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Abstract

On small Seifert fibered spaces M(e0; r1, r2, r3) with e0 �= −1, −2, all tight contact struc-
tures are Stein fillable. This is not the case for e0 = −1 or −2. However, for negative twisting
structures it is expected that they are all symplectically fillable. Here, we characterise fill-
able structures among zero-twisting contact structures on small Seifert fibered spaces of the
form M (−1; r1, r2, r3). The result is obtained by analysing monodromy factorizations of
associated planar open books.

2020 Mathematics Subject Classification: 57K33 (Primary); 57K20 (Secondary)

1. Introduction

Seifert fibered 3-manifolds not carrying fillable contact structures have been singled out
by Lecuona and Lisca [9]; they call them manifolds of special type. In this paper, we are
interested in exactly which contact structures on small Seifert fibered spaces are fillable. For
the surgery presentation of the underlying manifold see Figure 1.

Tight contact structures on small Seifert fibered spaces M(e0; r1, r2, r3) where e0 ∈Z and
ri ∈Q∩ (0, 1), are completely classified [5, 19] whenever e0 �= −1 or −2; they are all given
by Legendrian surgery on the standard Stein fillable S3 or S1 × S2, and hence they are
also Stein fillable. Generally, there are essentially two types of tight contact structures on
M(e0; r1, r2, r3), distinguished by the maximal twisting of the regular fiber; that is, the max-
imal difference between the contact framing and the fibration framing within the smooth
isotopy class of the fiber. The negative twisting structures are related to the transverse con-
tact structures, and they are expected to be all at least symplectically fillable (see [4, 7, 17] for
some partial results). On the other hand, the zero-twisting tight contact structures exist only
when e0 ≥ −1; in the only unsettled case, for M (−1; r1, r2, r3), they share a common con-
tact surgery description [10] and are conjecturally [16] characterised by non-vanishing of the
Ozsváth–Szabó contact invariant c(M, ξ ) ∈ ĤF(−M, tξ ); in the particular case of L-spaces
this covers all tight structures and it has been confirmed in [13].

Zero-twisting tight contact structures on M (−1; r1, r2, r3) are all described by contact
surgery diagrams of Figure 2, as shown by Lisca and Stipsicz in [10]. Recall that such a
diagram gives a family of contact structures, whose elements can be specified by replacing
each contact −1/ri-surgery with a Legendrian surgery along a chain Li – called a leg – of
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Fig. 1. Small Sefert fibered space M (e0; r1, r2, r3).
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Fig. 2. Contact structures on M (−1; r1, r2, r3).
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These structures are all supported by planar open books (see Subsection 2·1); but in con-
trast to contact structures on small Seifert spaces with e0 �= −1, not all tight ones are Stein
fillable. With the aid of a theorem of Wendl [18] (evoked as Theorem 2·6), we see that the
non-Stein fillable structures are not fillable at all. Lecuona and Lisca [9] showed that, when
M (−1; r1, r2, r3) is an L-space and ri + rj < 1 for all pairs i,j, topology (the diagonalisa-
tion argument) prevents existence of Stein fillings; though, we know from the classification
of Lisca and Stipsicz [11] that many of these manifolds actually admit tight structures.
Another concrete example of a tight non-fillable structure was given by Ghiggini, Lisca
and Stipsicz in [6] on M(−1; 1/2, 1/2, 1/p); while Plamenevskaya and Van Horn-Morris
[14] later obtained that when r1 ≥ (p − 1)/p, r2 ≥ 1/2 and r3 ≥ 1/p, all tight structures are
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also fillable. However, although all (possibly) tight structures admit common surgery pre-
sentation, the fillability of these structures has never been systematically analysed; the only
manifolds for which the fillability of all tight structures has been understood are the ones
which do not admit fillable structures and some for which all tight structures are also fillable.

Here, we show that all fillable zero-twisting structures on M (−1; r1, r2, r3) arise as
Legendrian surgeries on the tight S1 × S2. For L-spaces this covers all fillable structures,
and hence implies the result of Lecuona and Lisca. More specifically, we show that fillabil-
ity of a given surgery presentation is completely decided on specific sublinks representing
S1 × S2, whose tightness is in turn met by a unique choice of rotation numbers for this
sublink.

First notice that, whenever ri + rj ≥ 1 there exists a truncated continued fraction −1/si =[
a0

i , . . . , ami
i

]
<

[
a0

i , . . . , aki
i

]
= −1/ri with mi ≤ ki, and for rj alike, such that si + sj = 1

(see [9, lemma 3·2]). We will call any subdiagram of the contact surgery diagram in Figure 2
which consists of the two unstabilized unknots with +1-coefficient and two truncated legs,
representing rational numbers −1/si such that si ≤ ri, sj ≤ rj and si + sj = 1, a circular
sublink.

Additionally, we will say that a Legendrian knot is fully positive if all its stabilisations
are positive (for the unknot, this means rot = −(tb + 1)). When all the knots forming a leg
are fully positive, the leg will be said to be positive. Analogously, we define a fully negative
Legendrian knot and a negative leg. Now, a circular sublink whose one leg is positive and
the other one negative will be referred to as a balanced sublink. With the terminology set we
can state our result.

THEOREM 1·1. Assume that a contact structure ξ on M (−1; r1, r2, r3) is given by some
surgery diagram of Figure 2. Then ξ is fillable if and only if the surgery presentation contains
a balanced sublink.

As explained above, the theorem covers all zero-twisting tight structures on Seifert mani-
folds M (−1; r1, r2, r3) and all tight contact structures when the underlying manifold is also
an L-space. Additionally, when r3 = 0 (equivalently, when there is no surgery along L3) and
r1 + r2 = 1 we have the following.

PROPOSITION 1·2. A contact surgery diagram as in Figure 2 describes the tight contact
S1 × S2 if and only if it equals some balanced link.

Our results are obtained by analysing monodromy factorisations of associated planar open
books. The main new idea is the use of perspectives (see Section 4): by simultaneously
looking at the planar page as a disk-with-holes with different outer boundaries, we extend the
applicability of both the standard monodromy substitutions and the obstructions for positive
factorisations due to Plamenevskaya and Van Horn–Morris [14].

Overview. In Section 2, we recall how to associate open books to the given surgery presenta-
tions, and present the main properties of planar monodromies. The proof of Theorem 1·1 is
split between the following sections. In Section 3, we show that surgery along any balanced
link indeed gives the fillable S1 × S2. In Section 4, we obtain negative results by obstructing
positive factorisation of monodromy in the abelianisation of the mapping class group of the
planar page.
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2. Open book presentation
2·1. Planar open book from the contact surgery presentation

In [10, theorem 1·5], Lisca and Stipsicz proved that contact structures of Figure 2 are
planar; indeed, from a Legendrian surgery diagram as in Figure 2, one can construct a sup-
porting open book with planar pages as follows. Look at Figure 3 top for the corresponding
illustration.

One +1-surgery along an unknot with tb = −1 is presented by an annulus with identity
monodromy, the other +1-surgery manifests itself in a negative Dehn twist along its core.

Notation 2·1. Write π in and νout for the inner and the outer boundary of the annulus.
Additionally, write N for the curve which supports the negative Dehn twist and, abusing
the notation, also for the negative Dehn twist itself.

Every other unknot contributes a positive Dehn twist on a stabilised annulus. Concretely,
we insert a hole, encircled by one boundary-parallel positive Dehn twist, for every stabili-
sation of every unknot in the surgery diagram; the stabilisation holes which correspond to
positive stabilisations lie between the inner boundary π in of the annulus and its core N, the
negative ones between N and the outer boundary νout.

Notation 2·2. Denote by ν
j
i and π

j
i any of the stabilisation holes which correspond to neg-

ative and positive stabilisations, respectively, of the unknot v
j
i . When grouped into certain

types, we use νi for any of ∪jν
j
i , similarly ν

≥j
i for any of ∪y≥jν

y
i , and ν to denote any of

νout ∪ νi; the notation for the π-type holes is analogous. Note that, since the names of holes
(equivalently, boundary components) are chosen as common names, we will refer to a single
(not specified) hole with the given name χ as a χ-hole.

Remark 2·3. Using | · | for the number of respective holes, we see that 2 + |νj
i | + |π j

i | equals

aj
i for j > 0 and a0

i + 1 for j = 0, −1 − |νj
i | − |π j

i | = tbj
i and |π j

i | − |νj
i | = rotji.

The positive Dehn twists corresponding to the Legendrian surgeries along v
j
i are formed

successively along the legs: From the leading unknot v0
i of each leg we get a positive Dehn

twist along a push-off of the core N modified by encircling an additional ν0
i -hole for each

negative stabilisation, and avoiding a π0
i -hole for each positive stabilisation. The twists cor-

responding to the subsequent unknots v
j
i in each leg are then obtained from a push-off of the

twist corresponding to the preceding unknot v
j−1
i modified so that it additionally encircles

all ν
j
i -holes and avoids all π

j
i -holes.

Notation 2·4. Denote Tj
i the curve which corresponds to the unknot v

j
i . From the construc-

tion in the preceding paragraph, we see that Tj
i encircles exactly π in, all πl for l �= i, π

>j
i and

ν
≤j
i

(
and so, it does not encircle exactly π

≤j
i , νl for l �= i and ν

>j
i

)
. Abusing the notation, we

will use Tj
i also for the corresponding positive Dehn twist. As in the case of holes, we will

need also common names such as Ti = ∪jT
j
i , referring to any single one of them as a Ti-twist

or curve.

Remark 2·5. The unknots Tj
i and v

j
i are not exactly the same; while v

j
i with fixed i

form a chain Li, the corresponding Tj
i give the rolled-up diagram of Li (as described

in [15]). Anyway, since the Legendrian push-off and the meridian of a Legendrian knot
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Fig. 3. Illustration of our notation conventions on an example: tb1 = (−2, −2, −1) and
rot1 = (1, 1, 0), tb2 = (−2, −2) and rot2 = (1, −1), tb3 = (−3, −2) and rot3 = (−2, −1). In gray
are boundary components of the punctured disk. The full curves correspond to positive Dehn
twists, the boundary twists of the stabilisation holes are black, the T1-twists are blue, the T2-twists
orange and the T3-twists green. The dashed curve represents the negative Dehn twist N. The page
is shown in two perspectives: with initial outer boundary (top) and with outer boundary in one
ν0

3 -hole (bottom).
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are Legendrian isotopic after we perform −1-surgery on the original knot [2], the two
presentations give the same contact manifold.

All together, the associated open book has as a page the punctured disk with one more
hole than the number of stabilisations of all unknots in the surgery presentation, and the
monodromy (up to conjugation) is given as a product of the negative Dehn twist N, positive
Dehn twists Tj

i for all j for all i and a single positive boundary twist along all boundary
components except π in and νout.

2·2. Planar monodromy

Since our contact structures are all planar, the following theorem of Wendl ensures that to
prove non-fillability it suffices to study positive factorisations of the given monodromy.

THEOREM 2·6. [18, corollary 2] A planar contact manifold is strongly symplectically
fillable if and only if it is Stein fillable if and only if every supporting planar open book has
monodromy isotopic to a product of positive Dehn twists.

Let us briefly review the characteristic features of the abelianised planar mapping classes,
as used by Plamenevskaya and Van Horn–Morris in [14].

The mapping class group of a planar surface (in the presentation of Margalit and
McCammond [12]) is described (geometrically) on a disk, Dn, with n holes arranged in
the roots of unity. The group Map Dn is generated by all convex Dehn twists (that is, the
twists whose core is the boundary of the convex hull of a set of holes), and factored by
commutators of disjoint twists and all lantern relations. Then, up to conjugation we have the
following.

LEMMA 2·7. A Dehn twist as an element of AbMap Dn is determined by the set of holes
it encircles.

Furthermore, any mapping class φ factors into a product of Dehn twists. We can then
define the single and pairwise multiplicities, mα(φ) and mαβ (φ), as the number of twists
(counted with signs) in a factorisation of the extension of φ to the disk with all but one hole α,
or a pair of holes α and β, capped off. It is shown in [14] that these numbers are independent
of factorisation and that they contain a complete homological information about φ.

LEMMA 2·8. [14, p. 2084] A mapping class φ as an element of AbMap Dn is uniquely
determined by a collection of multiplicities

{
mα(φ), mαβ (φ)

}
.

In particular, in a positive factorisation, the number of non-boundary twists around every
hole is bounded from above by the number (counted with signs) of all twists encircling this
hole in any given presentation.

In the following, we will make extensive use of an iterated lantern relation, also known as
a daisy relation, which we state in the lemma below and illustrate in Figure 4.

LEMMA 2·9. [14, lemma 3·5] In the mapping class group of the disk with k + 2 holes,
the positive Dehn twists B, B0, B1, . . . , Bk+1 and A1, . . . , Ak+1, C, as denoted in Figure 4,
satisfy the relation

(B0)kB1 · · · Bk+1B = CAk+1 · · · A1.
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Fig. 4. Daisy relation.

Remark 2·10. The daisy relation of the disk with k + 2 holes exactly describes the rational
blow-down along L

(
(k + 1)2, k

)
, as monodromy substitution for the Lefschetz fibration [3].

3. Surgery links of tight S1 × S2

LEMMA 3·1. The contact surgery presentation given by a circular link smoothly
describes S1 × S2.

Proof. The circular link smoothly consists of four −1-linked unknots with framing
coefficients 0, 0, −(s1 + 1)/s1, −(s2 + 1)/s2 for some s1 + s2 = 1. Switching to integral
coefficients, we have the legs L1 and L2 in place of rational framed unknots, with
surgery coefficients

(−a0
i − 1, −a1

i , . . . , −ami
i

)
where −1/si =

[
a0

i , . . . , ami
i

]
for i = 1, 2.

Blowing-up once at the linking point (followed by a blow-down of the two ( + 1)-
framed meridians of the thus-added curve), we obtain a chain of unknots with coefficients(−am1

1 , . . . , −a0
1, −1, −a0

2, . . . , −am2
2

)
. Since

[
am1

1 , . . . , a0
1, 1, a0

2, . . . , am2
2

] = 0, this chain
can be successively blown-down, starting from the middle −1-framed unknot, until it
reduces to a 0-framed unknot.

Remark 3·2. Notice that, after the blow-up the two legs of a circular link become dual to
each other (that is, they describe a lens space and its orientation reversal). Explicitly, the
coefficients of the two are related as follows (here, −2×b means a chain of b-many unknots
with framing −2):

L′
1 :

(−b1 − 2, −2×b2 , −b3 − 3, . . . , −2×bm or − bm − 2
)

L′
2 :

(−2×b1 , −b2 − 3, −2×b3 , . . . , −bm − 2 or − 2×bm
) .

Hence, since the legs are affected by the blow-up only at the leading unknots, the smooth
surgery coefficients of the original legs correlate as:

L1 :
(−b1 − 3, −2×b2 , −b3 − 3, . . . , −2×bm or − bm − 2

)
L2 :

(−3, −2×(b1−1), −b2 − 3, −2×b3 , . . . , −bm − 2 or − 2×bm
) .
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PROPOSITION 3·3. The contact surgery presentation given by a balanced link corre-
sponds to the tight S1 × S2.

Proof. We prove that the presented contact manifold is Stein fillable by describing a
concrete positive factorisation of the associated monodromy.

Since a balanced link is circular, we can write out the smooth surgery coefficients of its
two legs as in Remark 3·2:

L1 :
(−b1 − 3, −2×b2 , −b3 − 3, . . . , −2×bm or − bm − 2

)
L2 :

(−3, −2×(b1−1), −b2 − 3, −2×b3 , . . . , −bm − 2 or − 2×bm
)

for some bi ≥ 0. Without loss of generality, we choose L1 to be negative and L2 positive.
Recall from Section 2·1 that the associated monodromy factorises into a product of the

negative Dehn twist N, the positive Dehn twist Tj
i for every unknot v

j
i and the positive bound-

ary twists of stabilisation holes. In the case of a balanced link with L1 negative and L2

positive, we have only ν1- and π2-stabilisation holes, all T1-curves lie outside N, while all
T2-curves lie inside. We can rewrite this monodromy by repeated use of the daisy relation
as follows; look also at the example given by Figure 5.

For the ease of notation, we write v(b	) for the unknot with the surgery coefficient −b	 − 3

for 	 < m and −bm − 2 for 	 = m. So, in our general notation v(b	) equals v

(∑	
′

l=1 b2l

)
+	

′

1 for

odd 	 = 2	′ + 1 and v

(∑	
′

l=1 b2l−1

)
+	

′−1

2 for even 	 = 2	′. We attune the notation for twists
and stabilisation holes, so that the twist T(b	) corresponds to the unknot v(b	), and the holes
ν(b	) or π(b	) correspond to its stabilisations.

Throughout, we imagine the page as a disk with the outer boundary in one of the ν(b1)-
holes; this hole (and its boundary parallel twist) will not be considered a stabilisation hole
and hence, we change its notation to δ. Then, all the T1-curves encircle νout, and all the
T2-curves encircle π in. The new twists which arise by applying lantern relations, will be
described by the subset of holes they encircle on the disk bounded by δ.

To obtain a positive factorisation, we will need m applications of the daisy relation. It will
be alternately applied from inside, involving some T2-twists, and from outside, involving
some T1-twists.

For the zeroth application of the daisy relation (from inside), we consider:

(i) the first b1 parallel T2-twists;

(ii) the boundary twists of b1 of the ν(b1)-holes (note that the only non-considered ν(b1)-
hole we set as the outer boundary);

(iii) the boundary twist of the π0
2 -hole;

(iv) the negative Dehn twist N.

The daisy relation (Lemma 2·9), for which the T2-twists take the role of B0, the stabilisation
holes the role of B1, . . . , Bb1+1 and N the role of

(
Ab1+1

)−1, results in:

(i) a new negative twist N0 around
{
π in ∪ π2 ∪ ν(b1)

}
, playing the role of (B)−1, while

we eliminate the negative twist N;
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↔

‖

↔

‖

↔

Fig. 5. Example of positive factorisation: tb1 = (−3, −2) with rot1 = (−2, −1) and
tb2 = (−2, −2, −1) with rot2 = (1, 1, 0). On the first and the last picture the page is presented
as a punctured disk with outer boundary in νout and one of ν0

1 , respectively. Intermediate steps
are presented as punctured spheres. In each row, the twists involved in a single application of the
daisy relation are highlighted in orange.
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(ii) a new positive twist D0 around all considered stabilisation holes
{
π0

2 ∪ ν(b1)
}
,

playing the role of C;

(iii) new positive twists in role of A1, . . . , Ab1 , which we will not keep track of because
they remain unchanged in the continuation.

For the first application of the daisy relation (from outside), we consider:

(i) the positive Dehn twist T(b1) = T0
1 and all its parallel T1-twists; all together there are

b2 + 1 of them;

(ii) the boundary twists of all b2 + 1 of π(b2)-holes;

(iii) the positive Dehn twist D0.

We apply the daisy relation on them, so that the T1-twists take the role of B0 and the
stabilisation holes together with D0 the role of B1, . . . , Bb2+2. This results in:

(i) a new negative twist N′
1 around

{
νout ∪ ν1 ∪ π0

2 ∪ π(b2)
}
, playing the role of (B)−1;

(ii) a new positive twist D1 around
{
π0

2 ∪ ν(b1) ∪ π (b2)
}
, playing the role of C, while

we eliminate the positive twist D0;

(iii) new positive twists in role of A1, . . . , Ab2+2, which we will again not keep track of.

We continue by alternately applying the daisy relation from inside and from outside. The
	th application involves T(b	) and all its parallel twists, along with the stabilisation holes of
the unknot v(b	+1). From inside (for the even applications 	 = 2	′), T(b	) and its parallels
are T2-twists and the stabilisation holes are ν(b	+1)-holes; the daisy relation affects also
N	−2 and D	−1 which get cancelled and replaced by enlarged curves N	 and D	, additionally
encircling ν(b	+1)-holes. From outside (for the odd applications 	 = 2	′ + 1), T(b	) and
its parallels are T1-twists and the stabilisation holes are π(b	+1)-holes; the daisy relation
affects also N′

	−2 and D	−1 which get cancelled and replaced by enlarged curves N′
	 and D	,

additionally encircling π(b	+1)-holes. So, after the 	th application of the daisy relation, the
twists contain:

	 = 2	′: D	 = {
π0

2 ∪ ν(b1) ∪ π(b2) ∪ · · · ∪ π(b	) ∪ ν(b	+1)
}

N	 = {
π in ∪ π2 ∪ ν(b1) ∪ · · · ∪ ν(b	+1)

}
	 = 2	′ + 1: D	 = {

π0
2 ∪ ν(b1) ∪ π(b2) ∪ · · · ∪ ν(b	) ∪ π(b	+1)

}
N′

	 = {
νout ∪ ν1 ∪ π0

2 ∪ π(b2) ∪ · · · ∪ π(b	+1)
}
.

Note that, as in the first two applications which we have explicitly described above, the
T-twists always take the role of B0, the stabilisation holes together with D	−1 the role of
B1, . . . , Bb	+1+2, and N	−2 or N′

	−2 the role of
(
Ab	+1+2

)−1; while for the resulting twists,
D	 takes the role of C and N	 or N′

	 the role of (B)−1. Note also that, N	 exists only for even
	 and N′

	 only for odd 	, either of them remaining untouched by the (	 + 1)th application of
the daisy relation.

Finally, in the last, the (m − 1)th, application of the daisy relation, there are bm + 1 parallel
twists T (bm−1), but there are only bm stabilisation holes of v(bm), so together with Dm−2

only bm + 1 twists in role of Bi for i > 0. Hence, we involve as an additional Bi, the twist
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T (bm), which in our perspective appears as the boundary twist around νout when m odd and
around π in when m even. So, after we apply the daisy relation, the twist Dm−1 encircles:

Dm−1 = {
π0

2 ∪ ν(b1) ∪ π(b2) ∪ · · · ∪ π(bm−1) ∪ ν(bm) ∪ νout
}

for odd m,

Dm−1 = {
π0

2 ∪ ν(b1) ∪ π(b2) ∪ · · · ∪ ν(bm−1) ∪ π(bm) ∪ π in
}

for even m.

It exactly agrees with N′
m−2 for odd m and Nm−2 for even m, and hence the corresponding

negative twist gets cancelled by Dm−1. The other negative twist, Nm−1 when m odd and
N′

m−1 when m even, encircles all the holes and it cancels with the positive Dehn twist along
the outer boundary δ.

4. Obstructing positive factorisations

When there is no balanced sublink of the surgery presentation, we show that the contact
manifold of Figure 2 cannot be fillable.

PROPOSITION 4·1. When the contact surgery presentation of Figure 2 does not contain a
balanced sublink, the corresponding monodromy does not admit any positive factorisation.

The rest of the section is devoted to the proof of Proposition 4·1. First, we recall that
the oppositely stabilised leading unknots are needed already for tightness (Proposition 4·2).
Then, after setting up some further conventions and notation, we undertake a systematic
analysis of possible positive factorisations of the monodromy φ as being read from the
surgery presentation, obtaining eventually that the factorisation cannot exist in the absence of
a balanced sublink. First, we study how possible positive factorisations behave with respect
to the π-holes (Lemmas 4·3–4·4). Then, we specify particular properties of the twists which
encircle ν-holes (Lemmas 4·6–4·8). Finally, we obtain that (the lifts of) the factorisations as
characterised among the π-holes can fulfill the above list of properties only when there is a
balanced sublink (Lemmas 4·11–4·15).

Necessary condition for tightness
We can argue via convex surface theory that some surgery configurations are always

overtwisted.

PROPOSITION 4·2. Necessarily for tightness, the presentation admits a leg with fully
negative leading unknot and a leg with fully positive leading unknot.

Proof. The absence of a pair of fully oppositely stabilized leading unknots is a very
special case of the overtwistedness conditions given in [13, section 5].

Due to Proposition 4·2, we may, up to an overall orientation of the surgery link, assume
that there is only one leg, say L3, whose leading unknot is fully negative. Notice that since
tb0

3 = −a0
3 ≤ −2, the leading unknot always admits a negative stabilisation, and so, there is

at least one ν0
3-hole.

Conventions and notation
Throughout the proof, we try to build a positive factorisation of the monodromy φ only on

the level of abelianization. Abusing the notation, all mapping classes and their factorizations
are considered as elements of AbMap. In particular, we are interested in Dehn twists only up
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to conjugation, and we freely choose the order of Dehn twist factors. Note that we reserve
the capital Greek letters to denote specific factorizations, in contrast to the maps as a whole.

It will be essential to look at a planar page of the open book from different perspectives, by
which we mean a diffeomorphism of the page where a fixed boundary component becomes
the outer boundary of the disk; see Figure 3 for illustration. Our preferred perspective will be
the punctured disk obtained by setting one of the ν0

3-holes to be the outer boundary; call it D.
As already in the proof of Proposition 3·3, this ν0

3-hole (and its boundary parallel twist) will
not be considered a stabilisation hole and hence, we change its notation to δ; so, whenever
we consider (any subset of) the ν-holes or twists, δ is not included. When some of the holes
in D are capped off, we denote this by putting the remaining holes in the index; for example,
the notation Dχ means the page D with all but the χ-holes capped off, and D is equal to
Dπ∪ν .

In arguments, we will interchangeably use two other perspectives on the (possibly capped-
off) disk D: the initial with νout as the outer boundary of the disk, and the turned-over
with π in as the outer boundary. For example, D in the initial perspective is just the page
as described in Subsection 2·1, Dπ cannot be given in the initial perspective because νout

is capped-off, and Dπ in the turned-over perspective is a disk with outer boundary π in and
holes δ and πi for all i. The (collections of) twists or holes, which are taken one to another
by the diffeomorphism which changes perspectives, will be denoted by the same names
regardless the perspective.

The (single and pairwise) multiplicities with respect to each perspective will be denoted
by capital M in D, by m for the initial disk, and by m′ for the turned-over one. According
to Lemma 2·8, these numbers are independent of factorisation; however, when we wish to
emphasize from which factorization the multiplicity was read, we put the factorization in
the parenthesis, for example M(�).

Let � denote the original factorisation of the monodromy φ as being read from the surgery
presentation. We recall from Section 2·1 that � = N · ∏i,j Tj

i · D∂ where N is the negative

twist representing one +1-surgery, the positive twists Tj
i correspond to −1-surgeries on v

j
i ,

and D∂ is a boundary twist about all but two, νout and π in, boundary components.

Positive factorisations and π-holes
To begin with, let us study how positive factorisations can possibly behave with respect

to the π-holes.

LEMMA 4·3. By capping off all the ν-holes, we descend from AbMapDπ∪ν to AbMapDπ ,
sending φ to φ. This maps the given factorisation � to �, which is a composition �1�2�3

with �i being a product of the Ti-twists and the boundary twists around the πi-holes. Every
positive factorisation � of φ splits into subfactorizations � = �1�2�3 so that � i and �i

describe the same element φi in AbMap Dπ .

Proof. The � itself presents a positive factorisation of the extended monodromy φ.
Indeed, the only negative twist of � cancels with the boundary twist of δ after we have
capped-off the ν-holes. By construction, � factors into a product of T

j
i, the extended Tj

i ,
for every j for every i and the boundary twists of πi-holes for all i; we define �i to be the
product of all Ti-twists and the boundary twists of πi-holes. We will show that, in the turned-
over perspective, the only hole which appears in more than one factor �i is the hole δ. This
together with Lemma 2·8 will allow us to see that every positive factorisation splits into
three factors, completely determined by m′-multiplicities of �i.
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So, let us first compute the multiplicities from �. Set π in as the outer boundary and
consider the capped-off page Dπ in the turned-over perspective. Here, no πi-hole is encircled
together with any πj-hole for i �= j, in symbols m′

πiπj
= 0, and δ is in at most m′

δ = k1 + k2 + 2

twists. Indeed, the factors of � all arise from the factorisation �, and by construction in
Subsection 2·1, in the initial perspective each twist of � which contains π in skips πi-holes
for one i only, and among the twists containing π in all T1- and T2-twists avoid δ. On the
other hand, the pairwise multiplicity of δ with π0

i in the turned-over perspective is exactly
m′

δπ0
i
= ki + 1. So, there are exactly ki + 1 twists encircling δ together with only πi-holes.

Again, this follows by construction as all the twists of � (in the initial perspective) which
avoid any of the πi-holes, avoid also π0

i .
But, according to Lemma 2·8, the multiplicities are independent of factoriation.

Therefore, in the turned-over perspective no positive factorisation admits any twist encir-
cling πi and πj together, and we can consider the whole (abelianised) monodromy φ as
a product of three monodromies φi, uniquely determined by m′-multiplicities: the sin-
gle and pairwise multiplicities of πi-holes are non-zero only in φi, and the twists around
δ are distributed so that pairwise multiplicity of δ with the π0

i -holes is k1 + 1, k2 + 1,
and 0, respectively. In other words, any positive factorisation splits as �1�2�3 with � i

describing φi.

For φi ∈ AbMap Dπ when i = 1 or 2, let us write out the given factorisation �i as

F0
i · · · Fli

i and the arbitrary positive factorization � i as P0
i · · · P

l′i
i . We order the Dehn twist

factors so that viewed in Dπ the ones encircling π in come first and in the decreasing order of
the number of holes they encircle. For �i the first ki + 1 twists F0

i , . . . , Fki
i are then exactly

equal to T
0
i , . . . , T

ki
i , and they are followed by the boundary twists of πi-holes. For any pos-

itive factorisation � i we see (using Lemma 2·8) that its length l′i + 1 is at least the length of
the corresponding leg, ki + 1 (because m′

δπ0
i
= ki + 1), and that π in is contained exactly in

its first ki + 1 twists P0
i , . . . , Pki

i (because Mπ in = m′
δ = k1 + k2 + 2).

Moreover, if the factorisation � i is not equal to �i, all of the first ki + 1 twists cannot be
the same. Because if they were, the pairwise multiplicities among πi-holes in the turned-over
perspective of the product

∏ki
j=0 Pj

i would be already equal to the pairwise multiplicities of

�i, requiring that the rest of the twists were boundary-parallel, and so the factorisation � i

would agree with �i.

LEMMA 4·4. When the factorisation � i does not agree with �i, denote the first index

on which they differ by xi := min
{

j; Fj
i �= Pj

i

}
≤ ki. Then, the holes in Dπ encircled by Pxi

i

constitute a strict subset of the holes encircled by Fxi
i , and no πi-hole outside of Fxi

i is

encircled by any non-boundary twist Pj
i for j ≥ xi.

Proof. Look at the capped-off page Dπ in the turned-over perspective, with π in as the
outer boundary. Encircling π in in the preferred perspective Dπ exactly corresponds to encir-
cling δ in the turned-over perspective. Furthermore, for the twists containing π in in Dπ the
subset relation for encircled holes turns when viewed in the turned-over perspective.

Now, if in the turned-over perspective Pxi
i did not encircle some hole χ encircled in Fxi

i ,
the pairwise multiplicity of χ with δ in � i would be strictly smaller than in �i, in symbols
m′

χδ

(
� i

)
< m′

χδ

(
�i

)
. Indeed, the number of twists encircling δ is fixed and equal to ki + 1,

and Fj
i for j ≥ xi all encircle χ , while Fj

i for j < xi encircles χ if and only if Pj
i does.
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Finally, as in the preferred perspective D the pairwise M-multiplicities of holes out of Fxi
i

with any other π-hole are exactly as many as there are twists from
{

Pj
i = Fj

i; j < xi

}
around

them, neither can be encircled together with any other π-hole additionally.

Properties of the twists encircling ν-holes
Having understood positive factorisations among the π-holes, the problem of finding a

positive factorisation reduces to whether any factorisation � (maybe �) of φ ∈ AbMapDπ

can be lifted to a positive factorisation of φ ∈ AbMapD.
In the following, we investigate possible lifts of the twists in �. In particular, we notice

that the multiplicities put some restraints on the lifted twists, culminating in a list of
properties satisfied by any positive factorisation.

Notation 4·5. Let ni be the index of the first unknot on the leg Li whose stabilisations are
not all of the same sign as the stabilisations of its leading unknot; when the leading unknot
admits positive and negative stabilisations, we choose ni = 0, and when all stabilisations on
Li are of the same sign, we set ni = ki + 1.

LEMMA 4·6. Looking at D in the preferred perspective, in any positive factorisation of

φ lifting �, there are at least ki − ni + 1 twists among
{

P0
i , . . . , Pki

i

}
for i = 1 and 2, which

lift to the twists which additionally encircle only νi-holes. They all encircle π in and avoid

πk
i for k ≤ ni; in particular, for �i these are exactly

{
Fni

i , . . . , Fki
i

}
.

Proof. Because of Lemma 2·8, throughout the proof the multiplicities computed from �

give us information about any positive factorisation.
Recall now that on the disk with the initial outer boundary all the multiplicities mνiνj = 0

for i �= j. In D, this means that whenever some νi is encircled together with any of νj, the twist
needs to contain also the initial outer boundary, the hole νout. On the other hand, for any ν1

or ν2 the pairwise multiplicity with π in in D, Mπ inν1
or Mπ inν2

, is greater than Mπ inνout = 1;

precisely, for a ν
j
i -hole the multiplicity is exactly M

π inν
j
i
= ki − j + 2. Indeed, in � there is a

single twist around both π in and νout (which is the boundary twist of the outer boundary δ),
while ν

j
i are encircled together with π in also by the Tk

i -twists for k ≥ j (there are ki + 1 − j
of them). Thus, when there is some negative stabilisation on Li (at least) ki − ni + 1 Dehn
twists which contain π in need to lift to twists which additionally include only the νi-holes.

Moreover, as on the initial disk the multiplicities equal mπk
i νi

= 0 for k ≤ ni, the ki −
ni + 1 twists mentioned above avoid all πk

i for k ≤ ni. In case of �i these are exactly{
Fni

i , . . . , Fki
i

}
.

LEMMA 4·7. Looking at D in the preferred perspective, in any positive factorisation of
φ lifting �, the lifts of twists from �3 do not encircle any of νk

3 for k ≤ n3. Furthermore,
around νout and each νk

3 for k > n3, there are at least as many lifts of twists from �3 as there
are T3-twists around the same hole in the original factorisation.

Proof. Again, because of Lemma 2·8, throughout the proof the multiplicities computed
from � give us information about any positive factorisation.
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Viewed in the turned-over perspective, the multiplicities equal m′
νk

3π3
= 0 for k ≤ n3.

Hence, whenever in the preferred perspective D such νk
3 is encircled together with any π3,

the twist contains also π in. But since no twist in �3 contains π in in D, their lifts necessarily
avoid all νk

3 for k ≤ n3.
Moreover, the pairwise multiplicities equal M

ν
j
3π

k
3
= 1 + j − k for j > k ≥ n3, while

M
ν

j
3π

in = 1. Indeed, in the factorisation � seen in D, the only twist which encircles π in

with any ν3 is δ. On the other hand, by construction from Subsection 2·1, if a non-boundary
twist encircles ν3-hole in the initial perspective, it is a T3-twist; concretely, a Ty

3 encircles all

ν
j
3 for j ≤ y and does not encircle exactly πk

3 for k ≤ y. In the preferred perspective then Ty
3

encircles all ν
j
3 for j > y and all πk

3 for k ≤ y; so, the twists that encircle ν
j
3 and πk

3 together
are δ and j − k of T3-twists.

Hence, since all twists in �1 and �2 which contain any (hence all) π3-hole contain also
π in, all but one twists which contain a ν3-hole together with some π3 need to arise as lifts
of twists in �3; for ν

j
3, there are j − n3 of them, which is exactly the number of T3-twists

around ν
j
3.

PROPOSITION 4·8. Properties of a positive factorisation of φ concerning the holes νout ∪
ν3 in D:

(i) the pairwise multiplicity of each νout ∪ ν3 with any of π in ∪ π1 ∪ π2 is one, and with
the π3-holes the multiplicities equal M

ν
j
3π

k
3
= max{1, 1 + j − k};

(ii) each of ν
j
3-holes is encircled by at most j + 2 non-boundary Dehn twists, νout by at

most k3 + 2;

(iii) the pairwise multiplicity of each ν
j
3 with any ν

≥j
3 is exactly j + 1;

(iv) lifts of ki − ni + 1 twists among
{

P0
i , . . . , Pki

i

}
for i = 1, 2 never encircle any of νout ∪

ν3;

(v) for every νout ∪ ν3 there is exactly one twist which encircles it together with any (and
hence all) of π3, and is not a lift of a twist from �3. There is no lift of twists from �3

around any ν
j
3 with j ≤ n3, there are at least j − n3 of them around ν

j
3 with j > n3, and

at least k3 − n3 + 1 around νout.

Proof. Properties (i)–(iii) are obtained by counting twists in the original factorisation �

(and applying Lemma 2·8): for (i), we see that the only twist encircling any of νout ∪ ν3 with
any of π in ∪ π1 ∪ π2 is δ, while the multiplicity M

ν
j
3π

k
3

has been computed in the previous

proof. For (ii), the multiplicity M
ν

j
3

counts Ty
3 for j > y, the boundary twist and δ, while Mνout

counts all T3 and δ. For (iii), the twists that encircle ν
j
3 with any ν

≥j
3 are only Ty

3 for j > y.
Property (iv) restates Lemma 4·6, and property (v) restates Lemma 4·7.

Taking the properties (i) and (v), we see that for each νout ∪ ν3 the twists in �1 ∪ �2

whose lifts encircle that hole, regarded as the sets of holes they encircle, form a partition
of π-holes (and the remaining j − k twists encircling ν

j
3 together with πk

3 come from �3).
Furthermore, according to the property (ii) there is a bound on the number of parts – that
is, twists – such a partition can consist of. Finally, property (iii) specifies how the partitions
associated to different ν3-holes interact.
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Definition 4·9. Let a �-partition be a set of twists from �1 ∪ �2 which – as the sets
of holes they encircle – partition the π-holes. The equal twists of different partitions are
referred to as shared.

As noticed above, in a positive factorisation every ν3-hole χ defines a �-partition; we
will call it a �-partition associated to χ .

Lifting positive factorisations from Dπ to D

We proceed successively, focusing on ν
j
3 for j in 0, 1, . . . , k3 + 1; here, we denote ν

k3+1
3 :=

νout. Let {jl} be a subsequence such that
∣∣νjl

3

∣∣ �= 0
(
note that we have renamed the outer

boundary of D to δ, so it is not counted in
∣∣ν0

3

∣∣). Formally, we set

j0 = −1

jl := min
{

j; j > jl−1 and |νj
3| ≥ 1

}
.

Definition 4·10. We will refer to the subsequence counter as the level. We will say that
� lifts over ν

≤j	
3 if the twists in � can be lifted to AbMapD

π∪ν
≤j	
3

so that the factorisation

satisfies the properties of Proposition 4·8.

Note that to have a positive factorisation, it is necessary that some positive factorisation
� lifts over all ν3 ∪ νout.

LEMMA 4·11. If � lifts over ν3 ∪ νout, the �-partitions associated to every ν3-hole and
to νout are all built of twists from the same � i for either i = 1 or 2. Furthermore, every � i-
partition consists of a single twist PK

i with K ≤ ki and some Pk
i with k > ki which partition

πi-holes not encircled by PK
i ; the latter are necessary shared by all ν3 ∪ νout.

Proof. As observed under Proposition 4·8, the set of all twists from �1 ∪ �2 whose lifts
encircle a νout ∪ ν3-hole forms a partition of the π-holes. Since every partition needs a twist
which contains π in, every �-partition consists of a twist PK

i with K ≤ ki for either i = 1 or
2, and some twists covering all πi-holes which are not encircled by PK

i . Now, we separate
three cases:

(a) if all partitions have more than j1 + 2 parts, the property (ii) of Proposition 4·8 can
never be satisfied and there is no positive factorisation;

(b) if there is a partition of exactly j1 + 2 parts, j1 + 1 of them are necessarily shared
by partitions associated to all ν3 ∪ νout, to fulfill the property (iii) of Proposition 4·8.
Since for any i,j the difference between M

π
j
i

and M
π inπ

j
i

is one, around each π-hole

there can be only one twist which does not encircle π in. Therefore, the twists other
than PK

i with K ≤ ki are always shared by all ν3 ∪ νout, and by Lemma 4·3 all of them

belong to � i. Moreover, the �-partitions associated to different ν
j
3-holes come from

different partitioning of holes contained in PK
i , which is possible only by � i-twists;

(c) if there is a partition of less than j1 + 2 parts, we can lift all its defining twists over all
νout ∪ ν3. Indeed, this choice – after we complete the factorisation by lifts of the twists
from �3 and some twists which do not contain any π-holes – satisfies all properties
of Proposition 4·8, and the partition obviously come from a single � i.
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From the above proof we see that, in case (a) the factorisation � does not lift over ν
j1
3 and

hence there is no positive factorisation lifting �, while in case (c) the factorisation � lifts
over ν3 ∪ νout and there is no obstruction for positive factorisation in terms of Proposition
4·8. In fact, we will see in Lemma 4·15 that the case (c) happens only in the presence of a
balanced link. In case (b) the factorisation � lifts over ν

j1
3 and in this case, we continue by

repeating a similar analysis for the holes ν
jl
3 with l > 1.

We first notice that, when looking for obstructions of positive factorisation, it suffices to
examine one particular factorisation of φ, namely �.

Notation 4·12. We name the truncated continued fraction which corresponds to the maximal
fully positive (for i = 1, 2) or maximal fully negative (for i = 3) truncation of the leg Li, by
−1/qi := [a0

i , . . . , ani−1
i ], or −1/qi := −∞ when ni = 0.

LEMMA 4·13. Assume that the legs are ordered so that −1/q1 ≥ −1/q2. If any positive
factorisation � i of either φ1 or φ2 lifts over ν

≤j
3 , so does �1.

Proof. Suppose we are lifting � i which differs from �i. At each level l we are looking for
partitions of the least possible parts among the partitions not associated to any ν

<jl
3 . From

Lemma 4·11 it follows that the partitions associated to ν
jl
3 -holes are built from the partitions

associated to ν
jl−1
3 -holes by splitting the twist which contains π in. This means that the twists

Pk
i for k ≤ ki are taken as parts of the successive partitions in order of increasing k. Since

– according to Lemma 4·4 – the holes out of Fxi
i for xi = min

{
k; Pk

i �= Fk
i

}
are encircled in

any positive factorisation � i only by the twists which agree with some twists in �i, the first
xi of the � i-partitions agree with the �i-partitions; they are composed of a twist Pk

i = Fk
i

for k < xi and the boundary twists of the holes out of Pk
i , and the two factorisations lift

simultaneously. But, once, at the level 	, we associate to a ν
j	
3 a � i-partition which involves

a twist Pxi
i �= Fxi

i , Lemma 4·4 tells us that using �i there is at least one more partition of at

least one less part which we could associate to ν
j	
3 . This is because Pxi

i encircles strictly less
holes than Fxi

i does, and the other � i-twists forming the partition are necessary boundary

parallel. Now, since by assumption � i lifts over ν
≤j	
3 , this existing �i-partition has less than

j	 + 2 parts, and can be associated to all ν
≥j	
3 , fulfilling the properties of Proposition 4·8.

Combining Lemma 4·11 with Lemma 4·6 (which says that lifts of Fni
i , . . . , Fki

i for i = 1 or
2 do not encircle ν3-holes), we see that every �i-partition consists of a single FK

i -twist with
K < ni and the boundary twists of the holes out of FK

i . Recall that Fk
i are exactly the exten-

sions of Tk
i to Dπ , denoted T

k
i . Now, comparing �1 to �2, the inequality −1/q1 ≥ −1/q2

means that at the first index in which the two continued fractions disagree, the coefficient ak
1

is smaller than ak
2 (see for example [1] for the basic calculus of continued fractions). Hence,

the corresponding T
k
1-twist avoids less π-holes than T

k
2 does, and the (k + 1)th �1-partition

has less parts than the (k + 1)th �2-partition, while the first k partitions have the same num-
ber of parts. The same argument as in the conclusion of the previous paragraph now shows
that once �2 lifts also �1 does.

Lemma 4·13 essentially means that, when looking for obstructions of positive factorisa-
tion, we can focus only on � among φ-factorisations. Moreover, once we number the legs
so that −1/q1 ≥ −1/q2, it suffices to check whether �1 lifts over ν

≤jl
3 for all levels l. If it
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does not, then no positive factorisation � i of either φ1 or φ2 does (Lemma 4·13). Hence,
also � cannot lift to a positive factorisation of φ (Lemma 4·11).

Definition 4·14. If two sets of twists from �1 ∪ �2 define set-wise the same partition,
then, since the twists of the two sets need to be parallel or equal, we say that the two
�-partitions are parallel.

LEMMA 4·15. Assume that �1 lifts over ν
<j	
3 and that no �1-partition associated to ν

<j	
3

could be extended over ν
≥j	
3 . At the 	th level when j	 < n3 (where we consider n3 = k3 + 1 if

there is no positive stabilisation on L3) one of the following happens:

(A) if there is no �1-partition into less than j	 + 2 parts which has not been associated
to some ν

<j	
3 , and there are less than

∣∣νj	
3

∣∣ of parallel �1-partitions into j	 + 2 parts,
there is no positive factorisation of φ.

(B) if there is no �1-partition into less than j	 + 2 parts which has not been associated to
some ν

<j	
3 , and there are at least

∣∣νj	
3

∣∣ of parallel �1-partitions into j	 + 2 parts, the

factorisation � lifts over ν
≤j	
3 and there are truncations of the legs L1 and L3 which

are related as either:

L(	)
3 :

(−aj1
3 , −2×(j2−j1−1), −aj2

3 , . . . , −aj	
3

)
L(	)

1 :
(
−3, −2×

(
a

j1
3 −4

)
, −j2 + j1 − 2, −2×

(
a

j2
3 −3

)
, . . . , −2×(a

j	
3 −3)

)
or:

L(	)
3 :

(−3, −2×(j1−1), −aj1
3 , −2×(j2−j1−1), . . . , −aj	

3

)
L(	)

1 :
(
−j1 − 3, −2×

(
a

j1
3 −3

)
−j2 + j1 − 2, . . . , −2×

(
a

j	
3 −3

))
.

(C) if there is a �1-partition into less than j	 + 2 parts, the factorisation � lifts over all
ν3 ∪ νout, but the surgery presentation contains a balanced sublink.

Proof. The assumption means that �1 falls under (B) for all levels up to the 	th.
At the 	th level, if (A) there are only partitions of more than j	 + 2 twists or there are

less than
∣∣νj	

3

∣∣ of j	 + 2-part partitions, there is no positive factorisation; because we cannot
satisfy property (i) and property (ii) of Proposition 4·8 simultaneously.

On the other hand, the conditions of (B) allow us to obtain a positive factorisation in
D

π∪ν
≤j	
3

, but these conditions also prescribe how the truncations of legs are related. Indeed,

jl always gives the index of an unknot on L3 with surgery coefficient less than −2, jl − jl−1

counts the number of parallel twists, which is one more than the number of unknots with
coefficient −2 preceding the unknot v

jl
3 ; so, the corresponding part of L3 looks like

. . . , −2×(jl−jl−1−1), −ajl
3, . . .

The fact that the conditions of (B) are satisfied for the levels up to 	th means that the number
of separated holes in the partitions associated to ν

jl
3 compared to the partitions associated to

ν
jl−1
3 is exactly jl − jl−1 (because there are no partitions of less than jl + 2 parts, there exists

jl + 2-part partition, and previous partitions have jl−1 + 2 parts), which on L1 corresponds
to an unknot of coefficient −jl + jl−1 − 2, which is followed by exactly

∣∣νjl
3

∣∣ − 1 of unknots
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with coefficient −2 (because there is at least
∣∣νjl

3

∣∣ partitions into jl + 2 parts at the lth level,
and there is no jl + 2-part partition at the (l + 1)th level). The corresponding part of L1 looks
like

. . . , −jl + jl−1 − 2, −2×(
∣∣νjl

3

∣∣−1), . . .

Finally, the condition (C) at the 	th level requires that the coefficients at the 	th truncation
of L3 and L1 are related differently as in (B): We have j	 − j	−1 parallel twists (so, j	 −
j	−1 − 1 of unknots with coefficient −2 on L3) but we leave out less than j	 − j	−1 holes by
the next T1-curve (the coefficient of the corresponding unknot is at least −j	 + j	−1 − 1).
Since j	 < n3 (hence, the preceding unknots of coefficient −2 are at the indices lower than

n3) and since according to Lemma 4·6 only the twists T
0
1, . . . , T

n1−1
1 form �1-partitions

associated to any ν3 (hence, the unknot of coefficient greater than −j	 + j	−1 − 2 is at the
index lower than n1), the two truncated chains correspond to the rational numbers smaller
than or equal to −1/q3 and −1/q1, respectively. Comparing to Remark 3·2, we see that q3

and q1 add up to at least 1.

Proof of Proposition 4·1. The process of lifting � over ν3-holes eventually stops as
we run into an obstruction for positive factorisation, (A) of Lemma 4·15, or we leave the
assumed conditions, (C) of Lemma 4·15, if not before when we hit the n3-level (the (k3 + 1)-
level if there is no positive stabilisation on L3). In the latter case, when (B) of Lemma
4·15 is fulfilled by all levels jl < n3, we look at the possibilities of encircling νout. In order
for a positive factorisation to exist, the properties (ii) and (v) of Proposition 4·8 require
that there is another �-partition of at most n3 + 1 parts which has not been associated to
any ν

≤j	
3 where 	 = max

{
l; jl < n3

}
. But, the existence of such a partition would, as in the

last paragraph of the previous proof, imply that there is a balanced sublink in the surgery
presentation. Indeed, there would be n3 − j	 − 1 of unknots with coefficient −2 preceding
v

n3
3 on L3, and the corresponding unknot on the truncated L1 would have coefficient at least

−n3 + j	 − 1, meaning by Remark 3·2 that q3 + q1 ≥ 1.

Proof of Theorem 1·1 and Proposition 1·2. Joining Proposition 3·3 and Proposition 4·1
we obtain the theorem, and the proposition should be read as its special case.

Indeed, Legendrian surgeries on the tight S1 × S2, given by a balanced link (as in
Proposition 3·3), give Stein fillable structures. On the other hand, in the absence of the
balanced sublink, Proposition 4·1 tells us that the associated planar monodromy do not
admit positive factorisation and hence, because of the Wendl’s theorem (Theorem 2·6), the
presented contact manifold do not admit any Stein filling.
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