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Irreducible Polynomials Over a Finite Field
with Restricted Coefficients

Sam Porritt

Abstract. We prove a function ûeld analogue of Maynard’s celebrated result about primes with re-
stricted digits. _at is, for certain ranges of parameters n and q, we prove an asymptotic formula
for the number of irreducible polynomials of degree n over a ûnite ûeld Fq whose coeõcients are
restricted to lie in a given subset of Fq .

1 Introduction

Many theorems concerning the existence of irreducible polynomials over a ûnite ûeld
of a special form have been proved. A discussion of such results can be found in [8].
In this paper we will prove a function ûeld analogue of a result of Maynard [5] con-
cerning primes with missing digits. He proved that for large enough integers b, the
primes have the expected asymptotic density inside those integers that can be writ-
ten in base b using only certain speciûed digits. We will prove the following natural
analogue for polynomials in Fq[t].

_eorem 1.1 Let R ⊂ Fq be a subset of size s and assume that s is less than √q/2.
Suppose that q ⩾ 500 and n ⩾ 100(log q)2. _e number of irreducible monic polynomi-
als of degree n with coeõcients only from Fq/R (except possibly the leading 1) is given
by

q
q − 1

(q − s)n

n
(Λ + O(q−n

1/2
/7)) ,

where

Λ =
⎧⎪⎪⎨⎪⎪⎩

1 if 0 ∈ R,
1 − 1

q−s if 0 ∉ R.

Remark Beyond stipulating that s ⩽ √q, the constraints on the sizes of s, q, and n
are somewhat artiûcial, andwere chosenwith the aimof producing amore presentable
error term. A more complicated, but more widely applicable, error term, from which
the next two examples follow, is presented at the end of Section 4.
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Example 1.2 In the special case of s = 1, we get an asymptotic formula for any q ⩾ 17.
In particular, we show that the number of irreducible polynomials of degree n with a
single coeõcient from F17 forbidden is asymptotic to Λ 16

17 (16)
n/n as n →∞.

Example 1.3 An asymptotic formula still holds in the case of ûxed n and q → ∞,
provided that s = o(q1/2).

As in the integer setting, we can take s to be larger when the set R has additional
structure. For example, in Section 5 we will prove the following theorem.

_eorem 1.4 Suppose δ > 0 and p is a prime suõciently large in terms of δ. _en for
any subsetR = {r, r+1, . . . , r+s−1} ⊂ Fp of s consecutive coeõcients with p−s > p3/4+δ ,
the number of irreducible monic polynomials of degree n with coeõcients only from
Fp/R (except possibly the leading 1) is given by

p
p − 1

(p − s)n

n
(Λ + O(e−cn

1/2
)) ,

for some positive constant c depending on p and δ.

_e integer version of _eorem 1.1 was proved in [5] under the assumption that
the number of restricted digits s satisûes s ⩽ b1/4−δ and the base b is suõciently large
in terms of δ. An analogue of _eorem 1.4 was proved under the assumption that
R = {0, 1, . . . , s − 1} and s ⩽ b − b3/4+δ . _e proofs of _eorems 1.1 and 1.4 will
use the circle method over Fq[t] along the lines of [3] and [5]. Two features make our
arguments substantially simpler. First, we canmake use ofWeil’s Riemann hypothesis
for curves over a ûnite ûeld which gives very good control for exponential sums over
irreducibles. Second, we do not have to deal with any technicalities that arise from
the fact that sometimes digits are ‘carried’ when rational integers are added. _is does
not happen with polynomials over a ûnite ûeld.
For an overview of digit related results in the integers, see the recent work of Di-

etmann, Elsholtz, and Shparlinski [2] which also contains a section on ûnite ûelds,
improving an earlier result of Dartyge, Mauduit, and Sárközy [1]. See also [6], which
contains an extensive list of references to related problems.

2 Definitions and Set Up

_is section introduces some notation. Let q be a prime power and Fq be the ûeld
with q elements and characteristic p. Let R = {r1 , . . . , rs} ⊂ Fq be a subset of for-
bidden coeõcients. We are interested in counting monic (sometimes called positive)
irreducible polynomials inFq[t] of degree n, all of whose coeõcients, apart frompos-
sibly the leading 1, are in the set Rc ∶= Fq/R. _e function ûeld analogue of the real
numbers is the completion of the ûeld of fractions of Fq[t] with respect to the norm
deûned by

∣ f /g∣ =
⎧⎪⎪⎨⎪⎪⎩

qdeg f−deg g if f /= 0,
0 otherwise.
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_is completion is naturally identiûed with the ring of formal Laurent series

Fq((1/t)) = { ∑
i⩽ j

x i t i ∶ x i ∈ Fq , j ∈ Z} .

_e norm deûned above is extended to x = ∑i⩽ j x i t i ∈ Fq((1/t)) by setting ∣x∣ = q j

where j is the largest index with x j /= 0. _e subscript notation x i will be used again
to refer to the coeõcient of t i in x. _e analogue of the real unit interval is T ∶=
{∑i<0 x i t i ∶ x i ∈ Fq}, and is a subring of Fq((1/t)). Deûne ψ∶Fq → C× by

ψ(a) = exp(2πi tr(a)/p)
where tr∶Fq → Fp is the usual trace map. Also deûne the additive character
eq ∶Fq((1/t)) → C× by eq(x) = ψ(x−1). Fix a Haar measure on the additive group
T normalised so that ∫T dx = 1. _en for all a ∈ Fq[t], we have

∫
T
eq(ax)dx =

⎧⎪⎪⎨⎪⎪⎩

1 if a = 0,
0 if a /= 0.

For x ∈ T, deûne the sum over monic irreducible polynomials of degree n

S(x) = ∑
deg ω=n

eq(ωx).

LetMR(n) be the set of monic polynomials of degree n with non-leading coeõcients
taken from Rc and deûne

SR(x) = ∑
m∈MR(n)

eq(mx).

So S(x) and SR(x) depend on n even though this is not apparent from the notation.
_e main quantity of interest, the number of irreducible polynomials in MR(n), is
then given by

N(R, n) = ∫
T
S(x)SR(x)dx .

We will make use of the important fact that for each x ∈ T, there exist unique a, g ∈
Fq[t] with g monic, a and g coprime, and ∣a∣ < ∣g∣ ⩽ qn/2 such that

∣x − a
g
∣ < 1

qdeg g+n/2 .

_is fact is [7, Lemma 3]. It implies that we can partition T into the so-called Farey
arcs as

T = ⋃
∣a∣<∣g∣⩽qn/2

(a ,g)=1

F( a
g
, qdeg g+n/2)

where F( ag , λ) = {x ∈ T ∶ ∣ ag − x∣ < 1
λ}.

As usual, we let µ( f ) denote the Möbius function, deûned as (−1)k if f is the
product of k distinct irreducibles and 0 otherwise. Let ϕ( f ) be the size of the unit
group (Fq[t]/( f ))×, that is, ∣ f ∣∏ω∣ f (1 − 1/∣ω∣), where the product is over all monic
irreducibles dividing f . Finally, let π(n) be the number of monic irreducible polyno-
mials of degree n and recall the prime number theorem in the form∑d ∣n dπ(d) = qn .
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3 Lemmas

_e sum S(x) was analysed in [4]. Our ûrst lemma is [7, Lemma 5] and is a conse-
quence of Weil’s Riemann Hypothesis for curves over a ûnite ûeld.

Lemma 3.1 Let a, g ∈ Fq[t] be two polynomials with (a, g) = 1 and γ ∈ T, satisfying
∣a∣ < ∣g∣ ⩽ qn/2 and ∣γ∣ < 1/qdeg g+n/2. We have

S( a
g
+ γ) = µ(g)

ϕ(g)π(n)eq(γt
n)1∣γ∣<1/qn + E

with ∣E∣ ⩽ qn− 1
2 [

n
2 ].

For a subset A ⊂ Fq , deûne the Fourier coeõcient 1̂A(r) ∶= ∑n∈A ψ(nr). It turns
out that the average value of ∣SR(x)∣ can bewritten quite neatly in terms of the Fourier
coeõcients of the set Rc .

Lemma 3.2

∫
T
∣SR(x)∣dx = ( 1

q
∑
r∈Fq

∣1̂Rc(r)∣)
n
.

Proof First

SR(x) = ∑
m∈MR(n)

eq(mx) = eq(xtn)
n−1

∏
i=0

( ∑
n i∈Rc

eq(xn i t i))

= eq(xtn)
n−1

∏
i=0

( ∑
n i∈Rc

ψ(n ix−i−1)) .

Notice that ∣SR(x)∣ only depends on the leading n coeõcients (x−1 , . . . , x−n) of x
and so, for each a ∈ Fq[t], ∣SR(a/tn + γ)∣ is constant in the range ∣γ∣ < 1/qn , a set of
measure 1/qn . _erefore,

∫
T
∣SR(x)∣dx = 1

qn ∑
deg a<n

∣SR( a
tn

) ∣ = 1
qn ∑

deg a<n
∣
n−1

∏
i=0

∑
n i∈Rc

ψ(n ian−i−1)∣

= 1
qn ∑

deg a<n

n−1

∏
i=0

∣ 1̂Rc(an−i−1)∣ =
1
qn ( ∑

r∈Fq

∣ 1̂Rc(r)∣)
n
,

which completes the proof of the lemma.

Corollary 3.3

∫
T
∣SR(x)∣dx ⩽ (

√
s + 1 − 2s/q)n ,

with equality in the case s = 1.

Proof Notice that

1̂Rc(r) + 1̂R(r) = ∑
n∈Fq

ψ(rn) =
⎧⎪⎪⎨⎪⎪⎩

q if r = 0,
0 if r /= 0.
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And hence,

∑
r∈Fq

∣1̂Rc(r)∣ = ∑
r∈Fq/0

∣1̂R(r)∣ + ∣q − 1̂R(0)∣ = ∑
r∈Fq

∣1̂R(r)∣ + q − 2s.

It therefore suõces to show that ∑r∈Fq
∣1̂R(r)∣ ⩽ q

√
s. By the Cauchy–Schwarz in-

equality,

( ∑
r∈Fq

∣1̂R(r)∣)
2
⩽ ( ∑

r∈Fq

1)( ∑
r∈Fq

∣ ∑
n∈R

ψ(rn)∣
2
) = q ∑

r∈Fq

∑
n1 ,n2∈R

ψ(r(n1 − n2)).

By swapping the order of summationwe see that the total contribution from the terms
with n1 /= n2 is 0. _e terms n1 = n2 contribute q2s, as required.

_e next lemma is similar to [7, Lemma 7].

Lemma 3.4 Let a, g ∈ Fq[t] be coprime polynomials with ∣a∣ < ∣g∣ and g not a power
of t and let d = deg g > 0. _en

∣SR( a
g
) ∣ ⩽ (q − s)n−[ n

d ]s[
n
d ] .

Proof Write a/g = ∑i<0 x i t i and let z be the number of non-zeros amongst the x i
in the range −n ⩽ i ⩽ −1. _en, by our expression for SR(a/q) from the start of the
proof of Lemma 3.2, we have that

∣SR(a/g)∣ = (q − s)n−z
n−1

∏
i=0

x−i−1 /=0

∣ ∑
n i∈R

ψ(n ix−i−1)∣ ⩽ (q − s)n−zsz

by the triangle inequality. Since q− s ⩾ s, it suõces to show that z ⩾ [ n
d ]. We use proof

by contradiction. Suppose z ⩽ [ n
d ]−1._en, by the pigeonhole principle, there is some

string of at least d consecutive zeros in (x−n , . . . , x−1). Hence, ∣{tra/g}∣ ⩽ 1/qd+1 for
some integer r ⩾ 0 where {x} = ∑i<0 x i t i denotes the fractional part of x. But this is
a contradiction, since g does not divide tra so we must have ∣{tra/g}∣ ⩾ 1/qd .

Lemma 3.5 For d ⩽ n/2 we have

∑
deg a<deg g⩽d

(a ,g)=1

∣SR( a
g
) ∣ ⩽ (q − s)n−2d(q(1 +

√
s) − 2s)2d .

Proof For any integer Y and x ∈ T, deûne

SY
R(x) = ∑

m∈MR(Y)

eq(mx)

so that SR(x) = Sn
R(x). _en

∣Sn
R(x)∣ = ∣

n−1

∏
i=0

∑
n i∈Rc

ψ(n ix−i−1)∣ = ∣
Y−1

∏
i=0

∑
n i∈Rc

ψ(n ix−i−1)
n−1

∏
i=Y

∑
n i∈Rc

ψ(n ix−i−1)∣

= ∣SY
R(x)Sn−Y

R (xtY)∣ .
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Applying this with Y = 2d gives

∑
deg a<deg g⩽d

(a ,g)=1

∣SR( a
g
) ∣ = ∑

deg a<deg g⩽d
(a ,g)=1

∣S2d
R ( a

g
)Sn−2d

R ( t2da
g

) ∣

⩽ max
deg a<deg g⩽d

(a ,g)=1

∣Sn−2d
R ( t2da

g
) ∣ ∑

deg a<deg g⩽d
(a ,g)=1

∣S2d
R ( a

g
) ∣

⩽ (q − s)n−2d ∑
deg a<deg g⩽d

(a ,g)=1

∣S2d
R ( a

g
) ∣ ,

where we have used the trivial bound ∣Sn−2d
R (x)∣ ⩽ (q − s)n−2d . Notice that

S2d
R (a/g + γ) is constant in the range ∣γ∣ < 1/q2d and recall that the Farey arcs

F(a/g , q2d) are disjoint. _erefore,

1
q2d ∑

deg a<deg g⩽d
(a ,g)=1

∣S2d
R ( a

g
) ∣ = ∑

a ,q
∫
F(a/g ,q2d)

∣S2d
R ( a

g
+ γ) ∣dγ ⩽ (

√
s + 1 − 2s/q)2d

by Corollary 3.3, where the sum is over all distinct fractions a/q with deg g ⩽ d.

Lemma 3.6 Let g ∈ Fq[t]. _en

qdeg g

ϕ(g) =∏
ω∣g

( 1 − 1
qdeg ω )

−1
⩽ ( 1 + logq(deg g)) e2 .

Proof Arrange the monic, irreducibles ω1 , . . . ,ωr dividing g and the monic irre-
ducibles P1 , . . . in Fq[t] in order of degree (ordering those of the same degree arbi-
trarily). _en we must have that deg Pi ⩽ degω i . Now, for some N , we have that
∑P∶deg P⩽N−1 deg P < deg g ⩽ ∑P∶deg P⩽N deg P. _is implies that g has at most π(N)
irreducible factors, and so, since deg Pi ⩽ degω i , we have

∏
ω∣g

(1 − q− deg ω)−1 ⩽ ∏
P∶deg P⩽N

(1 − q− deg P)−1 .

Taking the logarithm of the right-hand side, and using the fact that − log(1− 1
x ) ⩽

1
x−1

for x > 1, and that∑d ∣r dπ(d) = qr so π(r)r ⩽ qr − 1 for r > 1, we get

∑
P∶deg P⩽N

− log(1 − q− deg P) ⩽ ∑
r⩽N

π(r)
qr − 1

⩽ q
q − 1

+ ∑
2⩽r⩽N

1
r
⩽ 2 + logN .

Now N is bounded in terms of deg g as follows:

deg g > ∑
P∶deg P⩽N−1

deg P = ∑
r⩽N−1

π(r)r ⩾ ∑
r∣N−1

π(r)r = qN−1 .

Hence N ⩽ 1 + logq deg g. Combining these inequalities gives the result.
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4 Proof of Theorem 1.1

Recall that our aim is to evaluate N(R, n) = ∫T S(x)SR(x)dx. Now each x ∈ T can
be written as a/g + γ for unique a, g , γ as in Lemma 3.1, which allows us to write

N(R, n) = ∫
T
SR(x)( µ(g)

ϕ(g)π(n)eq(γt
n)1∣γ∣<1/qn + E)dx ,

where ∣E∣ ⩽ qn− 1
2 [

n
2 ] uniformly. _e error term is bounded by using Corollary 3.3 as

(4.1) ∣ ∫
T
SR(x)Edx∣ ⩽ qn− 1

2 [
n
2 ](

√
s + 1 − 2s/q)n .

We can write what’s le� as

∫
T
SR(x) µ(g)

ϕ(g)π(n)eq(γt
n)1∣γ∣<1/qndx =

∑
a ,g
∫
F(a/g ,qn)

SR( a
g
+ γ) µ(g)

ϕ(g)π(n)eq(γt
n)dγ,

where the sum is over all distinct fractions a/g such that deg g ⩽ n/2. _ese are the
so-called major arcs.

Since ∣γ∣ < 1/qn , from the deûnition we get

SR( a
g
+ γ) = ∑

m∈MR(n)
eq(am/g)eq(mγ) = eq(γtn)SR( a

g
) ,

and therefore, since the integrand is constant on each of these major arcs, which have
measure 1/qn , the contribution becomes

(4.2)
π(n)
qn ∑

a ,g
SR( a

g
) µ(g)
ϕ(g) .

Let us ûrst analyse the terms with g = 1 and g = t, that is, look at

M = π(n)
qn (SR(0) + ∑

b∈Fq/0
SR( b

t
) µ(t)
ϕ(t)) .

_e g = 1 term gives SR(0) = (q− s)n . Using our expression for SR( bt ) from the start
of the proof of Lemma 3.2, the terms g = t are

∑
b∈Fq/0

SR( bt ) = (q − s)n−1 ∑
b∈Fq/0

∑
n∈Rc

eq( nb
t ) = −(q − s)n−1 ∑

b∈Fq/0
∑
r∈R

ψ(br).

Using

∑
b∈Fq/0

ψ(br) =
⎧⎪⎪⎨⎪⎪⎩

q − 1 if r = 0,
−1 if r /= 0,

this becomes
⎧⎪⎪⎨⎪⎪⎩

−(q − s)n if 0 ∈ R,
(q − s)n−1s if 0 ∉ R.
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Hence, since µ(t) = −1 and ϕ(t) = q − 1 we have

M = π(n)
qn ((q − s)n − 1

q − 1
∑

b∈Fq/0
SR(b/t)) = qΛ

q − 1
π(n)(1 − s/q)n ,

where

Λ =
⎧⎪⎪⎨⎪⎪⎩

1 if 0 ∈ R,
1 − 1

q−s if 0 ∉ R.

Using π(n) ⩽ qn/n, the remaining terms in (4.2) are bounded by
1
n

∑
1⩽deg g⩽n/2

g/=t

∣µ(g)∣
ϕ(g) ∑

deg a<deg g
(a ,g)=1

∣SR( a
g
) ∣ .

Let U be some parameter 1 ⩽ U ⩽ n/2 to be speciûed shortly. Grouping the g ac-
cording to their degree and using Lemma 3.4 for the terms with d = deg g ⩽ U and
Lemmas 3.5 and 3.6 for the terms with deg g > U we get

∑
1⩽deg g⩽n/2

g/=t

∣µ(g)∣
ϕ(g) ∑

deg a<deg g
(a ,g)=1

∣SR( a
g
) ∣

⩽ ∑
1⩽d⩽U

qd(q − s)n−[ n
d ]s[

n
d ]

+ e2 ∑
U<d⩽n/2

q−d(q − s)n−2d(q(1 +
√

s) − 2s)2d(1 + logq(d))

= (q − s)n( ∑
1⩽d⩽U

qd( s
q − s

)
[
n
d ]

+ e2 ∑
U<d⩽n/2

qd( 1 +
√

s − 2s/q
q − s

)
2d
(1 + logq(d)))

≪ (q − s)n⎛
⎝
n(qU( s

q − s
)

n/U
+ qU/2(

√
s + 1 − 2s/q

q − s
)

U
)
⎞
⎠
.

We have trivially bounded the ûrst sum. _e bound for the second sum follows a�er
using 1 + logq(d) ⩽ n and bounding the resulting geometric sum using s ⩽ √q/2 so
that √q(

√
s + 1 − 2s/q)
q − s

⩽
q/2 +√q
q −√q/2 < 1

for q ⩾ 11. TakingU = (2n/5)1/2 and using s ⩽ √q/2, the expression above is bounded
by

(q − s)n⎛
⎝
n(q

√
2
5 n( q1/2

2q − q1/2 )
√

5
2 n + q

√
1
10 n( q1/4/

√
2 + 1

q − q1/2/2 )
√

2
5 n)

⎞
⎠

≪ n(q − s)nq−n
1/2

/(2
√

10) ,

since √
2
5 −

1
2

√
5
2 = −

1
2
√

10
and

√
1
10 −

3
4

√
2
5 = −

1
2
√

10
.
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Combining this with our expression for the main term M and error estimate (4.1) we
get

(4.3) N(R, n) = q
q − 1

(q − s)n

n
(Λ + O(nE))

where

(4.4) E≪ q−n
1/2

/(2
√

10) + ( q3/4(s1/2 + 1)
q − s

)
n
.

Since s ⩽ √q/2, we then have

E≪ q−n
1/2

/(2
√

10) + ( q/
√

2 + q3/4

q −√q/2 )
n
.

A calculation reveals that for n ⩾ 100(log q)2, the ûrst expression is larger than the
second when q ⩾ 500 and that both are≪ q−n

1/2
/7/n, which completes the proof of

_eorem 1.1.

Remark _econditions on the sizes of s, q and nweremade in order to simplify the
statement of _eorem 1.1, but (4.4) is also interesting for other choices. For example,
when n is ûxed, we have that E→ 0 as q →∞ provided s = o(q1/2).

Recall that in the special case s = 1, we have equality in Corollary 3.3. Feeding this
through the rest of the proof gives

E≪ q−n
1/2

/(2
√

10) + ( q3/4(2 − 2/q)
q − 1

)
n
.

For q ⩾ 17, the expression in the brackets is less than 1, which proves that nE → 0 as
n →∞ in this case.

5 Proof of Theorem 1.4

Our proof of _eorem 1.4 is the same as _eorem 1.1 except that we use modiûed
versions of Corollary 3.3 and Lemma 3.4, which we will now prove. In this section,
we assume that p is a prime, R ⊂ Fp is subset of consecutive coeõcients and use the
same notation already introduced.

Corollary 5.1

∫
T
∣SR(x)∣dx ⩽ (log p + 1 − s/p)n .

Proof WriteR = {d , d + 1, . . . , d + s − 1}. _en if r = 0, ∣1̂Rc(r)∣ = p− s, and if r /= 0,

∣1̂Rc(r)∣ = ∣
d+s−1

∑
k=d

e2πikr/p ∣ = ∣ 1 − e
2πisr/p

1 − e2πir/p ∣ ⩽ 1
∣ sin πr/p∣ .

_erefore,

∑
r∈Fp

∣1̂Rc(r)∣ ⩽ p − s +
p−1

∑
r=1

1
∣ sin πr/p∣ < p − s + 2

p−1
2

∑
r=1

p
2r

< p − s + p log p.
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Now use Lemma 3.2.

Consequently, the bound in Lemma 3.5 is replaced by

(p − s)n−2d( p(log p + 1) − s) 2d
.

Lemma 5.2 Let a, g ∈ Fp[t] be coprime polynomials with ∣a∣ < ∣g∣ and g not a power
of t and let d = deg g > 0. _en

∣SR(a/g)∣ ⩽ (p − s)ne−[
n
d ]

1
p3 .

Proof As in the proof of Lemma 3.4, we have

∣SR(a/g)∣ = (p − s)n−z
n−1

∏
i=0

x−i−1 /=0

∣ ∑
n i∈R

e2πi(n i x−i−1)/p∣ .

For x ∈ Fp/{0}, we have

∣ e2πi x
p n + e2πi x

p (n+1)∣ 2 = 2 + 2 cos ( 2πx
p

) < 4e−2/p
2
,

and therefore

∣ ∑
n i∈R

e2πi(n i x−i−1)/p∣ ⩽ p − s − 2 + 2e−1/p
2
⩽ (p − s)e−1/p

3
.

Recalling from the proof of Lemma 3.4 that z ⩾ [n/d] completes the proof.

Provided p is large enough to ensure that
√

p(log p+1−s/p)
p−s < 1 (so the resulting geo-

metric sum we saw earlier converges), we can just insert these new bounds into the
proof of _eorem 1.1 to get (4.3) with

E≪ pU e−[
n
U ]

1
p3 + (

√
p(log p + 1 − s/p)

p − s
)

U
+ ( p3/4(log p + 1 − s/p)

p − s
)

n

for some parameter U . Taking U = cn1/2, and since we are assuming that p − s >
p3/4+δ , this proves _eorem 1.4 for some c > 0 suõciently small in terms of p and δ.
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