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A B S T R A C T . The linear stability of massive extreme Pop I stars at the main sequence 

is investigated with a full nonadiabatic treatment. Contrary to earlier beliefs these stars 

become vibrationally unstable only beyond a critical mass as high as 440 M© at the main 

sequence. 

It has been maintained now for a very long time since the classical work by Ledoux (1941) 

and by Schwarzschild and Härm (1959) that stars in excess of ~ 100 M© cannot exist on 

the ground of their overstability alone. According to these results the nuclear energizing 

of pulsations in the stellar core — the e-mechanism — overcomes the damping and is 

believed to essentially disrupt the star or to cause strong mass loss which reduces their 

lifetimes effectively. On the other hand, evidence for the existence of stars with masses 

well in excess of 100 M 0 has come from observations of the brightest stars in the galaxies 

of the Local Group (Humphreys, 1982; De Jager , 1980; Massey and Hutchings, 1983) and 

from the interpretation of Wolf-Rayet stars (Maeder, 1 9 8 2 ) , Ρ Cygni stars and Hubble-

Sandage variables, etc. (Humphreys, 1984) . The extreme phenomena like η Carina in our 

galaxy and R 1 3 6 a in the LMC call for main sequence masses in excess of hundred solar 

masses. 

Motivated by the apparent discrepancy between theory and observations concerning 

the upper mass limit, we reconsider in this paper the linear theory for radial pulsations 

of massive stars. The linear stability analysis is performed with a modified version of the 

Los Alamos Nonadiabatic Code (LNA) . The major modifications introduced to the LNA 

code are (i) construction of the equilibrium model and (ii) inclusion of a nuclear energy 

generation term into the energy equation. For our computations the equilibrium model is 

constructed with the Göttingen stellar evolution code (cf. Langer et al., 1985 ) . We have 

taken special care in using identical input physics both in stellar evolution code and in 

the pulsation code. 

In the LNA code a first guess to the eigenfrequency is obtained by the use of the 

quasiadiabatic approximation and a first order expansion about the adiabatic mode. From 
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Castor (1971) it is 

M . 

/ (6rTG2{ioj0I - Κι)-ΎΚι6τ) dm 

" 2 - " l = -2 Û , (1) 

/ (Sr)*dm 
ο 

where ωο and ω are the adiabatic and quasiadiabatic eigenfrequencies, respectively, 6r 

is the radial adiabatic eigenvector, Τ denotes the transpose operation, / is the identity 
matr ix , M* is the total mass of the star, and the matrices Κ\> Κ 2 and G 2 are defined 
by equations (13) and (14) of Castor (1971 ) . We will call this approximation the Castor 
quasiadiabatic (CQAD) approximation. The LNA code then computes the nonadiabatic 
eigenvalues ω and the right and left radial and entropy eigenvectors satisfying the usual 
orthogonality condition with a precision of about one part in 1 0 1 2 . 

The imaginary part of the eigenfrequency in Ledoux's (1941) quasiadiabatic approxi-
mation (LQAD) is calculated using the adiabatic eigenvectors by the well known expres-
sion 

M " ) = — ~ , (2) 

«» f (Sr)*dm 
0 

where all quantities have their usual meanings. It is this approximation that has mostly 
been used to study the linear stability of massive objects (Ledoux, 1941; Schwarzschild 
and Härm, 1959; Stothers and Simon; 1970; Papaloizou, 1973; Noels and Masereel, 1982; 
and Maeder, 1985; see, however, Ziebarth, 1970) . 

For the stability analysis we constructed a sequence of models from 130 Μ Θ to 
5000 M 0 with a chemical composition of {X,Z) = ( 0 . 687 ,0 .043 ) . 

Fig. 1 shows the imaginary part of the frequency ω against total mass for the fun-
damental mode as calculated using the nonadiabatic formalism (crosses) and the CQAD 
approximation (circles). Unstable modes correspond to negative values of Ιτη(ω). From 
the Figure we observe that we have reproduced Ledoux's classical result in the sense that 
an instability of the fundamental mode occurs for high enough masses. The major diffe-
rence to the general picture is that we have encountered the instability at about 440 Μ Θ 

rather than already at about 100 Mq . The delay in the occurrence of the instability is due 
to nonadiabatic effects in the outer layers of the star. It is also interesting to note that 
the CQAD approximation gives an extremely good approximation to the nonadiabatic 
eigenfrequency specially in the low mass region, always predicting values slightly below 
the nonadiabatic ones. 

In order to estimate the influence of the outermost nonadiabatic layers we have plotted 
in Fig. 2 the imaginary part of the frequency of the fundamental mode from the CQAD 
approximation (solid line) and the LQAD approximation (dashed line) as a function of 
the radius up to which the integral in equations (1) and (2) is performed. 

For the LQAD approximation we observe a slow damping effect of the outer layers 
until the approximation gives unreasonable values. This occurs at a fractional radius of 
about 0 .98. 
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Fig. 1: The imaginary part of the eigenfrequency ω for the fundamental mode vs. 
the total stellar mass as obtained from the nonadiabatic calculation (crosses) and the 
quasiadiabatic C Q A D approximation (circles). 
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Fig. 2 : The imaginary parts of the fundamental frequency from the C Q A D (solid lines) 
and the L Q A D (dashed lines) approximations as a function of the upper bound of the 
integrals over fractional radius in eqs. ( 1 ) and (2), respectively. 
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For the CQAD approximation we observe a clamping effect of the outermost layers 
for masses below the critical mass ( ~ 440 M©) that changes the sign of Ιτη(ω). This 
damping occurs in the last 10% of the radius of the star. For the unstable cases we obtain 
two regions: one of negative damping (driving) just below the surface and a deeper region 
of positive damping. The effect of these regions almost cancel out completely in the high 
mass cases. 

A detailed study of the effect of the outer nonadiabatic layers requires further inve-
stigation. However, it has become clear that the outer nonadiabatic layers are not only 
important but can actually determine the sign of Ιτη(ω). 

We have thus found the important result that if we include the effects of the outer 
nonadiabatic layers the critical mass for stable hydrogen burning models increases to 
about 440 M 0 . For a complete description of the linear results see Klapp, Langer and 
Fricke ( 1 9 8 6 ) , where the significance of the results is discussed and extensions of this work 
to evolved stars and into the nonlinear regime are proposed. 
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