(ft) + . . . + ZV*(i*) + 0(\\h\\k+i). 

The canonical operator, which is a morphism of sheaves of sections,! 

j*:E->ME) 

X^fX 

is universal in the sense that if 2 is a differential operator of order & from the 
bundle E to another bundle F over ikf, &: E —> F, it defines a canonical 
morphism of bundles cj>: Jk(E) —» F such that if X is a section of E, then 
^ ( X ) = 0(7**). 

Received March 13, 1969. This research was prepared while the author was partially 
supported by the University of California at Berkeley. 

fWithout risk of confusion, for every bundle E over M, the same letter E denotes its sheaf 
of sections over M. 
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Recall also that a differential system Sk of order k in E is a subset of Jk(E). 
The sheaf 6 of solutions of the differential system Sk is the sheaf of sections X 
of the bundle E such that JkX is a section of Jk(E) with values in the subset Sk. 
If E is a vector bundle and Sk is a subvector bundle of Jk(E), Sk is said to be a 
linear differential system. In this case, we can define the prolongation differen­
tial system of Sk in the following way: for every integer p, Jp(Sk) and Jk+P(E) 
are two subvector bundles of Jv[Jk(E)}\ hence 

Sk(p) = Jp(Sk) P\ Jk+V(E) 

is defined and it is the prolongation system of order k + p of Sk. The prolonga­
tion system Sk(P) admits the same sheaf of solutions as Sk. 

Infinite Lie pseudo-algebras. Let 6 be a subsheaf of the sheaf of vector 
fields T on a manifold M. We shall denote by Jk{6) the subset of Jk(T) com­
posed of the &-jets of all local sections X of 6. Recall that the Lie bracket of 
vector fields defines on T a structure of sheaf of Lie algebra and let us give the 
following definition. 

Definition. A Lie pseudo-algebra 6 over a manifold AT is a subsheaf of Lie 
algebra of T such that for every integer k, Jk{6) is a subvector bundle of 
MT). 

The linear differential system Jk(B) is by definition completely integrable, 
i.e. every element of Jk(6) is the &-jet of a germ of solution. Furthermore, for 
every k, Jk+i(6) is contained in the prolongation system of Jk(6) ; a well-known 
theorem of Cartan and Kuranishi states then that there is an integer r such 
that for all k ^ r the differential system Jk+i(0) is the prolongation system of 
Jk(6). The smallest of such an integer r will be referred to as the order of the 
Lie pseudo-algebra. Let 6 be a Lie pseudo-algebra of order r. The Lie pseudo-
algebra is said to be complete if it is the sheaf of solution of the differential 
system JT{6). In the following, we shall consider only the Lie pseudo-algebra 
which is complete in this sense. 

A Lie pseudo-algebra 6 is said to be infinite if the stalk 6X at some point x 
•of M is a vector space (over the real field R) of infinite dimension. If M is 
connected, it is equivalent to say that the vector bundle Gk-i, defined as the 
kernel of the canonical morphism -K 

0 -> G*_i -> Jk(6) - ^ J^ifi) -> 0 
is of positive dimension for every integer k. We shall suppose M to be connected, 
and denote, for simplicity, the stalk 6X by L. Let L0 be the subalgebra of germs 
of vector fields in L = 6X which vanish at the point x. Then the Lie bracket of 
vector fields induces naturally a linear representation of L0 into the tangent 
vector space Tx at x of the manifold M. The Lie pseudo-algebra 6 is said to be 
irreducible if this representation is irreducible. This condition is independent of 
the choice of the point x. Furthermore, if the Lie pseudo-algebra is irreducible, 
it is transitive, i.e. we have Jo(6) = T. 
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Cartan has given the "local classification", in a sense to be understood later 
on, of infinite irreducible Lie pseudo-algebras on a manifold M [1]. Matsushima 
[4] and Kobayashi and Nagano [3] have completed the algebraic part of 
Cartan's classification, which contains some gap. Singer and Sternberg [6] 
have settled the classification of Cartan, and mainly omitted the analyticity 
condition of Cartan. This paper is essentially a report on the work of Singer 
and Sternberg in a simplified setting due to jet theory. We shall also give a 
complete proof of the classification theorem noted in this paper as Theorem 2a, 
as it seems to us technically original and is missing in the literature. 

Algebraic classification. Consider the filtered Lie algebra 

L_i = 1/ 3 Lo D ^ i D • • • D ^ i D Li+\. . . , 
where 

Lt= {X £ L = ex\jJX = 0}. 

The associated graded Lie algebra will be represented by 

Gr(0) = GLi + Go + Gi + . . . + Gt + Gi+1 + . . . ; 

this is the associated graded Lie algebra of the Lie pseudo-algebra 0. In the case 
where 0 = T (the Lie pseudo-algebra of all germs of vector fields on M), the 
associated graded Lie algebra is 

G r ( r ) = £ + £<g)£* + £ ® S2(E*) + ... + E ® S*(£*) + . . . , 

where £ = Tx. In other words, Gr(T) is the set R[£, £ ] = R 0 R[£] of 
polynomial functions on E with values in E. The graduation of Gr(T) is a shift 
of the natural graduation on R[£, E] and the Lie bracket of Gr(T) is defined 
by the following formula 

[u ® P,v ® Q] = v ® (duQ) • P - u <g> idvP) • Q, 

where duQ (respectively, dvP) is the derived polynomial of the polynomial Q 
by the vector u of E (respectively, P and v). 

For every Lie pseudo-algebra 0, Gr(0) is then a subgraded Lie algebra of 
Gr (T). In particular, Go is a subalgebra of the Lie algebra of the endomorphisms 
of E: Go C E (8) £*; it is the linear representation of L0 in E. G0 is the isotropy 
algebra of 6. Denote by Gr(£, Go) the subgraded Lie algebra of Gr(T) 
generated by E and G0; we have the following inclusion of graded Lie algebras 

Gr(0) C Gr(£, G0) C G r ( r ) = R[£, E]. 

Hence the Lie pseudo-algebra 0 is infinite, only if Gr(£, Go) is of infinite 
dimension. Indeed, for an infinite Lie pseudo-algebra 0, Gr(0) is of infinite 
dimension. 

More generally, if £ is a vector space over a field K, the set K[E, E] = 
£ ® K[E] of polynomial functions on £ with values in £ is as before a graded 
Lie algebra over the field K. Let G be a X-Lie algebra of endomorphisms of £ . 

https://doi.org/10.4153/CJM-1970-104-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-104-9


908 NGÔ VAN QUE 

Gr(£, G) denotes the subgraded Lie algebra generated by £ and G in K[E, E]: 

Gr(£, G) = E + G + G(1) + . . . + G(i) + . . . . 

If Gr(£, G) is of infinite dimension (i.e. G m 9^ 0 for all i), G will be said to be a 
i£-algebra of infinite type. 

In the following, which is due mainly to Guillemin, Quillen, and Sternberg 
[2], we wish to classify the isotropy algebra of irreducible infinite Lie pseudo-
algebras, or more precisely irreducible R-algebras of infinite type. If G is an 
irreducible R-linear Lie algebra of E, it is well known that we have one of the 
following two cases: its complexification Gc = G 0 C is an irreducible 
C-linear Lie algebra of endomorphisms of Ec = E ® C or the vector space E 
can be regarded as a complex vector space and G is an irreducible C-linear 
Lie algebra of endomorphisms of E. It is also immediate that if G is of infinite 
type, then in the first case, Gc is an irreducible C-algebra of infinite type, 
and in the second case, G itself is an irreducible C-algebra of infinité type. 

Thus, let £ be a vector space over the complex field C and G a C-Lie algebra 
of endomorphisms of £ . Recall that the dual vector space C[£, £ ] * is C[£*, £*]. 
As a subvector space of C[£, £ ] , Gr(£, G) has its orthogonal complement 
denoted by Gr(£, G)± in C[£*, £*]. The latter is a module over the ring 
C[£*]of polynomials on £* ; Gr (£, G) •»• is then the sub-C[£*]-module generated 
by G-S the orthogonal complement of G in (£ ® £*)* = E* ® £ . Consider 
the conductor I of the sub-module Gr(£, G) K 

C[E*] D I = {P e C[£*]| P • C[£*, £*] C Gr(£, G)±\, 

and we shall denote by \I\ the set of zeros of the ideal / in £*. If | / | = {0}, 
by Hilbert's Nullstellensatz there is an integer r such that if k ^ r, 

Gr(£, G ) ^ D £ * ® 5*(£). 

Hence we have the following lemma. 

LEMMA 1. The Lie algebra G is a C-algebra of infinite type if and only if 

|/| * Î0!. 

Next we have the following result. 

LEMMA 2. If £ G | / | C £*, there is a vector a ^ 0 in E such that 

a ® £ 6 G C £ ® £ * . 

Proof. I t is equivalent to proving that £, an element of £*, is in | / | if and 
only if the linear vector space {A (£)| A G Gx C £* ® £} is not equal to £*. 

Let i;1, . . . , in be a basis of £*. For any n elements A1, . . . , An of G-s with 

4'= Ê*'® a/= !>/.{', 
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we have in the C[£*]-module C[£*, E*], 

Z Ax" • Ax = d e t ( 0 • {*, 
x=i 

where (Cramer's rule) 

^ A X -a, = 0, de t (a , ) with ^ = Q .f ^ ^ 

Thus: 
(1) Let £ Ç |/ | . For any w elements ^4x, . . . , An of Gx, by definition we have 

de tO / ) e / a n d det(a/)(£) = 0. Hence 

{A(£),A e G-} 9*E*. 

(2) Inversely, if £ g \I\, there is a P G / such that P(£) F^ 0. Since P C / , 
for every i we have 

P • % = Q* • 4* with A' 6 Gx. 

Thus, -41(?), . . . , An(£), which are so chosen, are n linearly independent 
vectors of E*. Hence 

{A®, A e G-} = £ * . 

From these two lemmas, we have the following result. 

PROPOSITION [2]. A C-linear algebra G is of infinite type if and only if it admits 
an element of rank one (i.e. a ® £ G G C.E ® E*). 

A vector £ of E* such that a ® £ G G for some a ^ 0 of £ is said to be a 
characteristic covector of G. If G is irreducible, the set of characteristic 
covectors of G is the whole space E*. Recall then that if G is irreducible, 
G is reductive. We choose a Cartan subalgebra of its semi-simple part. Let X 
be the highest weight of the canonical representation of G into £* and let £\ 
be a corresponding weight vector. There is a ^ 0 of E such that a ® £\ £ G. 
Applying to this element the root vectors of G, one sees easily that G contains 
du ® £x with aM as a weight vector corresponding to the highest weight ju of the 
canonical representation of G into E. Thus X + ju is a root of G ; it is evidently 
the highest root, or, by the Dynkin diagram, the highest root of a semi-simple 
Lie algebra is always fundamental except for the cases of An and Cn. Hence 
we have the following result. 

PROPOSITION [1; 2; 3; 6]. An irreducible C-linear Lie algebra G of infinite type 
over the vector space E must be one of the following: 

( i ) g l (£ ,C) , 
( i i ) s l (£ ,C) , 

(iii) csp(£, C), 
(iv) sp(£, C). 
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From this proposition, we have the classification for R-linear Lie algebras. 

THEOREM 1 [4]. An irreducible R-linear Lie algebra G of infinite type over a 
vector space E must be one of the following: 

(I) (The complexification of G is irreducible): 

(i) gl(£, R), 
( i i ) sI (£ ,R) , 

(iii) csp(£, R), 
( iv )sp(E.R); 

(II) (The complexification of G is not irreducible and E is canonically a vector 
space over the complex field C): 

( i ) g l ( £ , C ) , 
(ii) sl(£, C) + R (i.e. with a one-dimensional real centre), 

( i i i ) s l (£ ,C) , 
(iv) csp(£, C), 
(v) spCE, C) + R, 

(vi) sp(£, C). 

Consider now the graded Lie algebras Gr (£, ,£) corresponding to these 
cases. One proves by a remark of Weyl [3] that except for the cases (I)(i) and 
(II) (i), they do not admit any other infinite subgraded Lie algebra containing 
E and G. For these exceptions, we have: 

(I)(i) Gr(£, gl(£, R)) D E + gl(£, R) + sl(£, R) (1 ) + . . . + sl(£, R) ( i ) 

+ ..., 
(II)(i) Gr(£, gl(E, C)) D E + gl(£, C) + sl(£, C)(1) + . . . + sl(£, C ) ( 0 

+ .... 

Classification of irreducible infinite Lie pseudo-algebras. Let 6 and 
6' be two Lie pseudo-algebras over the manifolds M and M', respectively. 
We shall say that they are locally equivalent if and only if there is a diffeo-
morphism <j> from an open set U of M to an open set V of M' such that 6, 
6f being restricted to the open sets U and U', respectively, we have: 

e = 0*-1 o 0' o 0, 

where 0* is the prolongation of <j> to the tangent bundles 

T(U) - ^ > T(U') 

U _ * > U* 

From the preceding theorem of algebraic classification and the remark 
immediately following it, Singer and Sternberg proved the following theorem. 
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THEOREM 2 [6]. If 0 is an irreducible infinite Lie pseudo-algebra of order 1, 
then 0 is locally equivalent to one of the following Lie pseudo-algebras 6'': 

(I) Over Rn (with the canonical coordinates xh . . . , xn), 0' is the sheaf of 
(i) all vector fields, 

(ii) vector fields leaving invariant the n-form dx\ A . . . A dxn, 
(iii) (n = 2p) vector fields leaving invariant up to a constant factor the 2-form 

dxi A dxp+i + dx2 A dxp+2 + . . . + dxp A dx2p, 
(iv) (n = 2p) vector fields leaving the last 2-form invariant. 

(II) Over Gn (with the canonical coordinates Z\, . . . , zn), 0' is the sheaf of 
(i) all holomorphic vector fields, 

(ii) holomorphic vector fields leaving invariant up to a real constant factor 
the n-complex form dzi A . . . A dzn, 

(iii) holomorphic vector fields leaving invariant the last n-complex form, 
(iv) (n = 2p) holomorphic vector fields leaving invariant up to a complex 

constant factor the 2-complex form dzi A dzp+i + . . . + dzp A dz2p, 
(v) (n = 2p) holomorphic vector fields leaving invariant up to a real 

constant factor the last 2-complex form, 
(vi) (n = 2p) holomorphic vector fields leaving invariant the last 2-complex 

form. 

The proof of this theorem involves a long process. But we intend to prove 
the following. 

THEOREM 2a. / / 6 is an irreducible infinite Lie pseudo-algebra which is not of 
order 1, 6 is locally equivalent to one of the following Lie pseudo-algebras: 

(I) (i) (a) Over Rw, the sheaf of vector fields leaving invariant up to a constant 
factor the n-form dx\ A . . . A dxn, 

(II) (i) (a) Over Cn, the sheaf of holomorphic vector fields leaving invariant up 
to a (complex) constant factor the n-complex form dzi A . . . A dzn. 

Indeed these are the only two cases where we have 
(I)(i)(a) Gr(0) = E + gl(£, R) + sl(£, R ) a , + . . . + sl(E, R ) ( 0 + . . . , 

(II) (i) (a) Gr(fl) = E + gl(£, C) + sl(E, C)u> + . . . + sl(£, C)(<) + . . . . 
Using the Newlander-Nirenberg theorem on integrability of almost complex 

structures, one proves as in [6] that in the case (II) (i) (a), the manifold M 
must be locally complex (we do not suppose that M is orientable) and 6 must 
be a sheaf of holomorphic vector fields. Then the proof for the case (II) (i) (a) 
is the same (with complex arguments) as for the case (I) (i) (a). Thus, we shall 
restrict ourselves to the case where Gr(0) is of the form (I)(i)(a) and prove 
that 0 must be locally equivalent to the sheaf of vector fields over Rw leaving 
invariant up to a constant factor the n-form dx\ A . . . A dxn. Furthermore, 
as the question is local, without loss of generality, we shall suppose M to 
beRw. 
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Proof of Theorem 2a. 
(A)(1) We have the canonical injection (Spencer's ô operator) 

Rn (x) 52(Rn*) -^ (Rw (x) Rn*) (x) Rw* 

e(g)f^2(e(g) £)® ? 
Let tr(<5) = (tr ® id) o 5, where 

tr ® id: (Rn ® Rw*) ® Rw* -> Rw* 

g (g) i i-> trace (g)f 

and consider the linear complex 

0 -> sl(», R ) ( D -* Rw (x) S2(RW*) ^ ^ Rn* -> 0. 

This complex is gl(n, R)-equivariant relative to the canonical representation 
of g\(n, R) into these spaces. Or it has been well known since Weyl that 
sl(n, R)(i) and Rw* are irreducible g\(n, R)-modules. Hence, by dimension 
arguments, this complex is exact. 

LEMMA. We have the direct sum 

Rn ® S2(Rn*) = sl(n, R)(i) + Rn*, 

where Rn* is a subspace of Rn ® 52(RW*) such that if £ £ Rn*, then 

b{£){e®e') = Z(e)e' + Z(e')e 

for e ® e' € Rn ® Rn. 

Indeed, it is immediate that if £ G Rw* C Rw ® S2(RW*), then 

tr(ô)(£) = (fl + 1)£. 

Thus we have the lemma as tr(ô): Rn* —•> Rw* is surjective. 

(2) Let r be the tangent bundle of Rn. We have the isomorphism of bundles 
(see introduction) 

J2(T) ~ R" + Rn ® R^* + R» ® S2(R**), 

where the second member represents trivial bundles over Rn. By the preceding 
lemma, we have the isomorphism 

J2(T) ~ Rn + Rn ® Rw* + R** + sl(rc, R) ( 1 ) 

such that every element of J2 ( T) will be represented in this direct decomposition 
by X + g + £ + h. 

Consider on Rn an n-lorm 

co = / dxi A . . . A dxn 

with f 7e 0 everywhere. If 

https://doi.org/10.4153/CJM-1970-104-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-104-9


LIE PSEUDO-ALGEBRAS 913 

is a vector field on R", the Lie derivative of co by X is 

i f (X)(w) = (X •f + fdivX)dx1 A . . . Ad*». 

Let 3) be the differential operator of order 1, 

T —* R (the trivial line bundle over RM) 
X-+X -f+fdlvX. 

With the universal operator j 1 , 

f-.R-^Ji(R) = R + R"*, 
we have 

/ o^:r -»R + R"* 

X^(X-f + fdivX) + (xid-^- + -^-dXi + divXdf + fddivx) 
\ uXi OXi / 

with Einstein's convention of summation. Hence j 1 o ^ , as a differential 
operator of order 2, induces the following morphism <j> of vector bundles 

0 : / 2 ( r ) - + R + Fr* 

g^ftr(g) + dfog 

If 6 is the Lie pseudo-algebra leaving the n-form co invariant up to a constant 
factor, its graded Lie algebra Gr(0) is evidently of the form (I) (i) (a) and 6 is 
the sheaf of solutions of the completely integrable linear differential system of 
order 2, J2(0), which is the kernel of the morphism </>, 

MB) C MT) = Rn + R*(g) Rw* + Rw* + sl(», R)(i) 

dfog 

(B) (1) Inversely let 6 be a Lie pseudo-algebra over Kn such that its graded 
Lie algebra is of the form (I)(i)(a). Recall [5] that Ji(T) is a sheaf of Lie 
algebra such that 

[j'XJfY] = (X -f)fY + ff[X, Y], 

where X and F are vector fields a n d / is a differentiable function. Then, since 6 
is a Lie pseudo-algebra, /2(A) is a subsheaf of the Lie algebra of Ji{T). In 
particular, let /2°(0) be the kernel of the morphism IT: 

0 -> J2°(B) -> J2(6) -^-> T -> 0. 

J2°(0) is a Lie algebra bundle whose fibre is the graded Lie algebra 

gl(n, R) + sl(w, R)(i) + . . . + sl(n, R ) ( 0 + . . . 

truncated to the order 1. 
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By hypothesis on the Lie pseudo-algebra 6, we have 

MO) C MT) = R" + R" ® Rre* + Rn* + sl(n, R) ( 1 ) , 

MO) = {X + g + t + h,£ = a(g)}, 

where a is a morphism of vector bundles over Rw, 

a: Rn ® Rw* -> Rn*. 

Since J2°(0) is a Lie algebra bundle, we must have 

[g + a(g),g'+a(g')] = [g ,g ' ]+a( [g ,g 'D (mod sl(n, R) ( 1 )) . 

However, the structure of Lie algebra in J£(d) is such that 

[g + <x(g),g' + «feOl = lg,g'] +a(g')og - a(g)og' (mod sl(w, R)(i)). 

Hence we have 

a (g )og ' - a (g ' ) og - a([g,g']) = 0. 

In other words, the morphism a is a 1-cycle of gl(w, R) with values in the 
gl(w, R)-module Rw*. But since gl(n, R) is reductive, it must be a coboundary, 
i.e. there is a 1-form a such that a(g) = a o g. 

(2) Let X be a section of 6. In the sheaf of J2(T), it is immediate by a simple 
calculation that 

[f-X,g + cog] =&(X)(g) -d(divX)og + £>(X)(<rog) 

(mod sl(w, R ) ( D ) . 

On the other hand, it must be a section of J\(0), since J2(0) is a subsheaf of the 
Lie algebra of J2 ( T) : 

[ /X, g + <r og] = i f (X)(g) + c o^(X)(g) (mod sl(n, R) ( 1 )) . 

Hence 

<roif(X)(g) = - J ( d i v X ) o g + i f ( X ) ( < 7 0g) 

= - d ( d i v X ) o g + - $ f ( X ) ( c r ) o g + ( ro i f (X)(g) f 

0 = -d(divX) og+ (di(X) + i{X)d)(a) og. 

Thus, i{X)da is a closed 2-form; in particular, J£(X)da = 0 for all sections X 
of 6. It implies that the isotopy algebra gl(n, R) of 6 leaves invariant the 2-form 
da; this is evidently possible only if da = 0. 

By Poincaré's lemma, we have 

a = dh for some differentiate function h. 
Let 

f = e-(
n+Dh

f f [s different from zero everywhere. 

The Lie pseudo-algebra 6 is then evidently the sheaf of all vector fields on Rn, 
leaving invariant up to a constant factor the n-îorm 

co = / dxi A . . . A dxn. 
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