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Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused health issues worldwide. Studies have
suggested that modulation of the gut microbiota could attenuate the severity of COVID-19 symptoms. In
light of this, we explored the effects of the prebiotic dietary fibre partially hydrolyzed guar gum (PHGG) on
SARS-CoV-2 infection in a Syrian hamster model, hypothesizing that modulation of the gut microbiome
and intestinal metabolites through PHGG administration would improve COVID-19 disease outcomes.
Eight hamsters each were assigned to the PHGG administration and control groups. The PHGG group was
given a diet supplemented with 5% PHGG for two weeks. Consequently, PHGG improved the host survival
rate to 100% compared to 25% of the control group (P = 0.003) and attenuated morbid weight loss. Another
non-infected set of hamsters was used for the analysis of the gut microbiome composition with 16S rRNA
amplicon sequencing, serum, and faecal metabolites with GC–MS and LC–MS. PHGG altered the gut
microbiome composition and increased the relative abundances of Ileibacterium, Bifidobacterium, and
Prevotella. Furthermore, it elevated the concentrations of faecal valeric acid, propionic acid, ursodeoxycholic
acid, and serum deoxycholic acid. Taken together, our data suggest that the prebiotic PHGGmodulates gut
metabolites and has the potential to reduce COVID-19 morbidity.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic is the source ofmajor health concerns.Whilemost
cases are relatively mild, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-
induced cytokine storms. Cytokine storms arise from dysregulation of immune responses, which can
cause debilitating symptoms through systemic hyperinflammation andmay result in death (Zhang et al.,
2022a). Although several factors such as smoking history, diabetes, and hypertension are reported to be
correlated with the severity of symptoms (Rahman and Sathi, 2021), serious disease outcomes remain
difficult to predict and treatment options in these cases are limited. Furthermore, a report showed that
45% of COVID-19 survivors continued to suffer from a range of unresolved symptoms after fourmonths
(O’Mahoney et al., 2023). Despite the development of vaccines, new SARS-CoV-2 variants capable of
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escaping the adaptive immune response elicited by vaccination continue to emerge (Cao et al., 2022).
Therefore, it is necessary to continue finding ways to treat and prevent the disease, particularly in
attenuating the inflammation and cytokine storm characteristic of severe cases.

The gut microbiota is strongly connected with the host immune system. Gut microbes produce many
kinds ofmetabolites such as short-chain fatty acids (SCFAs) and secondary bile acids, which have various
biological functions such as host immune system modulation and anti-inflammation (Yang et al., 2020;
Fan and Pedersen, 2021;Hu et al., 2021). Furthermore, the gutmicrobiota can regulate the local intestinal
immune system and greatly influence systemic immune responses (Furusawa et al., 2013; Atarashi et al.,
2015). Studies have shown that there is a crosstalk between the gut microbiota and the host pulmonary
system, which is referred to as the gut-lung axis (Zhang et al., 2020). There are several reports of links
between the gut microbiota and SARS-CoV-2 infection, in that the gut microbiome compositions of
patients with COVID-19 show low diversity and fewer SCFA producers compared to healthy persons
(Gaibani et al., 2021; Ren et al., 2021). A cohort study showed that there are associations between the
composition of the gut microbiota and the severity of COVID-19, including elevated concentrations of
inflammatory markers (Yeoh et al., 2021). Alterations in gut bacteria may be associated with excessive
inflammatory responses in patients with severe COVID-19 symptoms (Yeoh et al., 2021). Recently, the
SCFA acetic acid has been recognized for its ability to inactivate SARS-CoV-2 in vitro (Hikmet et al.,
2020). Furthermore, it has been reported that the gut microbiota-derived secondary bile acid ursodeoxy-
cholic acid (UDCA) is able to reduce the expression of viral host receptor angiotensin-converting
enzyme 2 (ACE2) protein through protein-ligand interaction with farnesoid X receptors (FXR) (Brevini
et al., 2023). Furthermore, UDCA treatment has been correlated with positive clinical outcomes in
COVID-19 cases (Brevini et al., 2023). Therefore, we considered that the modulation of gut microbiome
profile may contribute to the attenuation of the inflammation caused by SARS-CoV-2 infection.

Gut microbiome profiles are influenced by the daily diet of the host and studies have suggested that
dietary interventions that modulate the gut microbiota might have the potential to improve clinical
outcomes of COVID-19 (Hou et al., 2022; Wastyk et al., 2021; Merino et al., 2021). It is well-known that
the gut microbiota produces SCFAs from dietary fibre (Fan and Pedersen, 2021). In a large prospective
survey, a plant food-rich diet was shown to be associated with lower risk and severity of COVID-19
(Merino et al., 2021). Vegetarian patients have similarly been associated with decreased severity of
COVID-19-related inflammation (Hou et al., 2022). Therefore, we considered that dietary intervention
may contribute to the prevention of inflammation caused by SARS-CoV-2 infection.

In this study, we attempted to use the prebiotic dietary fibre partially hydrolyzed guar gum (PHGG) to
modulate the gutmicrobiome and itsmetabolites for the prevention and attenuation of the inflammation
caused by SARS-CoV-2 infection. PHGG is a water-soluble, low-viscosity dietary fibre (Yoon et al.,
2008). It is manufactured by enzymatic hydrolysis of a highly viscous dietary fibre guar gummade from
Cyamopsis tetragonoloba, also known as cluster beans or guar, which grows in tropical and subtropical
regions and is widely cultivated in India, Pakistan, and the USA (Jaramillo et al., 2019). It is often used as
a prebiotic food to improve constipation (Kapoor et al., 2017). Previous studies reported that PHGG is
able to alter the gut microbiome by increasing the abundance of functional bacteria such as Bifidobac-
terium, and stimulating the intestinal SCFA concentrations (Okubo et al., 1994; Ohashi et al., 2015).
Moreover, in a human clinical study, PHGGhas been reported to prevent influenza infection (Takahashi
and Kozawa, 2021). Therefore, we considered that PHGGmay be able to attenuate the symptoms caused
by SARS-CoV-2 infection as well. The aim of this study is to examine the effects of PHGG in preventing
bodily deterioration caused by SARS-CoV-2 infection.

Materials and methods

Animal experiment

SARS-CoV-2 infects humans through ACE2 expressed in the lungs, blood vessels, and intestinal
epithelia (Hikmet et al., 2020). The virus has a low affinity to mouse ACE2, so it is not highly virulent
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in mice (Golden et al., 2020; Wan et al., 2020). Meanwhile, SARS-CoV-2 has a high affinity for hamster
ACE2 and can cause infection (Chan et al., 2020), so hamsters are commonly used for SARS-CoV-2
infection animal experiments (Imai et al., 2020). This model is able to recapitulate several hallmark
features of COVID-19 in humans, such as inflammation in the lungs and changes in the gut microbiota
and gut metabolites (Sencio et al., 2022). Four-week-old female Syrian hamsters were purchased from
Japan SLC, Inc. PHGGwas purchased fromNestle Japan, Ltd. Hamsters were randomly divided into two
groups and given a 5% (w/w) PHGG-supplemented AIN-93G diet (CLEA Japan, Inc.), 5% (w/w) corn
starch was replaced with 5% (w/w) PHGG, or AIN-93G control diet for two weeks. SARS-CoV-2
exposure was performed by intranasal application of viral suspension (150 μL PBS containing 1.5 × 106

pfu of an ancestral SARS-CoV-2 strain) to hamsters under anaesthesia. Hamsters were considered to
have reached the endpoint at 70% of starting weight. A different set of hamsters was used for gut
microbiome and metabolite analysis. After two weeks of PHGG supplementation, the faeces and serum
of each groupwere collected, and themicrobiome profile andmetabolites were analyzed. All experiments
were performed in enhanced biosafety level 3 (BLS-3) containment laboratories at the University of
Tokyo, in accordance with the institutional biosafety operating procedures. All animal experiments were
performed in accordance with the University of Tokyo’s Regulations for Animal Care and Use, which
were approved by the Animal Experiment Committee of the Institute of Medical Science, the University
of Tokyo (PA15–92, PA19–87, PA22–33).

DNA extraction

The DNA of faecal samples was extracted according to the following steps. First, faecal samples were
lyophilized by a VD-800R lyophilizer (TAITEC) for at least 18 hours. Freeze-dried faeces (10 mg) were
suspended in 300 μl of 10% (w/v) SDS/TE (10 mM Tris–HCl, 1 mM EDTA, and pH 8.0) solution and
300 μl of phenol/chloroform/isoamyl alcohol (25:24:1, Nakalai Tesque). Then, the mixture was hom-
ogenized with 3.0 mm and 0.1 mm zirconia beads by ShakeMaster® NEO homogenizer (Biomedical
Science, Tokyo, Japan) for 15 min at 1,500 × g. After that, samples were centrifuged for 10 min at max
speed and 200 μl of the aqueous phase was used for DNA extraction. DNA extraction was performed by
the automatedDNAExtraction systemGENEPREP STARPI-480 (Kurabo Industries Ltd.) according to
the manufacturer’s protocol.

Gut microbiome analysis

The gut microbiome profile of stool samples was analyzed by 16S rRNA amplicon sequencing with the
following procedure. TheV1-V2 variable region of stool DNAwas amplified by universal primer set 27F-
mod (50-AGRGTTTGATYMTGGCTCAG-30) and 338R (50-TGCTGCCTCCCGTAGGAGT-30) using
Gflex DNA polymerase (Takara) (Yang et al., 2019). After that, the amplified DNA products were
sequenced by the next-generation sequencerMiseq (Illumina). The gutmicrobiome profile was analyzed
by Qiime2 (version 2021.11). Sequence data were trimmed and processed by using the DADA2 pipeline
for quality filtering and denoising (options: –p-trunc-len-f 285 –p-trunc-len-r 215). The denoised
sequences were assigned to taxa using the Silva SSU Ref Nr 99 (version 138) database with the “qiime
feature-classifier classify-sklearn” command with default parameters. Unifrac distance was calculated
using 12,212 reads per sample with “qiime diversity core-metrics-phylogenetic” command.

Measurement of SCFAs and organic acids

Faecal samples were lyophilized by a VD-800R lyophilizer (TAITEC) for at least 18 hours. Freeze-dried
faeces were homogenized with 3.0 mm zirconia beads by ShakeMaster® NEO homogenizer (Biomedical
Science, Tokyo, Japan) for 10 min at 1,500 × g. 10 mg of faecal samples were used for the analysis.
Measurement of SCFAs (formate, acetate, propionate, isobutyrate, butyrate, isovalerate, and valerate)
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and organic acids (lactate and succinate) was performed by 7890 series gas chromatography-mass
spectrometry (GC–MS, Agilent Technologies, CA, USA) using previously described methods
(Hashimoto et al., 2023).

Measurement of bile acids

Faecal samples were lyophilized by a VD-800R lyophilizer (TAITEC) for at least 18 hours. Freeze-dried
faeces were homogenized with 3.0 mm zirconia beads by ShakeMaster® NEO homogenizer (Biomedical
Science, Tokyo, Japan) for 10 min at 1,500 × g, and 10 mg of faecal sample or 50 μl of serum sample
were used for the analyses. Measurement of bile acids was performed by 1260 Infinity II liquid
chromatography-mass spectrometry (LC–MS, Agilent Technologies, CA, USA) using previously
described methods (Hashimoto et al., 2023).

Statistical analyses

Statistical analyses and correlation analysis (method: Spearman) were performed using R (version 4.2.2).
The survival rate was compared using the survival package of R and the generalized Wilcoxon test.
The Wilcoxon-Rank-Sum test was used to compare the other data of the two groups.

Results

PHGG diet attenuated SARS-CoV-2 infection

We used Syrian hamsters to assess the preventative effects of PHGG on SARS-CoV-2 infection. Two
weeks after exposure to SARS-CoV-2, all hamsters in the PHGG group survived SARS-CoV-2 infection
while the control group only showed a 25% survival rate (P = 0.003) (Figure 1AB). PHGG also
significantly attenuated body weight loss during the measurement period (Figure 1C). By Day 7, the
mean body weight was 77.1% of the initial weight in the PHGG group, while in the control group,
the mean body weight was 72.6% (P < 0.05, Figure. 1C). Moreover, compared to the control group, the
PHGG group more rapidly recovered their body weight (Figure 1C). By Day 9, the mean body weight
recovered to 82.0% of the initial weight in the PHGG group, while the control group’s mean body weight
remained at 72.6% (P < 0.05, Figure 1C).

PHGG diet altered the gut microbiome profile

We assumed that the attenuation of SARS-CoV-2 pathogenicity by PHGG was related to changes in the
gut microbiome since PHGG was reported to change the gut microbiome profile (Ohashi et al., 2015).
Therefore, to elucidate the mechanism of this inflammation alleviatory effect, we performed gut
microbiome analysis on a different set of hamsters that were given a 5% PHGG-supplemented diet or
a control diet for two weeks without the exposure to SARS-CoV-2. In unweighted UniFrac analysis, the
R-value of analysis of similarity (ANOSIM) was 0.81 (P = 0.001), while the R-value of ANOSIMwas 0.54
(P = 0.002) in weighted UniFrac analysis (Figure 2AB). These data showed that the PHGG diet
significantly altered the gut microbiome profile of hamsters. The bacterial composition and LEfSe data
indicate that there were distinct microbiome profiles between the two groups (Figure 2CD). The relative
abundance of Ileibacterium, Bifidobacterium, and Prevotella genera was significantly increased in the
PHGG group, while Alistipes and Desulfovibrio were significantly decreased (Figure 2CD, Figure 3).
Notably, the relative abundance of Ileibacterium was increased to 11.48% in PHGG group compared to
0.2% in control group (P < 0.001), and Bifidobacterium and Prevotella were increased to 0.35% and
0.14%, respectively, in the PHGG group while being undetected in the control group (P < 0.001 and
P < 0.05) (Figure 3). This data suggests that the PHGG diet altered the gut microbiome profile of
hamsters.
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PHGG diet altered the intestinal metabolome profile

Since Bifidobacterium and Prevotella are known SCFA producers, we performedmetabolome analysis to
investigate SCFA and bile acid production in the gut environment. According to the results, the total
amount of SCFAs was significantly increased to 36953.6 ± 6220.8 (nmol/g faeces) in the PHGG group
compared to 30352.4 ± 5394.8 (nmol/g faeces) in the control group (P < 0.05) (Figure 4A,
Supplementary Table S1). Specifically, propionic acid and valeric acid levels were significantly increased
in the PHGG group (4916.5 ± 1171.9 and 1049.8 ± 325 nmol/g faeces) compared to the control
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group (2864.9 ± 876.8 and 556 ± 263.9 nmol/g faeces, P < 0.01 respectively) (Figure 4BC, Supplementary
Table S1), while formic acid levels were decreased in the PHGG group (343.4 ± 226 nmol/g faeces)
compared to the control group (794.6 ± 259.9 nmol/g faeces, P < 0.01) (Figure 4D, Supplementary
Table S1). We also analyzed the primary and secondary bile acid profile in the faeces, as they have been
reported to show anti-inflammatory effects and thus the potential to attenuate the severity of COVID-19
(Fan and Pedersen, 2021;Wang et al., 2022). According to the results, the amounts of anti-inflammatory
secondary bile acid UDCA were found to be increased to 0.69 ± 0.29 (nmol/g faeces) in the faeces of
PHGG-group hamsters compared to 0.38 ± 0.25 (nmol/g faeces, P < 0.05) in the control group (Figure 4E,
Supplementary Table S2). Besides, deoxycholic acid (DCA), which has been observed to confer anti-
infective effects against SARS-CoV-2 (Ichinohe et al., 2022), was significantly higher in the serumof PHGG
group hamsters (1848.5 ± 329.4 nmol/g) compared to the control group (1329.9 ± 219 nmol/g, P < 0.01)
(Figure 4F, Supplementary Table S3). Next, we attempted to link these changes in the intestinal metabolite
composition to compositional changes in the gutmicrobiota that could be associatedwith the patterns we
observed. We performed correlation analysis of Ileibacterium, Bifidobacterium, and Prevotella, the three
genera that showed statistically significant increases in PHGG-group hamsters, against SCFAs and
secondary bile acids in faeces and serum. As a result, we found that Ileibacterium was positively
correlated with valeric acid (R = 0.62, P < 0.05), while it was negatively correlated with formic acid
(R =� 0.68, P < 0.05) (Figure 5AB). Interestingly, Bifidobacterium showed a positive correlation with
propionic acid (R = 0.70, P < 0.05), though propionic acid production ability by Bifidobacterium has
not been reported in the literature (Figure 5C).

Discussion

Our data indicate that PHGG administration significantly suppressedmorbidity andmortality in SARS-
CoV-2-infected Syrian hamsters through possible effects on attenuating inflammation, though this
remains to be confirmed in future studies. Furthermore, our results show that PHGG administration
altered the gut microbiome profile andmetabolites, suggesting a mechanistic link to the antiviral effects.
Studies have suggested that dietary intervention may increase resistance to SARS-CoV-2 infection
through modulation of the gut microbiota and its associated metabolites (Zhang et al., 2021; Gutiérrez-
Castrellón et al., 2022; Zhang et al., 2022b), which is further supported by our study results. That is,
modulation of the gut microbiota by dietary fibre may contribute to positive outcomes in response to
SARS-CoV-2 infection.

In our study, relative abundances of Ileibacterium, Bifidobacterium, and Prevotella were significantly
increased in the PHGG diet group (Figure 3). Ileibacterium are known to be associated with
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polysaccharide metabolism due to their increased abundance in manno-oligosaccharide-gavaged mice,
and they also appear to possess the key butyrate pathway genes atoA/D genes according to metagenomic
sequence data (Wang et al., 2021; Cabral et al., 2022), implying that they are able to produce SCFAs.
Thus, it is possible that PHGG increases the abundance of bacteria such as Ileibacterium, resulting in a
higher amount of SCFAs in the intestines. As amatter of fact, the total amount of SCFAswas increased in
the PHGG diet group in our study (Figure 4A), supporting this hypothesis. In several human clinical
studies, the relative abundance of Bifidobacterium was increased in those consuming a PHGG-
supplemented diet (Okubo et al., 1994; Ohashi et al., 2015). Depletion of Bifidobacterium in COVID-
19 patients has been reported in multiple cases and is inversely associated with disease severity
(Al Bataineh et al., 2021; Reinold et al., 2021; Hazan et al., 2022; Taufer and Rampelotto, 2023). In fact,
a clinical study showed that an oral booster of Bifidobacterium significantly lowered the blood IL-6 levels
of administered patients and reduced the length of hospital stay (Bozkurt and Bilen, 2021).Prevotellawas
also reported to be increased with dietary PHGG supplementation in humans (Abe et al., 2023) and was
similarly depleted in COVID-19 patient stool samples in several clinical studies (Al Bataineh et al., 2021;
Gaibani et al., 2021). These results suggest the existence of a relationship between the aforementioned
bacteria and SARS-CoV-2 infection, and we thus hypothesize that the increase of certain members such
as Ileibacterium, Bifidobacterium, and Prevotella in the PHGG diet group could be related to the positive
outcomes observed in the study.

Administration of the PHGG-supplemented diet also increased SCFA concentrations in hamsters
(Figure 4A), similar to human study results (Ohashi et al., 2015). Valeric acid and propionic acid, which
were increased in the PHGG group, are known for their anti-inflammation effects (Tedelind et al., 2007;
Li et al., 2020). Oral gavage of valeric acid suppressed the pro-inflammatory cytokines interleukin-6
(IL-6) and tumor necrosis factor-alpha (TNFα) levels in peripheral blood, and restored the gastrointes-
tinal tract function and intestinal epithelial integrity in mice exposed to radiation (Li et al., 2020). In
in vitro experiments, propionate decreased LPS-induced TNFα production by neutrophils and IL-6
production in inflamed colon organ cultures derived from mice (Tedelind et al., 2007). Virus infection
would lead to the polarization of pro-inflammatory M1 phenotype macrophages, which may cause
cytokine storms (Jardou and Lawson, 2021). It has been proposed that SCFAs could be used to alleviate
immune system overactivation in COVID-19 (Jardou and Lawson, 2021). Propionic acid has been
shown to suppress mice dextran sulfate sodium-induced colitis and reduce M1-phenotype macrophage
polarization through inhibition of the MAPK signalling pathway in an in vitro experiment (Wu et al.,
2023). Therefore, the increases in valeric acid and propionic acid might contribute to the alleviation of
the inflammation caused by SARS-CoV-2 infection. In our study, valeric acid was positively correlated
with Ileibacterium abundance (Figure 5A). As mentioned above, although Ileibacterium is known for its
association with SCFA metabolism (Wang et al., 2021; Cabral et al., 2022), it has not been reported to
produce valeric acid. Therefore, further investigation into this relationship is necessary. Propionic acid,
which is well-known for its ability to enrich Bifidobacterium and is often used for its isolation (Beerens,
1991), was positively correlated with Bifidobacterium abundance. On the other hand, Bifidobacterium
itself has not been reported to produce propionic acid. It is likely that the increase in propionic acid was
due to themetabolism of other bacteria.Prevotella, whose relative abundancewas increased in the PHGG
group, has been reported for its capability to produce propionic acid (Strobel, 1992; Zhang et al., 2023).
Accordingly, we speculate that Prevotellamight contribute to the increase of propionic acid in the PHGG
group. Finally, formic acid, which has been reported to be elevated in inflammation-associated dysbiosis
(Hughes et al., 2017), was also decreased in the PHGGdiet group. Taken together, the observed increases
in anti-inflammatory SCFAs valeric acid and propionic acid and a decrease in inflammation-associated
SCFA formic acid appear to be associatedwith the improved disease outcomes seen in PHGG-fed hamsters.
We hypothesize that the modulation of SCFAs is one of the mechanisms by which SARS-CoV-2 infection
was attenuated.

Gutmicrobes convert primary bile acids to various secondary bile acids (Winston and Theriot, 2020).
The PHGG-supplemented diet used in our study increased the amount of the secondary bile acid UDCA
in hamster faeces. Additionally, DCA was increased in the serum of the PHGG-fed group. A previous
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study showed that UDCA works as an antagonist of FXR and reduces ACE2 expression in conjunction
with SARS-CoV-2 infection symptoms in Syrian hamsters (Brevini et al., 2023). Additionally, in two
different cohort studies, people who received UDCA treatment for chronic liver disease or after a liver
transplant had better clinical outcomes after developing COVID-19. In addition, another FXR ligand,
DCA, has been reported to have anti-infective effects against SARS-CoV-2 in Syrian hamsters (Nagai
et al., 2023). In our study, faecal UDCA and serum DCA were increased in Syrian hamsters after PHGG
consumption (Figure 4E, F). Accordingly, we hypothesize that PHGG consumption enhances resistance
to SARS-CoV-2 infection through FXR binding, as activation of this receptor is found to reduce the
expression of ACE2 as mentioned previously (Brevini et al., 2023).

Several studies have suggested that probiotic bacteria such as Bifidobacterium and Lactobacillusmay
improve the clinical outcome of SARS-CoV-2 infection (Ceccarelli et al., 2020; Zhang et al., 2021). A
clinical trial using encapsulated synbiotic formula SIM01 consisting of 3 Bifidobacterium strains and
3 prebiotic polysaccharides showed that SIM01 received COVID-19 patients increased the SARS-CoV-2
immunoglobulin G antibody and reduced the pro-inflammatory immunemarkers, which suggested that
SIM01 has the potential to increase resistance to SARS-CoV-2 infection (Zhang et al., 2022b). Compared
to probiotic bacteria, the production cost of prebiotic dietary fibre PHGG is lower, and it is also easier to
manage logistically. Thus, PHGGmay be more accessible for use in daily life, but further studies are first
needed to clarify the effects of PHGG on preventing SARS-CoV-2 infection in human clinical trials.

Conclusively, our study indicates that PHGG supplementation increases the survival rate, attenuates
bodyweight loss, and promotes recovery in SARS-CoV-2-infected hamsters. Using a different set of non-
infected hamsters, we showed PHGG modulated the gut microbiome and increased valeric acid and
propionic acid, as well as UDCA, in faeces, and DCA in serum. Further study is required to measure the
gut microbiome and gut metabolite outcomes within a single SARS-COV-2-infected group of hamsters
to confirm this connection. It is considered that PHGG supplementation has the potential to prevent
bodily deterioration caused by COVID-19 by repressing the inflammation response and preventing the
severe symptoms caused by cytokine storms. Further analysis of inflammatory cytokines and other
markers would providemechanistic insight. Nevertheless, dietary consumption of PHGG is a simple and
easily accessible intervention. To demonstrate the benefit of PHGG in SARS-CoV-2 infection and its
importance in public health, human clinical trials are necessary. Further human trials of PHGG to
investigate a therapeutic role in SARS-CoV-2 infection are required as well.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/gmb.2024.7.
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