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Abstract. We describe a method for complete solution of the superelliptic Diophantine equation
ay? = f(z). The method is based on Baker’s theory of linear forms in the logarithms. The character-
istic feature of our approach (as compared with the classical method) is that we reduce the equation
directly to the linear forms in logarithms, without intermediate use of Thue and linear unit equations.
We show that the reduction method of Baker and Davenport [3] is applicable for superelliptic equa-
tions, and develop a very efficient method for enumerating the solutions below the reduced bound.
The method requires computing the algebraic data in number fields of degfee- 1)/2 at most;

in many cases this number can be reduced. Two examplepwitl8 andn = 4 are given.

Mathematics Subject ClassificationsPrimary: 11Y50; Secondary: 11D25, 11D41.
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1. Introduction

In this paper we propose a method for complete solution of the superelliptic
Diophantine equation

ay? = f(x), @)

wherea is a nonzero integep > 3 and f(z) € Z[z] a separable polynomial

of degreen > 2. Recall that the first effective bound for the integral solutions

of this equation was obtained by A. Baker [2] as an application of his theory of
linear forms in logarithms [1]. For further advance and bibliography see [24, 26,
25, 9, 22, 21, 29]. In these papers the equation (1) is reduced to finitely many
Thue equations over certain number fields, each of the latter being then reduced to
finitely many linear unit equations, which can be analyzed using Baker’s theory.
(Voutier [29] reduces (1) directly to linear unit equations, without intermediate use
of Thue equations.) However, this method (call it ‘Thue descent’) does not seem to
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be suitable for practical solution of the superelliptic equation, because the number
of Thue (or linear unit) equations to be solved turns out to be very large, even when
the equation has very moderate coefficients.

In the present paper we develop a different method, reducing the superelliptic
equation directly to the linear forms in logarithms, without intermediate use of
Thue and linear unit equations (as it is done in [6]). For simplicity, we deal with
case whep is an odd prime. Since the case of an arbitgagy 2* can be reduced to
the case of an odd prime we almost preserve the generality. With a few changes,
our method extends to theyperelliptic equatioruy? = f(z), where f(z) is a
separable polynomial of degree at least 3 (see Appendix E).

In accordance with the general ideology of [5], our method can be described as
follows.

(i) Construct functional units in an unramified extension of the fi€ld:,
(a 1f (@)"7);

(i) Using the fact that the specialization of a functional unit at an integral point is
‘almost a unit’ of a certain number field, reduce the equation to finitely many
inequalities of the type

0< ‘aoagl abn — 1\ < exp(—cB), )
whereB = max(|bi], ..., |bn|) andc is an effectively computable constant.
(iif) Obtain from (2) an upper bound fd8 by means of the theory of linear forms
in logarithms.

Successful choice of functional units allowed us to reduce the degrees of number
fields, occurring in the process of solution, frgm(n — 1), as required for the
Thue descent, tépn(n — 1), which is very important from the computational point
of view. (See Subsection 5.5.)

The theoretical bound faB, obtained from the theory of linear forms in loga-
rithms, is very large. As explained in [17, 27], in practical cases the boung for
can be significantly reduced with the help of the Lenstra—Lenstraadoffurther
LLL) algorithm[13]. In [8] we showed that in the case of the Diophantine equations
of Thue, one can replace the LLL by the simple continued fraction algorithm, as
Baker and Davenport [3] did already in 1969. It turns out that the same idea works
for the superelliptic equation, see Subsection 4.6.

Another difficult point in the numerical solution of Diophantine equations is
enumerating all solutions below the reduced bound. Various approaches to this
problem are suggested in [30, 28, 23] and other papers. Here we use the method of
[6, 8], in a somewhat modified form.

We refer to [17, 27] for the history of the numerical solution of Diophantine
equations and extensive bibliography up to 1989. Some of later references most
close to the subject of the present paper are [14, 15, 16, 31, 32].
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2. Notation and conventions

Throughout the paperis a fixed prime number, anflz) € Z[z] a fixed separable
polynomial of degree > 2. For the sake of further applications, we do not exclude
the case = 2 wherever possible. In all cases where we had to assumg &,

this is explicitly specified. We fix a primitive root of unityof degreep and put

P={0,...,p—1}.

Givenb € 7, we denote bypmod, the uniquely defined € P such thath =
b' (modp).

We fix once and for all an embeddify — C, so that any algebraic number
has a well defined complex value. We use the branches of the funefighand
log ~ defined by—=/p < argz*? < =/p and—= < Imlogz < w. We write z~ /7
instead of(z%/7) 1. Note that

Rez;,Rez; > 0= (zlzzil)l/p = zi/pzzil/p. 3)
Put
Sol={z e Z: (a 1f(z))¥? € 2}.

Elements of the set Sol are referred to as ‘solutions’.
For a vectob = (b1,...,b,) € C* put|b| , = max]|bi,..., |b|).
We useOq(...) as a quantitative version of the standard notafign. .):

A= 041(B)

meangA| < B.
We fix two distinct rootsy andg of f(x) and put

c1 = max(m, m), X1 = 301,

WheEW is the maximum of the absolute values of the conjugates ofer Q,
and|g| is defined similarly.

Solutions satisfyingz| < X3 can be quickly found by direct enumeration. In
the sequel we restrict ourselves on the solutions satisfying X;. In particular,
we say simply ‘solution’ instead of ‘solution withz| > X1’ and write 'z € Sol
instead of & € Sol andjz| > X7'.

The assumptiofiz| > X allows us to avoid certain pathologies that occur for
small solutions. In particular

z+#0,a,8 and argi:—g £ . @)
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Table I. Specific notations

Notation Where introduced Notation =~ Where introduced
Ko Beginning of Subsection 41 =(«) Lemma 3.2

Mo Equations (15) and (16) M Equation (17)

K, m, s, t, 04, ai, B Beginning of Subsection 4.2  so, to Proposition 4.2.1
Sol(K), k(z), ki(z), k(z)  After Proposition 4.2.1 p(z) Subsection 4.3
n;,0,0(x),b;(z),b(z) End of Subsection 4.3 pi(x) Equation (39)

6, k, Sol(k, k, 8) Beginning of Subsection 4.4 (; After Equation (39)
0 Mij, PisYi Equation (40) A, aij After Equation (40)
A, Equation (41) X4 Corollary 4.4.2
co—10, X2, X3 Equation (42) c11 Theorem 4.5.1

i1, 2 Equations (60), (61) and (62) ®(x) Equation (63)
c13—16, Bo End of Subsection 4.5 c12 After Equation (66)
J1,J2, Ay A Subsection 4.6.1 [l After Equation (79)
c18, €19 After Equation (78) By Subsection 4.7

Wi, Vi, c19—C23, X5 Before Lemma 4.7.1 b () Equation (87)

Ko, T i Ko— Ko Beginning of Subsection 5.2 s, s; Proposition 5.3.1
K, 7K =K Beginning of Subsection 5.3 X7, Xg  Appendix D

*In the case of«, 3)-symmetryK; is defined in the beginning of Subsection 5.2.

We shall use properties (4) of the solutions without special reference.

More specific notations are introduced in the course of the paper. For the reader’s
convenience, we give a glossary of the most important notations in Table I.

For the practical implementation of our method one should be able to perform
various operations in certain number fields. We distinguish here four operations:

(PD) find the prime ideal decomposition of a given fractional ideal;

V) find the group of roots of unity and a system of fundamental units;

(PI)  decide whether a given fractional ideal is principal and find its generator
if it is;

(CG) compute the class group, construct a system of representatives of the ideal
classes and find the representative of a given fractional ideal.

(Note that (CG) partially covers (PI).) Fulfilling these operations (which will be
referred to as ‘multiplicative’) in the occurring fields seems to be the main difficulty
of our method.

We do not mention here ‘additive’ operations (finding integral bases, etc.).
Though these operations should also be performed, they are much easier algorith-
mically than the ‘multiplicative’ ones. See, for example, [10, 20, 19].
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3. Classical background

In this section we review some classical facts [2,25,22,21,29], but in a very
explicit setting. The results of this section do not require the assumption X.
Fix a roota of f(z). A prime idealp of the fieldQ(«) is exclusivef

either Ord(a) >0 or Ord(a) <0 or Ord(f'(a)) <O,

whereq is from (1). (Recall that Orgy) is the largest integer. such thaty € p™.)

PROPOSITION 3.1Letp be a prime ideal of)(«) with Ord,(«) > 0. Then for
anyz € Solone has either

0 < Ord, (z — ) < Ord, (f'(ev)), ®)

orl

0 < (Ord, (a) — Ord, (z — ))modp < Ord, (f'(a)). (6)

In particular, if p is non-exclusive thep|Ord, (z — «).

Proof. We write Ord instead of Ogd Denote byO, the local ring of the ideg
(recall thatO, = {y € Q(«) : Ord(y) > 0}) and putf,(z) = f(z)/(z — «). Since
f'(«) is the resultant of the polynomials— « andf,(z), both having coefficients
in O,, we have

A(z)(2 — @) + B(z) fa(z) = f'(a), ()

for someA(z), B(z) € O,[z].
Now let (z,y) be a solution of (1) with Ok — ) > Ord(f'(«)). Then
Ord(fo(z)) < Ord(f'(«)) by (7). Since

Ord(z — a) = Ord(f(z)) — Ord(fa(x))
= Ord(ay?) — Ord(fa(z))
= Ord(a) — Ord(fa(z)) (modp),

we have (6). The proposition is proved.
The following lemmais crucial for the effective study of superelliptic equations.

LEMMA 3.2. There exists a finite effectively constructible=Set Z(«) C Q(«)
with the following property. For any € Sol

r—a=EN, 8

! Recall that for any € Z we denote bymod, the uniqueb’ € P such thab = b’ (modp).
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with & € Eand € Qo).

Proof. We construct the seE as follows. Write the principal idedala) as
(a)o/ (@)oo, Where(a)o and(a), are coprime integral ideals of the fiel@[«).
Letps, ..., pi be all exclusive ideals satisfying Qr@) > 0. Consider ideals of

the type

a=alby,....b) = (@)L b ©)
where every; € P satisfies either

bi < Ord,, (f'(@), (10)
or

0 < (Ord, (@) — bi)modp < Ord,, (f'(c)). (11)

For any such: let A = A(a) be a maximal set of pairwise non-equivafeitieals
b of the fieldQ(«) such thatb? is principal for any € A. (The setA can happen
to be empty.) Constructing the s&trequires the operation (CG) in the field«).
If this field has class number 1, then we can At) = {(1)} for anya.

Fix a generatoty for any principal ideakb?, wherea is of the type (9) and
b € A(a). (Here the operation (PI) is needed.) Etbe the set of all numbets
obtained this way. Also, let generate the group of roots of unity of the fi€ittx)
andns, ..., n, be a system of basic units (here (U) is needed). We put

= = {fowbongl...nfr €0 € Eo, bo,...,b, € 73}

It is easy to see that the sgtis as desired. Let € Sol. By Proposition 3.1
the principal idealz — «) can be presented in the form] wherea is an ideal
of the type (9). Leb € A(a) be equivalent td; andép € = generateb?. Then
(x — a) = (o0)(Ao)P with \g € Q(«). Therefore we have (8) with € = and
A € Q). The lemma is proved.

The most important case of Equation (1) is when the polynoifia) is irre-
ducible. Under this assumption one has further (severe) restrictions fp(Ord),
which considerably reduces the &t

Indeed, denote by, the leading coefficient of (x), that is

f(x) = fra™ + terms of lower degree (12)

Let p be a prime ideal ofY(«r) and f = f, the residue degree of over Q.
That is, Ny(a)/o(p) = Pf, where P = P(p) is the underlying prime. Since
NQ(Q)/Q(:E —a) = (a/fn)y?, we have

f, Ord,(z — a) = Ordp(a/f,) (Mmodp), (13)

2 Recall that ideal$; andb, areequivalentf the fractional ideab1 b, * is principal.

https://doi.org/10.1023/A:1000305028888 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000305028888

SUPERELLIPTIC EQUATIONS 279

for any solutiod z. This defines Orglz — «) uniquely modulop as soon as
f, # 0 (modp).

Hence, whenf(z) is irreducible, one can, for eveny; with f; = f,. /
= 0 (modp), define the correspondirtg € P uniquely from §b; = Ordp, (a/ fr)
(modp), rather than consider all possildlg satisfying (10) or (11). (Heré; =
P(p;).) In particular,b; = 0 whenever

fi #0(modp) and Org,(a/f,) =0 (modp). (14)

Therefore the ideals; which satisfy (14) can be excluded from consideration.

4. The general method

4.1. ADMISSIBLE FIELDS
PUtKO = @(Oé, /8)

DEFINITION 4.1.1. A number field is admissibleor a solutionz if

K = Ko <C’“ (%)1@) ,

for somek € P. A system of number fieldSK} is a complete system of admissible
fieldsif it contains an admissible field for any solutien

All conjugates ofz — o/ — 3)Y/P overKg are among the numbeg¢(z — a/z —
B)Y?, wherek € P. Hence any field isomorphic t& overKg is admissible for
x as soon aX is admissible for:. A complete system iminimalif it consists of
fields pairwise non-isomorphic ov&p.

By Kummer’s theory [12, Ch. 6, Thm 8.1], eith¢f(z — o/ — B)YP € K, for
somek € P, or

—a\¥Y
[K()(Ck(%) p>:KO]:p forallk € P

and thep fieldsKo (¢* (« — o/« — 8)¥/P) are isomorphic oveky. This prompts the
following procedure for constructing a complete system of admissible fields. Let
E(«) be the set constructed in Lemma 3.2 &{@) a similar set for the rogt. Put

Mo = {¢'/¢": €' € B(a), " € E(B)} C Qe B). (15)

3 Sometimes (13) even provides a local obstruction for solubility of Equation (3)=f D (modp)
but Ordp (a/ f») # 0 (modp) then (1) has no solutions at all.
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If « and are conjugate ove andr: Q(«) — Q(0) is the automorphism taking
a to 3, then we can define phalternatively as

Mo = {¢/7(£): € € E(a)}. (16)
Further, put
M = {u € Mg : pis not ap-th power inKp }. a7)

Then the fieldsko and allKy (uY/?), wherep runs the set M, form a complete
system of admissible fields. Testing them for isomorphism, we obtain a minimal
complete system.

It is worth mentioning here that, though the set M can be large, we expect that
the size of the minimal complete system obtained this way would be reasonable,
because distingt. € M often give rise toKg-isomorphic fieldsky (2/?). This
expectation was confirmed in all examples we considered. For instance, in the
second of the examples discussed in Section 6, we|kad= 18, while the
minimal complete system included only 4 fields (together \itigh

4.2. AFIXED ADMISSIBLE FIELD

Starting from this subsection we fix an admissible fig&ldrom the complete
system constructed in the previous subsectionstet [K : Q] = s + 2¢, where
o1,...,0s. K — R are the real embeddings®f andos 1, ...,0542:: K — Care
the complex oness,; ando,, ;4 being complex conjugate. We writg andg;
instead ofr;(«) ando;(3), respectively.

The following observation is immediate.

PROPOSITION 4.2.1If [K:Ko] = p > 3, then each real embedding &%
has exactly one real prolongation @, andp — 1/2 pairs of complex conjugate
prolongations. In particular, in this case= sg andt¢ = pto + (p — 1/2)s0, Where
so and2tg are the numbers of real and complex embedding§ofespectively.

We denote by SQK) the set of solutions such thak is admissible for:. For
anyz € Sol(K) there exists:(z) € P such that*®) (z — a/z — B)Y/P € K. Of
coursef(z) is not well-defined in the casee Ko.

Givenz € Sol(K) andi € {1, ..., m}, definek;(x) € P from

. <Ck(1:) (i:g>l/”> _ (ki@ (i:;;)l/p, (18)

Then

bi(w) =+ = hy(2) =0, (19)
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ki(z) + kipe(z) =0 (modp) (s <i<s+1t). (20)

Therefore there are at mgsgtpossibilities for the vectde(z) = (k1(z), ..., kn(z)).
Now assume thafK:Kp] = p. Then any embedding dfp hasp distinct

prolongations td. If o;, ando;, are distinct embeddings @f coinciding onkg

thenk;, # k;,. Therefore, in addition to (19)—(20), we have the following:

if o4,..., 0, are thep distinct prolonga-
tions of a fixed embedding of<y, then (21)
{k‘il((L‘), ey k‘ip((L‘)} = 73

It follows from Proposition 4.2.1 and (19)—(21) that in the caseKy] =p > 3

there at most2P—1/2(p — 1/2)!)% (p!)to possibilities fork(z). See Appendix B
for further ideas how to reduce the number of possibilities{ay).

4.3. RUNCTION ¢(z) AND SETO

For anyz € Sol(K) put

z—a\Y P
o(z) = (z - f) (c’“@)( ) g 1) . (22)

—p

PROPOSITION 4.3.1There exists a finite effectively constructible @gtC K
with the following property: for any: € Sol(K) there arefly € ©g and a unity of

the fieldk such that
o(x) = Oor. (23)
Proof. For any prime idea) of K put
u1(p) = max0, —Ord, (), —Ord, (1)), (24)
uz(p) = max0, Ord, (a — 5)). (25)

Thenu; andu, are non-negative integers both equal to 0 for all but finitely many
p. If the polynomialf (z) is monic theru,(p) = O for all p.
Let ©¢ be a maximal set of pairwise non-assoctie K satisfying

—u1(p) < Ord, (6o) < pua(p) + (p — Lua(p), (26)

for all p. (Recall that two algebraic numbers agsociatef their ratio is a unit.)
Note that, in order to construély, one should be able to perform the operations
(PD) and (P1) in the fieldk.

Now letz be a solution. Then

p(z)p(z) = (6 — ), (27)
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where
_ 1/p p
oe) = I (m—m(c’f’ = —)
k'eP (:1: ﬂ>
K #£k(z)

For somet” € P we have

o(x) = ((z — )P — ¥ (z — B)YP)P, (28)
o) =[] (z—a)? = ¥'(x - p)t/r)r. (29)
k' eP
kl#kll

Fix a prime ideap of the fieldK. Let| ... |, be thep-adic valuation orK, extended
somehow to the fiel&(¢, (z — a)Y?, (z — 3)Y/P). As follows from (28) and (29),
we have

lo(@)], < max(, aly,|Bl,)

P(@)], < (max(L ey, [5],))" "
Together with (27) this yields

—u1(p) < Ord, (¢(z)) < puz(p) + (p — Lua(p). (30)
Thus

o(z) is associate to sonty € Oy. (31)

The proposition is proved.

Remark4.3.2. In the casfX : Ko| = p the set©q can be made smaller. Indeed,

in this case

Nic/io(p(2)) = (B — ). 32
Hence alldy such that the principal ideals

(Ni/io (b)) and (8 —)”) (33)

are distinct, can be excluded from the &gt

Let Q be the group of roots of unity of the field, andn,...,n, a system of
fundamental units. (Of course= s + ¢ — 1.) Put

e = {90(4): 0o € @o,w € Q}
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Then for anyz € Sol(K) there exist®(x) € © such that
p(@) = Oy - nlr ), (34)
with b(z) = (b1(x),..., br(z)) € Z".

4.4. HXED ADMISSIBLE FIELD, 6 AND K

Starting from this point, we fi¥ € © andk = (k1, ..., k) € P™ and consider
the set

Sol(K, k, ) = {z € Sol(K) : k(z) =k, 6(z) = 0}. (35)
As we have seen in the Subsection 4.2, we have to consider only viesatisfying

ky=---=ks=0, (36)

ki + kiyp =0(modp) (s <i<s+1). (37)
In the caséK : Ko] = p we also require that

if oi,,...,04, are thep distinct prolonga-
tions of a fixed embedding ofkp, then (38)
{Kiy . ki, } =P.

For anyz € Sol(K, k, #) put

—a\1/P p
vi(x) = (z — B;) <Cz’ (i — Z) - 1) = 0i(p(2)), (39)
where¢; = ¢*i. We also write
0; = oi(0), nij = oi(nj),
'_{1_7,, k=0,  [(25%)" k=0, (40)
: L ki#0 G-17, ki #0,

where 1< @ < m. LetA = [a;5]1<ji<, D€ the inverse forthe matribog|7;;|]1<i j<r-
Forl< j <rput

= Z%‘Pja Z aij 1og |v;0; ). (41)

https://doi.org/10.1023/A:1000305028888 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000305028888

284 YURI F. BILU AND GUILLAUME HANROT
Also, we need some constants

=427+ (2p) Tt =1, ca=2(1-277),

c4 = 28in(7 /p), cs = Max (|| + [Bi]) ,
1<i<m
. 12

cg = max ZJ: 2 c7=13% max(cchle,pCZCfs),

1<i<m s — ;]
¢ = m.ax|6j|7 Xo = max Xy, 26302105, 2pcacs), (42)

1<gr

T

€9 =130 " EJ%AP‘J E €10 0712% ;M E

X3 = max X2, 20c1p).

PROPOSITION 4.4.1Suppose that € Sol(K, k, #) and|z| > X». Then
pi(w) = iz P T (1< <m), (43)
bi(z) = §;l0g|z| + i + O1(crolz|™) (1<) <), (44)

Also, if|z| > X3 then
Ib(2)]0o < cglog |z] + co. (45)
(Recall thath; (z) were defined in the previous section, a@nd) = (b1(z),...,

br().)

Proof. Let z be a complex number with the conditipr} < 3. Then
(14 2)Y7 = 1+ pL2 + O1(c2|2]?) = 1+ O1(c3lz)), (46)
14 7 = 01(1392)) (47)
For (47) see [27, p. 106]. For (46), put

Y(z) = 27 2((L+2)P —1—ptz).

Then
wel =3 (M) < 2 (%”)‘(1/2)”—2: B(-1/2) = e
1/22 l/:2

which proves the first equality in (46). The second one can be obtained in the same
manner.
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As follows from (3), for|z| > X1 we have
pix) = o(Gi(L— aga HYP — (1— paHYry. (48)
Whenk; # 0 we have}; # 1 and, moreovel(; — 1| > c4. Therefore
@i(z) = (¢ — Pz(L+ O1(cacy tes|lz| )P,
Since|z| > X», theO;-term is bounded by, and we obtain
i(z) = 7i$601(1.39p03c;105\a:\_1)7

which proves (43) in the cagg # 0.
Whenk; = 0 we have

Bi — oy
D

pi(z) = ( )p 2P (1 + O1(peace|z|~1))P.

Again theO,-term is bounded by, and we obtain

vi(z) = %xl—peol(l.sgpzczcdﬂ*1)7

and (43) is established in the cdse= 0 as well.
Now prove (44). Since

log|0; Ypi(z)| = ba(z) log|mia| + - -+ + by (z) loglni|  (1<i<r), (49)

we have

bi(z) = Y aijloglf; tp;(x)| (50)
j=1

(Z az’jﬂj) log|z| + ) (aij log |v;6; )
i=1 i=1

+01 <C7|IE|_1Z |aij|> , (51)

i=1

which is (44). Finally, (45) is a direct consequence of (44). The proposition is

proved.
We conclude this subsection observing that in the case
|[{i: ki(z) = O}| # m/p, (52)
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an upper bound for the solutions follows already from Proposition 4.4.1. Note that,
in view of (38), the inequality (52) can take place only for= Ky, and that (52)
is always the case when # 0 (modp).

COROLLARY 4.4.2 Suppose thgb2) holds, and pup’ = m—p [{i: k;(z) = O}|.
Then anyr € Sol (K, k, 8) satisfies

2| < X4 := maxX( X2, 3mer, e D |y oy 7Y 01 00|V, (53)
Proof. On the one hand
@1(2) - .. om(2) = Nijg(p(2)) = £01...0p. (54)
On the other hand,
o1(z) ... pm(z) =71... fymxpﬁ"'ﬂ’meol(mcﬂ‘r‘il).

Sincepy + - -+ + py = p/, the result follows.

4.5. ALARGE UPPER BOUND FORD(z)]|

In this subsection, assuming that> 3, [K: Q] > 3 and|z| > X3, we obtain a
large upper bound fdb(z)| as a consequence of Baker’s theory of linear forms in
logarithms. We apply a result of Baker andigtholz [4].

THEOREM 4.5.1. [4, p. 20Letdy, . . ., ¥, be complex algebraic numbers distinct

from0andl, andb = (by,..., b,41) € Z"tL Also, let
d > [Q(Yo, ..., 9,):Q, (55)
hi = maX(h(ﬁZ), d71| |09792|7 dil) (O < [ < T)a (56)

whereh(.. .) is the absolute logarithmic height. Then either

A =log¥g+ b1logdy + - - - + b, l0g ¥, + byy17mi = 0, (57)
or

|A] > exp(—c11log B). (58)
Here B = max(|b1],..., |br+1],e) and

c11 = 181 - 324 (1 + 3)!(r 4 2)"3d" 3 log(2d(r + 2))ho. . . .

Remarkd4.5.2. The parameters h/(a1), ..., h'(ay,), h' (L) of the original the-
orem in [4] correspond in Theorem 4.5.1rte- 2, ho, . . ., h,, 7/d,log B, respec-
tively.
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We have slightly modified the statement in [4], to allow inequalities in (55) and
(56). It is often much easier (and quicker) to find an upper bound for the degree
of a number field or for the height of an algebraic number, than to compute any of
them exactly.

LEMMA 4.5.3. Let z and C'1 be positive real numbers an@, an arbitrary real
number. Suppose that

z < Crlogz + Ch. (59)
Then
z < 2(C1logCy + C2).

Proof. This is the casé = 1 of Lemma 2.2 from [18].
Now we can obtain an upper bound fo(z)| . By (21), inthe casfK : Ko] = p
there existy,ip € {1,..., m} such that

i lio = T |05 (60)
kip #0, ki, 70, kiy # ki, (61)
It follows from (60) that
iy = iy, Biy = Biy-
In the case&k = Ko choose andi, such that among the numbers
Qiyy Wiy Biyy Biys (62)

there are at least three distinct. The required choidge ahdi, is possible by the
condition[K: Q] > 3.
Let:;, andi, be as defined above. Put

Piv oo () Piz
(z) = % (63)
Yy Pin (€)1
By the choice of; andi,, the equation
O(z)=1 (64)

has finitely many solutions, which can be easily found in practice (see Appendix C
for the details). Now suppose that

d(x) # 1. (65)
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By (43) we have (assuming| > X>)
O(z) = eOrlerzlel ™) (66)

with ¢12 = 2pce7. On the other hand

(z) = ooy - 9 (@), (67)
where
Pileﬂiz Piy
90 = 7;31_20;11_1, 9; = npﬂl (68)
i1 12 2]

Taking the logarithm, we obtain
log ®(z) = logdg + b1(x) logd1 + - - - + b (z) 09 ¥, + by1(x)mi,  (69)

for someb,1(x) € Z. Comparing the imaginary parts in (69), and using (66), we
get

[bria(@)] < 1 [ba(@)] + -« + [ ()] + 7 ergla] (70)
< 1+7r*1012+7’|b($)|oo. (71)
Apply Theorem 4.5.1 to the right-hand side of (69). Sinceddg) # 0, we obtain

|log®()| > exp(—ca1log B(x)), (72)

where

B(z) = max(bi(z),..., br(z),by41(x),€)
< l4+ntep+r Ib(z)] (73)

< cazloglz| + c14 (74)

With ¢13 = rcg anderg = max(1 + =i + reg, €).
Combining (66) and (72), we obtain

log|z| < c11log B(z) + logcie. (75)

Assuming|z| > X3, we deduce from here th@t(z) < c15l09 B(x) + c16 With
c15 = c11c13 andeig = c13¢12 + c14. By Lemma 4.5.3 we have

Ib()]|ee < B(z) < Bo:= 2(c15l0g¢15 + c16)-
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4.6. REDUCTION OFBAKER’S BOUND
4.6.1. Preliminaries

In practice, the value oBy is too large for directly enumerating all possibilities
for b(z). However,By may be significantly reduced by applying an appropriate
version of the LLL-reduction algorithm, as described in [27]. We use here (see also
[8]) a modification making the reduction process much more efficient; in particular,
LLL can be replaced by the classical continued fractions algorithm, as in [3] (see
also [33]).

Let j; be defined by the condition

|(5j1| = max |(5]| = Cg. (76)

1gsr

(Recall that the numbers; are defined in (41).) We hawg, # 0, because the
matrix A is non-degenerated.

The method of reduction we use depends on what we heuristically believe about
the mutual arithmetic behaviour of the numbéfsand ;. We shall distinguish
between the following cases.

(1) Irrational case. Forsomez € {1,..., r}, we believe that the numbéy,\ ;, —
d;,\j, Is not a linear combination a@f;, andd;, with rational coefficients.

(2) Semirational case.For somej, € {1,...,r}, we believe that the quotient
5j‘115j2 is irrational, but the numbey;,\;, — d;,Aj, is a linear combination of
d;, andd;, with rational coefficients.

(3) Totally rational case. We believe that for alj € {1,..., r} the numbers
07,505 ands;t (5,45, — 6;,A;) are rational.

In the first two cases we fix suchjaand put
o= 5j215j27 A= 5j21 (5]'2)‘3'1 - 5j >‘j2) .

By (44) and by the definition of and\ one has

|bjz(2) = 0bjy (2) + Al < (1+1])esolz| ™ < 2ca0lz| ™, (77)
because by the choice ¢f andj, we haveld| < 1. Combining this with (45), we
obtain

1bj,(2) — 6bjy(7) + A < crgexp(—c17(0(7)|0), (78)

with ¢18 = 2cipexp(cg/cg) andei7 = (:8_1.
Notice that in the first two casgs # j», in particularr > 2. On the other hand,
the rational case covers the case 1.
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4.6.2. The irrational case

Choose a not very large number> 2. (We discuss the practical choice ©f
in Subsection 4.6.5.) By the theorem of Dirichlet, there exists a positive integer
g < kBg such that

llgd]| < (xBo) ™™, (79)

where|| ... || is the distance to the nearestinteger. In practican be quickly found
from the continuous fraction expansiond®Multiplying (78) by ¢, we obtain

|+ bj; (2)]|g0]| + gAll < cresBo Xp(—c17|b]so ), (80)

where ‘t’ should be 4’ if ¢4 is smaller than the nearestinteger anrdotherwise.
It follows from (79) that|b;, ()| - [|¢é]| < x~*. Therefore (80) implies that

llgAll — k™1 < e185Bo exp(—c17|b(x)|oo0)- (81)

If ||gA|| > 2x~1, which is heuristically plausible whenis large enough, then we
have a new estimate fti(z) |

|b(z)|00 < ¢35 (l0g Bo + log(cisr?)), (82)
(compare this with the lemma from [3, Section 3]).

The reduced bound fdio(z)| ., can be reduced again, using the same procedure,
etc.

4.6.3. The semirational case
We have

q1+ q20 + gaA = 0, (83)
whereqs, g2 andgs are integersqs # 0, and gcdq1, g2, ¢3) = 1. We expect that
the integersg, go andgs are ‘very small’ (around 10 or so in absolute value). This
was confirmed in all examples we considered.

Multiplying (78) by g3 and using (83), we obtain
b5, (%) — g1 — 6(bj, () + q2)| < |g3[c1e€XP(—c17|b(z)]o0)-

It follows that

min [bd]| < [ga|c1g€XP(—c17|b() o0)- (84)
bEZ’|b‘§BO+|QZ|
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However, this minimum can be quickly computed using continued fractions, and
we expect it to bérx’ Bg) 1, wherex!' is a reasonable number. We conclude that

[b(2) |0 < €17 (109 Bo + 109(|gs|c1sr’))- (85)

4.6.4. The totally rational case

Since this case requires a rather lengthy case-by-case analysis, and seldom occurs
in practice (whemr > 2), itis treated in Appendix D.

4.6.5. The technology of reduction

Whenr > 2, we pickjz # j1 and continue as if it were irrational case. We take
as a starting valug = 10, and try the first reduction. When it lg\|| < 271,

we changes by 10« and repeat the process. In most of the cases we obtained
successful reduction in two or three iterations at most.

When we do not obtain successful reduction after seven-eight iteratiansvef
conclude that probablyis a linear combination of 1 aridwith rational coefficients.
This can be easily verified (see the second comment in Subsection 4.6.6), and this
guess was always confirmed. Nowdifis irrational then we continue as in the
semirational case. If is rational, then we redefirjg and repeat the process.

If 0 and-y are rational for all possiblg then we are in the totally rational case,
see Appendix D.

Whenr = 1 we are in the totally rational case from the very beginning.

4.6.6. Computational comments

(1) Since in practice we deal with approximate value® @nd A, we usually
obtain, instead of (83), an inequality of the form

lg1 + 20 + g3)| < ¢, (86)

wherez is a very small positive number & 10—20352 is typical). Thoughwe

do believe that, whenever (86) is detected with small integeitscorresponds

to the actual equality (83), we do not prove this, and in fact we do not need
this: (86) is completely sufficient for our purposes.

For simplicity of exposition we assumed the exact equality (83) in our
treatment of the semirational case. However, in real computations we used (86),
with all constant correspondingly modified.

The similar convention applies to the totally rational case.

(2) Itis very easy to verify whether (86) holds with small integgr€One has to
find, using the three-dimensional LLL, the (almost) shortest vector of the lattice
generated byC, [C¢],[C)), (0,1,0) and(0, 0, 1), whereC'is a sufficiently
large positive integer (we used = 10'9).
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We refer to [8, Subsection 2.4.3] for further computational details and other sub-
tleties.

4.7. HNAL ENUMERATION

Unfortunately, the reduced bourit} may also be too large for the direct enumer-
ation, because one has to ché2B;, + 1)" possibilities for the vectdo(x). One
can imagine several ways to overcome this difficulty, for instance:

— sieving modulo several primes, as in [28] and [23];
— use of Fincke—Pohst algorithm for finding all short vectors in a lattice, as in
[30] and [28].

In [6, 8] one further approach to final enumeration was proposed, based on the
inequality (77). In the present paper we use a more efficient version of this method.
Forl< j <rput

V() = 6310505 () — 6, (6505 — 65,05) 5 (87)
wherej; is defined from (76). Then, replacing in (77) indgxby 7, we rewrite it
as|b;(z) — b (z)| < 2c10lz|~*. SinceX3 > 20c1o, We obtain

|bj(=) —bj(z)] <01 (1<j<r) (88)
as soon agr| > Xs. In particular,

I¥(@) <01 (1<j<r). (89)

Now we do as follows. For every integérsuch thab| < Bj, compute the real
numbers); 1= §; *6;b—0;* (6;1;, — J;,;), and for eachj, check for the condition
|6%]] < 0.1. This condition trivially holds foy = ji, but forj # j1 it needs not.
If it is false for at least ong, then there is no solutiom with |z| > X3 such that
bj,(xz) = b, and we go to the next

The heuristic probability that the integepasses this severe test iS5, quite
a small number (when > 2). For those very few that survive after the test, we
used the second test, based on Lemma 4.7.1 below.

Fix 4 such that; # 0. Forz € Z put

wi(z) =7 ‘pi(x) =,
wherey; = §; — (o /(; — 1. Also, put
co=43)P -4-2p, c0=ca(les]?+ |67 — 17,

_ 1 1
co1=p )|+ c0X5 ", 2= caXgT,

€23 = €19C21 + PC2o, X5 = max( X3, 2c22, 2¢23).
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LEMMA 4.7.1.1f |z| > X5 then
| — wi(@)] < min(3, caa/ (lwi(2)] — 3))- (90)
Proof. For|z| < 3 we have
(1+2)P = 1+ pz + O(c102?), (91)

which can be proved in the same manner as (46). As follows from (91), (46) and
(48), for|z| > X3 we have

pi(z) = viz(1+ izt /p + O1(co0z )P,
= yix(1+ vz ™t + O1(c2az™?)),

which yields
|z — w;| < cozr L (92)

Since|z| > 2cp3, this provegz — w;| < 3. In particular|w;(z)| < |z| + 3, which
together with (92) yieldsz — w;(z)| < c23/(|w;(z)| — 3). This proves the lemma.
The second test is: b; = w;(x) for a solutionz with |z| > X5 then

wil > Xs— 3 and [lwi]l < caa/ (|wi(z)| - 3). (93)

We computedhy, ..., b, as the nearest integers &, ..., b, respectively, and
verified whether

wi = 0y =, (94)
satisfied (93). If it did, we put to be the nearest integerd@ and checked whether
it is a solution, just substituting it to the Equation (1).
4.8. THE ALGORITHM

We summarize the contents of this section in the following algorithm for complete
solution of the superelliptic Equation (1), where: 3.

Step 1 Construct a complete system of admissible fields, as described in Subsec-
tion 4.1.

Step 2 Fix an admissible fiel&k not considered yet. If all admissible fields have
already been considered, go to Step 10.

Step 3 Construct the seb, as described in Subsection 4.2.
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Step 4Fix 6 € © andk € P™ (subject to restrictions formulated in the beginning
of Subsection 4.4). If all possible paif&, k) have already been considered, go to
Step 2.

Step 51f (52) holds, compute 4 and go to Step 4. Otherwise, compug and go
to the next step.

Step 6 Construct the functio®(z) and find all integral solutions of (64). For each
of the latter check whether it is a solution of (1).

Step 7 Compute Baker’s bounBy.
Step 8 Find the reduced boun#l, as described in Subsection 4.6.

Step 9 Final enumeration (see Subsection 4.7).
Go to Step 4.

Step 10 Find Xg as the maximum of allX,, computed at Step 5, and afls,
computed at Step 9.

Step 11For anyz € Z such thafz| < Xe check whetheg is a solution of (1).
Step 12Collect all solutions obtained at Steps 6, 9, and 11.
Step 13End.

Note in conclusion that we should be able to perform the operations (PD), (U), (CG)
in the fieldsQ(«) andQ(/3), and the operations (PD), (U), (PI) in any admissible
field K constructed on the Step 1 of the algorithm. The last demand seems to be
the most difficult point of the proposed method. Indeed, the maximal degree of
admissible fields will ben(n — 1) in the worst case. Even fdp,n) = (3,4)
we shall have to perform ‘multiplicative’ operations in fields of degree 36 (in the
worst case), which is beyond the possibilities of the Algorithmic Algebraic Number
Theory at its present state.

In the next section we shall see how to reduce the degrees of the fields occurring
in the process of solution.

5. The(a, 5)-symmetry

In this section we assume that> 3.

5.1. RRELIMINARY PREPARATIONS

We say that we have dn, 3)-symmetryf there exists an automorphism@fc;, )
sendingx to 5 and to «. The rootsy andg are called in this casgymmetric\We
shall see that, in the case (@f, 3)-symmetry, the field)(«, 3) can be replaced by

4 If the totally rational case occurred (see Appendix D), then one should also take into account
X7 andXs.
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Q(a + 8, af). Our considerations will be based on the following lemma.

LEMMAS5.1.1. LetKy C K3 C Ky be a tower of number fields with the following
properties

[Kl Ko] =2 and [Kz ZK]_] =p,
Ko = Kl(l/)u
wherev? = 1 € K1 andy is conjugate tq. ! overKg. Then

(@) [Ko(v + v 1) : Ko] = p.
Furthermore, leiK be a number field such thélp C K C K and[K: Ko] = p.
Then

(b) if ¢ & Ko thenK = Ko(v + v 1);

(c) if ¢ € Ko thenK is one of thep distinct fieldsKo(¢*v + ¢~*v~1), where
ke P;

(d) the composit&; K is Kp.

Proof. Clearly,K, = Ko(v). Further,y andv—! are conjugate oveky. Define
the automorphism: K, — Kz by 7(v) = v~ Thenv + v~ is stable with
respect tor, whence the degrefo (v + v~1) : KKo] dividesp. This proves (a),
becauses + vt ¢ Ko. (If it were v + v~ € Ko, then we would have had
Ko : Ko] = [Ko(v) : Ko] < 2, a contradiction).

Assertion (d) is obvious: singeis odd, we havé; ¢ K, whencekK S KK C Ko,
and the single option K3 K = K.

To prove (b) and (c) note that the fielHscorrespond to non-trivial involutions
of K> overKy, i.e. automorphisms: K, — K, satisfying

T#id, rP=id, 7| =idg.
The conjugates af overKgy are among the numbers
v, v, Pl ot o e (95)

Since[Ko(v) : Ko] = 2p, all the numbers (95) are conjugatetoverky.
We distinguish between three cases.

(bY ¢ ¢ Ky. Then, among the conjugatesobver Ky, only v~ belongs toKs.
Hence the unique involution &f, overkKy is the one taking to »—1, and the
single possibility forK is Ko (v + v1).

(b)’ ¢ € K1\Kop. In this case all the numbers (95) belongkg. Hencek; is
normal overky and the grouy := Gal(Kz/Ko) is generated by: v — v~1
ando: v — (v. Clearly, Ky is the non-trivial involution ofK; /Ko, whence
7(¢) = (L. Thereforero = o7, whenceg is abelian, and again is the
unique involution ofky /Ko.
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(c) ¢ € Ko. In this casero = 017, and there are exactydistinct involutions
7 = o®10~ %, wherek € P. Indeed, the involutions,, are pairwise distinct
because the numbers(r) = ¢ ?*v are distinct for distinck € P. Further,
by the theorem of Sylow, all two-element subgroupg @ire conjugate. Since
there are at most: {1, 7}] = p subgroups conjugate td, 7}, there are no
involutions other thamg = 7,74, ..., 7,—1. The involutionsr, correspond to
thep distinct fieldsKo (¢¥v + ¢ ~*v~1), which completes the proof.

The lemma is proved.

5.2. ADMISSIBLE FIELDS

In the case of«, 5)-symmetry we define admissible fields in a way different from
the general case. We piy = Q(«, 3) and letr: Ky —Kg be defined by (a) = g,
7(B) = a. PutKo = Q(a + 8, af) = (Kp)"-

DEFINITION 5.2.1. A number fieldK is admissiblefor a solutionz if for some
k € P we have

—a\lp _ o\ 1r
. k X a —k X a
K=o <C (:z;—ﬁ) e (x—ﬁ) )
A complete systewf admissible fields and@minimal complete systeate defined
as in Subsection 4.1.
Let M be the finite subset @§(«, 5) defined in (16) and (17).
PROPOSITION 5.2.2The fieldsko andKo (17 + ~%/?), whereu runsM, form

a complete system of admissible fields.
Proof. Suppose first that

¢t (fU_—O‘)l/p € Kb,

for somek € P. We shall see that in this cagg is admissible for the solutioa.
We have

—a\P , —a\"Yp
T<Ck<x oz) >:<k; <x a) 7
z— z—
for somek’ € P. Therefore

, —a\Y
¢FHF = Nty (Ck (i_g) p) € Ko.
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If ¢ € Ko thenk! = —k, whence

() et (225) g (¢ (555) ") e o0

When(¢ € Ko we definek” € P by 2" = k — k' (modp). Then

r <gk” <%)W> _ Rk <Ck <%)W>

and we obtain (96) witlt” instead off.
Now suppose that

(=) =)=

¢* (%)1/pﬂl/p € Kb,

for somek € P andy € M. We shall see that the field = Ko (47 4+ p~Y/P) is
admissible forr. By Lemma 5.1.1(a)

o (325) e (55) ™) ] o=,

If { € Ko then by Lemma 5.1.1(b) we have

(¢ (222)" e e (225) ™) =

If { € Ko then by Lemma 5.1.1(c) the field coincides with one of thg fields

(e (555) e (555 )

wherek’ € P. The proposition is proved.
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5.3. AFIXED ADMISSIBLE FIELD

Fix an admissible fiel&k from the complete system constructed in the previous
subsection and define, s, ¢, ando; as in the first paragraph of Subsection 4.2. In
particular

oi(y) = oite(y) (s+1<i<s+1), (97)

foranyy € K.

Denote byK' the compositekgK. Then [K' : K] = 2, and the involution
7: Ky —Kp (defined in the beginning of the previous section) can be prolonged
to the involution ofK /K, which will be also denoted by. (Thus, starting from
this point,7: K' =K' is the involution ofKk’ satisfyingr|, = id.)

Further, there are exactly two prolongationspto the fieldk'. We fix one of
them, also denoting it by;; then the other is; 7. The prolongations can be defined
to satisfy (97) also fory € K. Having prolonged; to K, we can definey; andg;
as in the beginning of Subsection 4.2.

We say that a real embedding Kfis stableif it has real prolongations t&,
andunstableotherwise. Arrange, . .., os SO thato, ..., oy are stable, while
os41,...,0s are not. Then we have the following analogue of Proposition 4.2.1
(the proof is immediate).

PROPOSITION 5.3.1Each stable real embedding & has exactly one real
prolongation tok, (which is stable as welandp — 1/2 pairs of complex conjugate
prolongations. Each unstable real embeddindggfhasp real prolongation toK,

all of them being unstable. In particulag’ = s5, s — s’ = p(so — sp) and

t = pto + ’%156, whereso, sp and 2tg are the numbers of real, stable real, and
complex embeddings &§, respectively.

Again, denote by S¢K) the set ofz € Sol such thak is admissible forz. For
anyz € Sol(K) there exists:(z) € P such that

_ 1/p
k(z) (T a) /
o (222) e

Sinceo; are prolonged t&’, the numbers

1
o (e (222)™)
r—p3
are well-defined. As in the general case, we dek®@ = (ki(z),..., kn(x))
from the relation (18).

Again, as in the general case, we have (20) and (21). However, (19) should be
relaxed as follows

ki(z) =--- =kg(z) =0. (19)
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As in the general case, it is easy to observe from Proposition 5.3.1 and relations
(19), (20), and (21), that there are at m¢@&t—1/2(p — 1/2)!)%(p!)lo+s0—5 possi-
bilities for k(z).

5.4. FUNCTION ¢(z), ETC.

Defineyp(z) as in (22). Thoughp(z) is merely inK’, its squarep?(z) belongs to
K. To see this, notice first of all that

1 -1
) (229) 4 ok (220)

x— 3 x— 3
and
_ 1/p _ —1/p
k() (T 0‘) k(@) (9” a) _
¢ <$—ﬁ ¢ p— 1eK
Hence
_ 1/p _ -1/p
ko) (© 0‘) ~k(z) (9” a)
¢ (x—ﬁ and ¢ r—p

are conjugate ovek, which means that

(e )7) e =)

Therefore

= = p(x)7(p(2)) € K

Now we have to repeat the material of Subsections 4.3-4.8, just replagcindpy
©?(x), and modifying accordingly the arguments and the constants. An interested
reader can find in Appendix A the complete list of all required changes.

5.5. AFINAL REMARK

In the case of«, 3)-symmetry one should deal, in the worst situation, with fields of
degre%pn(n —1). The following proposition shows that, whether ther&isg)-
symmetry or not, only fields of degree at mgst(n — 1) are to be considered.
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PROPOSITION 5.5.1Let f(z) € Q(z) have at least two distinct roots. Then
either

(i) there exist two distinct roots, 3 of f(x) with (a, 3)-symmetry, or
(ii) there exist two distinct roots, 3 of f(z) such tha{Q(«, 3) : Q] < 3n(n—1),
wheren = degf.

Proof. Only the case of irreduciblg need to be considered. Lgtbe the Galois
group of the polynomiaf overQ. If |G| is even, then there exists an elemert G
of order 2. Since # id, there is a rootr such that3 = 7(«a) # «. Sincer? = id,
we obtainr(3) = a, whence we have (i).

Now suppose thalg| is odd. Fix a roote. Theng(z) = f(z)/(z — «) is
reducible overQ(«); otherwisen(n — 1) would divide |G|, which is impossible.
Let nOng be an irreducible ove@(«a) factor of g of the smallest degree. Then
degg: < (n 1), and for any roop; of g; we have (ii). The proposition is proved.

Thus, in any case multiplicative operations should be performed in fields of
degree at mos§pn(n — 1). In particular cases this bound can be reduced. For
example, iff (x) has two symmetric roots, generating the same field Qu@s in
the examples below), then fields of degree at n%mi are to be dealt with.

6. Examples

To illustrate the efficiency of our method, we have completely solved two con-
crete superelliptic Diophantine equations. The computations were performed by a
program written in C, using the PARI/GP programming library, version 1.917. Its
listing can be obtained by e-mail from the second author.

6.1. THE EQUATIONY® = 2% — 23 — 322+ 2+ 1

The roots off (z) = 2% — 23 — 322 4+ z + 1 are

1+\/5 g/1+\/§ 1- \/5 3/11 V5
2 2

We take

1-v5 1 [11-+5
a=" —5\/ 5 = —1.355674.,
ﬁ:1_4\/§+%\/11_2\/_—0737640 =a®—a?—3a+1
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We have thé«, 5)-symmetry, and

Ko = Q(V5), Ky=Qa,f) = Qa).

M = {4203 — 10202 + 9 + 32,230° — 5502 + 5a + 17, 0,
602 — 1002 + 3,30% — 602 + 2,20% — 40? —a + 2,
aP+3a%—a—1-2a°+4a’+a—2,

—1203 4 2922 — 4o — 8}.

A system of fundamental units &f, is given by

o —a?—20,0,0° — 20 —a+ 1.
For the admissible fields and data in them see Table II. (We write the fie@@s\as
and express their elements in terms of the generajor

We hadXg = 295, and (the worst value of) Baker’s bouBgwas 618 x 107°.
After the first reduction we obtainey < 321, after the second reduction we had
By < 96, and after the final reduction step it wBs < 52 (there were at most 5
reduction steps at each case).

The solutions aré—1, —1), (0,1), (1,-1), (2, —-1).

The total computational time on a PC Pentium Pro was 1 minute.

6.2. THE EQUATION 28y° = 2% — 2022 — 32z + 28
The roots off (z) = z* — 2002 — 322 4 28 are

V2+\24+2V2, —2v2+4\/2-2V2

and we put

a=2V/2-\2+2V2, pB=2V2+\2+2V2

We again have thé&y, 3)-symmetry, and

Ko =Q(V2), Ky=Qe,pB)=0().

Though the set M included 18 elements, there were only 4 admissible fields (to-
gether withKy).

We hadXg = 873, and (the worst value of) Baker's bouBgwas 829 x 10°°.
After the first reduction we obtaing8y < 233, and after the final reduction step it
was By < 56 (again, there were at most 5 reduction steps at each case).

The solutions ar¢—2, 1), (0, 1).

The computation took 6 minutes on a PC Pentium Pro.
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€5/v6C + \€S/L8 + ,X€S/8T
+¢\€S/82 — ,XES/E — \ES/6—
'e5/662 + \€5/802 + ;\ES/LTE
—¢\€G/82T + |,X€S/29 — gXES/92
'€5/vSS — X€G/559 — S\ES/LYe
—g\€S/96E + 1, XES/0S + 5\€S/L6
'€5/68¢2 + X€5/18 — ,X€S/BT
—¢\ES/82 + , XES/E + 5XES/6
'€5/82T + XES/66T — ,\ESAST
—g\ES/HTT + ,XEG/LE — qXES/BY

6 — XE — ¢XE/2 — [, XE/T — gXE/T
Y= Xy = oX — X+ XE/Z — gXE/T
‘25 — X9E — ;XSG — ¢XE/62 — ,XE/TT — (XE/ET
T+ XE — gX8/2 — [ XE/T — Xe/T
'8+ X0T + ¢Xe/2 + ,Xe/L + oXe/v—

§/v — XG/€T + ZX + ¢XG/9—

'S/E0T — XS/8T + ,XG/19 + ¢XG/82 + [ XS/L — X —
'§/LL — XG/62 + ZXTT + ¢XG/22 + X — gX—

'S/L€ = XS/¥T — ;XS/LT + X2+ XG/2 — gX&/1—
G/vZ+ XG/€ — XG/T'6/8 + XS/ + ;XS/TT + X + ¢\G/T—
'S/vST + XG/88 — ;X5/86 — ¢\XG/88 — L \T + cXS/8
‘€T = XS/€ — ;X6 + ¢\G/LT + ,XS/2 — gXS/v—

'S/8S — XG/ET + ;XS/Tv + XS /€2 + XG/2 — g\ —
'S/eG+ XG/€ — ;X6 — ¢XS/9T — [XG/v + XG/¢

'S/2s — \G/€ + ;X6'S/8Y — XS/9T + ;XS /ey
+eXS/1T+ X = g\G/e— 'S/TE — XG/€ — ¢\&/T

‘€T — XG/6 + ;XG/62 + ¢XG/TT + ,XS/¥ — oXS/2—
's/1e + XS/e + XS /1

'S/82 = XG/LT + ;XG/T2 + ¢XG /2T + | XG/T — g\&/e—

wl/\m+m/\

€5/eeT + X€S/TTT — ,\ES/2T
—g\€S/T + ,Xe5/2 + o Xes/9
€5/8 + X€5/62 — ,\€S/9
—g\ES/L2 + ,XES/T + gXeS /e
'€5/62 — \€S/18 — ,\XES/BT
—¢\ES/82 + , XES/E + 5XES/6

T—X —¢gXe/z—,Xe/T
T+X
'€ = XE = g\&/2 — [ \E/T — g\&/T

2+ Xs/T — ;\5/6
—g\G/e = XG/T + gXS/T
‘S/TT + XS/8

—Z\G/€ = g\G/T — XSG /T
'S/T = XS/ — gXS/T

s+ ,\6
—gXS — HXE + X

6 — 8T — ;X6
—gXE = [ XE = X

6T — XTZ + ;X6
XL = X9 = gX

/\HN+N<Im/\NH+m<N wl«o.nn_.m/\
94 X2+ ,X— 'S+ XE+ X X0 + X + X T—XE— ;X6
mIKNH+N/\Im<m+m<N <<m+m/\ +m<|v<w+®<
67 + XTPT—'GT — Y92 'S — X —
‘26 + XTPT—'TT — X092 '9 — X'T X HIKINK
40 [elwou
Ops ayy SHuN [elUBWEPUN -Ajod rewuiw

T+ 2+ ,2¢ — . — @ = 46} elep pue spjay A|qISSIWPY || 3|geL
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Appendix
A. MODIFICATIONS FOR THE CASE OF , (3)-SYMMETRY.

In this appendix we list the changes that should be made in Subsections 4.3—4.8 in
the case ofa, 3)-symmetry.

(1) Replacep(z) (with and without index) and(x) by ¢?(z) (with the same
index, if there is any) an@?(z), respectively, in the following equations:
(23), (30), (31), (32), (34), (49), (50), (54), (64), (65), (67), (69), (72) and
everywhere in Appendix D.

(2) Modify u1(p) andux(p) (see (24-25)) as follows; (p) = max0, —Ord, (af3))
anduz(p) = max(0,0rd, ((a — 8)?)).

(3) In (32) and (33) replacgs — a)? by (8 — )%

(4) Modify 4; and A; (see (41)) as followss; = 257 _ja;;p; and A; = X7
(a;jlog |’y]29;1|). Modify the right-hand side of (51) accordingly.

(5) Modify the following constants

cl0 = 20712']8;X Z|a’”| Cl4 = max(l + 27~ 012 + rco, € ) ,

c16 = 2c13c12 + C14,

X4 = max Xz, 3mcy, et /@le']) 1 Y| 1/ |91...9m|1/(29’))

(6) In Subsections 4.5 it suffices now to assume [HatQ] > 2. To explain this
point, recall that the assumptidi : Q] > 3 was required only whel = Ko,
to guarantee the existence @f andi, such that among the numbers (62)
there are at least three distinct. In the cas@of3)-symmetry, it is enough to
have[Ko : Q] > 2, because for any two distingét andiy, there at least three
distinct among the numbers (62). (Otherwise it would be eithge= 3;, and
a;, = Bi,, Or o, = (i, andawy, = (;,. In both the cases;, + o, = 5, + (i,
anda;, o, = B, 0i,, Which means thaizl = 0j,.)

(7) Modify g (see (68)) as followsdy = (%2 19772) /(yfl”iz 0).
(8) Replace:1, by 2c10in (70), (71), (73), (75) and everywhere in Appendix D.
(9) Rewrite (94) as
_ 1/2
wi =y (Ot -y ) = (98)
(Now there are two possibilities far;, both being to be considered.)

(20) In Step 1 of the algorithm, replace the reference to Subsection 4.1 by Subsec-
tion 5.2.
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B. ON THE NUMBER OF POSSIBILITIES FOR THE VECTOR(z)

When the number ofi € M such thatko (4%?) = K (or Ko(u? + p~1/P) 2 K
in the case of«, 3)-symmetry) is not too large, one can reduce the number of
possiblek(x). For brevity, we consider only the general case.

Fix 4 € M such thatKg (1Y/?) = K. ThenKo(¢*pt/?) = K for somex € P.
Putu; = 0;(1) and defind; € P from the equalitys; (¢*pt/P) = ¢l /7.

Considerz € Sol(K) such that

_ 1/p
¢k (9” g) VP e Ky for somek € P. (99)
o
It follows that
_ 1/p
¢ (=5) T e Ko, (100)

Indeed, since bott®) (z — a/z — §)Y? and¢* /P belong toK, we have

—a\Y
¢+ (2=5) ek (101)

Thereforeck—k(@)+# ¢ K, wherek is defined from (99). It follows that the degree
of ¢h=k(@)+% gverKy dividesp. Since it also dividep — 1, the degree is 1, that is
¢k=k@)+r ¢ Ky, Together with (99) this proves (100).

PROPOSITION B.1Suppose that;|, = o[, , thatise; = oy and ; = By
Then for anyr € Sol(K) with the property(99) we have

k‘z((II) — ky ((II) =1 —ly (mOdp). (102)
Proof. Put
_ 1/p
A= K (”“" O‘) CrE Y A= o).
z—

Since) andyu belong toKp, we have\; = A\ andu; = u;. Therefore

1
ckil@) (u) Py,
T — B

PR S B
— Clz l; Clz ,Ufi’/pAi’

— Cli—li/ Ckll(m) <ZE — Qy > 1/p

z — Py
— Cli—li/ Ckll(m) <ZE - ai>1/p :
=B
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which proves the proposition.

Given a value of;;(z) for somei, the condition (102) defines uniquety (z) for
thep values ofi’ satisfyingo;|, = oy, . Together with (19) and (20) this leaves
p'o possibilities fork(z), where 2 is the number of complex embeddingsik.
Therefore there are at most

pl{n € M1 Ko(ut/?) = K}, (103)

possibilities fork(z). In some cases this number can be smaller {B&nY/2(p —
1/2)1)%0(pt).

C. SOLVING THE EQUATION ®(z) = 1

In Subsection 4.5 the equatidn(z) = 1 had to be solved (in the case (ef, 5)-
symmetry it should be replaced B(z) = £1.) In the caséK : Ko] = p > 3 both
k;, andk;, are nonzero. Therefogg, = p;, = 1, and the equatiof?(z) = £1 can
be rewritten as

G (L= ayz™ HYP — (1= Bja™H) /P
= const: ((i,(1 — e HYP — (1 — gz H)YP),
which can be easily reduced to a linear equation.in
In the casek = Ko we need the following lemma, which is an immediate
consequence of Kummer’s theory [12, Ch. 6, Th. 8.1] over the fi€ld).
LEMMA C.1. Letg, ..., ¢, be distinct nonzero complex numbers and
F(T,Ty,...,T,) €CT,T1,...,T,)],
a nonzero polynomial such that
F (T, A—aD)¥? ... (1- g,,T)l/p) = 0.
Thendeg, F > pforl<i<v.
Using this lemma we can prove that the functifx) is non-constant. Indeed, if

() were a constant, then, depending on whetheandp;, are equal or distinct,
we would have obtained one of the following identities: either

Cil(l - ailw_l)l/p - (1 - ﬁilw_l)l/p

= ConS(Ciz(l - aizwil)l/p - (1 - ﬁizwil)l/p)a (104)
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or
(G (L= g HYP — (1= Bz ) ?)

X (Cip (1 — g™ H)YP — (1 = Bz )Y/P)P~1 = ¢t (105)

(We used (48), which holds for sufficiently largeand in the case of distingf,

and p;, we assumed that;, = 1 andp;, = 1 — p.) Since among the radicals
there are at least three distinct, both (104) and (105) contradict to the assertion of
Lemma C.1. Thereforé(z) is non-constant.

We solve the equatio®(xz) = 1 in the following way. LetC be the field
generated ovet(z) by the radicals involved i®(z). ThenN c(z) (®(z) — 1)is
rational function inz, and we write it ag”(z)/Q(z). Since®(z) is non-constant,
the polynomialP(z) is nonzero, and all the solutions &{z) = 1 are among the
roots of P(x).

Thus, finding integral solutions of the algebraic Equation (64) reduces to finding
integral roots of a polynomidP(x). In practice, the coefficients é¢t(x) are known
approximately, and we had to estimate the precision of the roots. (Since we were
interested only in integral roots, we did not need very high precision.) The following
lemma was used for estimating the precision.

LEMMA C.2. Let P(z) = aoz”™ + a1z 1+ - + ay and Q(z) = boz™ +
bizN~1 + ... + by be polynomials with complex coefficients. kdte a positive
number with the following property:

(x) foranytwo roots andz’ of Q one haseithefz—2'| < e¢/20r|z—2'| > 2.

Put
b N oz —zi| —e
§=06() = min |°|HJA71|| ! ", | (106)
sV 3o o(l2i] +€)
wherezy, ..., zy are the roots of) counted with multiplicities. Assume that

|ai—bz-|<5 (O<Z<N)

Then for any root of P there is a root:’ of  such thatjz — /| < «.

(It will follow from the proof that there is a one-to-one correspondenge 2’
between the roots aP and the roots of) such thalz — 2’| < ¢ for every pair of
corresponding roots.)

Proof. Define an equivalence relation on the set of root@dfy z ~ 2z’ when
|z — 2’| < ¢/2 (transitivity follows from §)). Letma, ..., my be the cardinalities
of the the equivalence classes (so that+ - - - + m, = N), and assume that the
roots are numbered so that . . ., z; are respective representatives of the classes.
In particular

2 =2l 22 (1<i<j<k). (107)
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Fixiwith 1 <4 < k. Then@ hasm; roots inthe disd\; := {z € C: |z —z;| < ¢}.
For anyz on the circlel’; := {z € C: |z — z;| = ¢} one has

N
Q(2)] = [bo(z = z1) ... (z = 2w)| = Ibo| [T |27 — =il —el.
j=1
Hence, for any € I';
N .
|P(2) = Q2)] <) _(lzi] +¢) <1Q(=)].
j=0

By the theorem of Roudh P also hasn; roots inA;.
By (107), the discg\; are pairwise disjoint. Sincei; + - - - + mp = N, every
root of P belongs to one of\;. The lemma is proved.

We apply this lemma as follows. Assume we have to find all integral roots of
a polynomialP(z), but instead ofP, we have only an approximatia(z), with
a known precisiordg (that is, max-o,... n |a; — b;| < do). Having computed the
roots of Q(z), one can easily decide which integers are ‘very close’ to a root of
Q(z). This integers (we call thesuspiciouyare probable roots df(z).

To see thaf(z) has no integral roots other than suspicious, we do as follows.
For anyz € C denote byp(z) the distance to the nearest non-suspicious integer,
and puteg = 0.1 min(p(z1),..., p(zn)). If o meets the condition«f, we put
e = eo; otherwise put; = 0.1 min,_./|-., |z — 2’|, wherez andz’ independently
run the set of all roots af). If £; meets the conditionk], we puts = £1; otherwise
pute; = 0.1 min,_,5., |z — 2|, etc.; in practice, we always found a suitable
after two—three iterations. Wheris found, computé; if 6 > do thenP(z) indeed
has no integral roots other than suspicious. § §p (which never happened in our
practice) then one has to recomp@tevith higher precision.

D. THE TOTALLY RATIONAL CASE

In this appendix we give a detailed treatment of the totally rational case, see
Subsection 4.6.1.
We have

0,505 = qi/a, 05,1 (050, — ) = dj/a (L<i<r), (108)

whereq is a positive integerg;, q} integers, and gdds, .., ¢-,q) = 1. (To

simplify the notation, we do not excluge= j1, in which casey; = g andq; = 0.)

As in the semirational case, we expect that the integgkg; andg are ‘small’.
Replacing in (77) indey, by 5, and using (108), we obtain

lqbj(z) — qjbj,(z) + ] < 2qcrolz| ™ (1< j < 7). (109)
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If |z| > X7 : max X3, 4qcio) then (109) turns to
gbj(z) — qjbj, () +¢; =0 (1<j <) (110)

If gcd(q, ¢;) does not divideq; for some; then there are no solutions with
|z| > X7. Otherwise, one easily finds integéts. . ., b, such that

gbj — qibj, +q; =0 (1<j<r). (111)
Then

bj(z) = bj +q;b(z) (1<j<r), (112)
whereb(z) € Z. Substituting this to (67), we obtain

B (x) = 90" @, (113)
where

By = Doyt -0, 9 =99

The further arguments splits into five cases.

@) W[ #1
In this case (113), together with (66), yields

| log|9y| + b(z) log ||| < c12]| . (114)

Henceb(z) is the nearest integer telog [95|/ log |9| whenevetz| > Xg 1=
max(X7, 2612).

(2) [9] = 1, but|dp| # 1
We again have (114), which now reduces to

|log |95]] < c1z]m| (115)

Thus,|z| < Xg := max X7, 12| log|dh]|~1).
(3) |9] = |95 = 1, butd is not a root of unity
Again using (113) and (66), we obtain

|(2r)~* argvh + (2m)~* argob(a)|| < (2r)~eszla| (116)

and we continue as in the irrational (respectively, semirational) caseaf g«
and argg, are linearly independent (respectively, linearly dependent) Dver

(4) ¢ is a primitive N'th root of unity and¥p| = 1, butd; is not anNth root of
unity
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We have
IV (2r)Largdpll < N(2m)Lessla| (117)
and since the left-hand side is nonzero, we obtain
|z| < Xg := max( X7, N(2r)teio|| N (27) ~Largdh||—).

(5) ¢ is a primitive N'th root of unity andd;, is an N'th root of unity

In this case®(z) is also an/Nth root of unity. Since®(z) # 1, we obtain
|log®(x)| > 2r/N. Hencelz| < Xg := max X7, N(27) 1cpp).

E. THE HYPERELLIPTIC EQUATION

In this appendix we briefly explain how our method can be adapted for solving
the hyperelliptic equationy> = f(z), wheref(z) is a separable polynomial of
degree at least 3. (Probably, it would be more correct to callifitic equation
when degf < 4; for brevity, we extend the terinyperellipticalso to this case.)
What follows is merely a short draft, and many details are left out. In particular, we
make no use in possible symmetry of the roots. For examples and generalization
of («, 3)-symmetry to that case, see [11].

Again, fix two distinctrootsr andjs of f(x), and assume firstthei(«, 5) : Q| >
3. It is easy to see that in this case the method of Section 4 extends alse 20
Indeed, the assumptign > 3 was made in Section 4 only twice: in Proposi-
tion 4.2.1, and in Subsection 4.5. We leave to the reader the reformulation of
Proposition 4.2.1 fop = 2. As for Subsection 4.5, it is indeed impossible to sat-
isfy (60)—(61) wherp = 2. However, sincéQ(«, ) : Q] > 3, we can always find
i1 andi, such that among the numbers (62) there are at least three distinct, which
allows one to compute the Baker’s bound.

It remains to consider the caf@(«, ) : Q] < 2. Fix one more roof, distinct
from « and 5. We may assume thdQ(a,v): Q] < 2 and[Q(v,5):Q] < 2;
otherwise, redefining the roots, we return to the ¢@%e, 5) : Q] > 3.

It follows that [Q(«a, 8,7) : Q] < 2. Redefining the roots, we can additionally
assume that

(i) eithera, 8,7 € Q,
(i) or « andg are quadratic conjugates ov@randy € Q(«).

Case (i) is very simple: it can be reduced to two simultaneous Pell equations, see
for instance [33]. In case (i) puky = Q(«), and say that a number field is
admissible for a solution if K = Ko((z — a/z — )¥?). One easily constructs

a complete system of admissible fields, which would consigoand a finite
amount of its quadratic extensions.
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Now fix an admissible fiel&k and putp(z) = (z —7)((z — a/z —v)Y? + 1)2.
Then we again have (34), wheféxr) belongs to a finite effectively constructible
set.

If K = Ko then we have finitely many possible values fofz)o(p(z)),
whereg is the non-trivial automorphism afy. Howeverg ((z — a/x — v)¥?) =
+(x — B/x —+')Y?, wherey' = o (7). Using Kummer’s theory, as in Appendix C,
we observe that

p()a(pla)) = (2 —7) ((m‘“)1/2+1>2<x—7'> (i ("”jf,)mH)Z

T —y T

is a non-constant function af, which allows one to compute the set &qJ).
If [K:Ko] = 2, then, putting

e () +2)
P ((f_;f,)l/er 1>27

one can compute the Baker’s bound and proceed further as in Section 4. See [31, 32]
for a similar algorithm in the case dg¢g= 3.
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