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Stability of triple-diffusive convection
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The classical Gill’s problem, focusing on the stability of thermal buoyancy-driven
convection in a vertical porous slab with impermeable isothermal boundaries, is studied
from a different perspective by considering a triple-diffusive fluid system having different
molecular diffusivities. The assessment of stability/instability of the basic flow entails a
numerical solution of the governing equations for the disturbances as Gill’s proof of linear
stability falls short. The updated problem formulation is found to introduce instability
in contrast to Gill’s original set-up. A systematic examination of neutral stability curves
is undertaken for KCl–NaCl–sucrose and heat–KCl–sucrose aqueous systems which are
found to exhibit an anomalous behaviour on the stability of base flow. It is found that, in
some cases, the KCl–NaCl–sucrose system necessitates the requirement of four critical
values of the Darcy–Rayleigh number to specify the linear stability criteria ascribed to
the existence of two isolated neutral curves positioned one below the other. Conversely,
the heat–KCl–sucrose system demands only two critical values of the Darcy–Rayleigh
number to decide the stability of the system. The stability boundaries are presented
and the emergence of a travelling-wave mode supported back and forth with stationary
modes is observed due to the introduction of a third diffusing component. In addition,
some intriguing outcomes not recognized hitherto for double-diffusive fluid systems are
manifested.

1. Introduction

The pioneering paper by Gill (1969) has provided an interesting analytical proof that
convection due to thermal buoyancy in a vertical porous layer bounded by isothermal
impermeable walls is always stable for all infinitesimal perturbations. The obtained results
offered significant justification for the use of insulating porous materials in buildings,
obviating the necessity for air gaps. The work by Gill (1969) was further extended by
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other authors including additional effects such as the Prandtl–Darcy number (Rees 1988),
lack of local thermal equilibrium between the fluid and the solid phases (Rees 2011)
and the nonlinearity of the perturbation dynamics (Straughan 1988; Scott & Straughan
2013). These investigations collectively furnished compelling evidence that the fluid flow
stability established by Gill remains valid. On the other hand, the possibility of Gill’s
problem becoming unstable was established by taking into account temperature-dependent
viscosity (Kwok & Chen 1987; Shankar, Nagamani & Shivakumara 2023), vertical
boundaries to be permeable (Barletta 2015), boundary and inertia effects (Shankar, Kumar
& Shivakumara 2017), viscoelasticity of the fluid (Shankar & Shivakumara 2017; Lazzari,
Celli & Barletta 2021), maximum density property with time-dependent velocity term
in Darcy’s law (Naveen, Shankar & Shivakumara 2020), horizontal heterogeneity in
permeability (Shankar & Shivakumara 2022), sandwiched vertical porous slab (Barletta
et al. 2022) and the Prandtl–Darcy number with internal heating (Nagamani, Shankar &
Shivakumara 2023).

Numerous fluid dynamical systems manifest in nature and various scenarios wherein
buoyancy forces instigate the movement of a fluid laden with dissolved minerals
through a porous medium. Notably, double-diffusive convection encompasses two
interacting species that influence the distribution of fluid density. For instance, this
phenomenon might involve two solute concentrations with distinct molecular diffusivities
or combinations of heat and solute concentration. The exploration of double-diffusive
convection in a fluid-saturated porous medium has remained a vibrant and enduring
research domain for numerous decades, owing to its significance and broad-ranging
applications across disciplines including oceanography, migration of pollutants through
saturated soil, geophysics, astrophysics and engineering (Griffiths 1981; Pritchard &
Richardson 2007; Straughan 2015). Comprehensive assessments of the theoretical and
empirical analyses pertaining to double-diffusive convection in a porous medium can
be found in Cheng (1979) and Nield & Bejan (2017). However, it is noteworthy that
investigation into the stability of double-diffusive convection in a vertical porous layer
has been relatively limited within the existing literature.

The stability of stationary convective flow in a vertical porous layer saturated with a
binary mixture by imposing different temperatures and zero mass flux at the boundaries
was considered by Gershuni, Zhukhovitskii & Lyubimov (1976). It has been shown that
in the presence of sufficient longitudinal stratification, the flow becomes unstable against
thermal–concentration perturbations. Khan & Zebib (1981) furthered this investigation by
extending it across all ranges of the salinity Darcy–Rayleigh number. Shankar, Naveen
& Shivakumara (2022) delved into the effects of a second diffusing component on the
stability of thermal convection in a vertical porous layer. This was done under conditions
involving constant but distinct temperatures and solute concentrations at impermeable
vertical boundaries. Their findings revealed the formation of closed loops in the neutral
stability curves and the enlargement of the instability region with increasing solute/thermal
Darcy–Rayleigh number as well as the Lewis number. Overall, the study demonstrated that
double-diffusive fluid systems exhibit a significantly more intricate dynamic behaviour in
comparison with the conventional single-component system (Gill 1969).

The possibility of fluid dynamical systems in porous media, where fluid density is
influenced by three or more stratifying agencies with different molecular diffusivities,
cannot be ruled out and, as a result, one can expect multicomponent convection. Degens
et al. (1973) highlighted the occurrence of double-diffusive convection in geothermal
systems, where salinity of comparable concentrations of many salts can trigger convection
encompassing multi-diffusing components. Another pertinent example is in contaminant
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transport scenarios (Celia, Kindred & Herrera 1989; Chen et al. 1994), where various
non-reactive chemical species contribute to contaminant formation. Also, the effects
of dyes or small temperature gradients on the accuracy of laboratory experiments on
double-diffusive convection in porous media may introduce a third property that affects
the density of the fluid. Furthermore, investigating convective instability in mushy layers
formed during the solidification of multicomponent alloys holds significance (Anderson
& Worster 1996; Guba & Worster 2006). A mushy layer, akin to a porous medium
(Phillips 1991), facilitates interstitial melt flow, underscoring the importance of studying
multicomponent convection in such contexts. These intricate fluid dynamical systems are
also observed in geothermally heated lakes, magmas and their laboratory models. To
this end, triple-diffusive convection in a horizontal porous layer has been undertaken
by a multitude of researchers (Rudraiah & Vortmeyer 1982; Poulikakos 1985; Tracey
1996; Rionero 2012, 2013; Raghunatha, Shivakumara & Shankar 2018; Shivakumara &
Raghunatha 2022 and references therein). Several remarkable departures from those of
double-diffusive fluid systems have been found when a third diffusing component is
present, particularly for the onset of convection.

In this context, it is pragmatic to contribute further novel findings to the present
knowledge on the stability of double-diffusive natural convection in a vertical porous layer
by considering a third diffusing component. To the best of our knowledge, such study
has not received any attention in the literature. The aim of this paper is to investigate
the linear stability of buoyancy-driven convection in a triple-diffusive fluid-saturated
vertical porous layer by assuming small-amplitude perturbations of the basic flow. The
resulting eigenvalue problem governing the stability of the fluid flow is numerically solved.
The topology of neutral curves is outlined systematically and the stability boundary is
noted to be significantly more intricate depending on the transport property ratios. It is
established that the triple-diffusive fluid systems support several remarkable departures
from what occurs in single- and double-diffusive systems. It is observed that more than
two critical Darcy–Rayleigh numbers correspond to the linear onset of instability under
certain conditions.

2. Mathematical formulation

The stability of buoyancy-driven convection in a triple-diffusive fluid saturating a vertical
layer of a Darcy porous medium of width 2h is considered as shown in figure 1. The
concentration Ci (i = 1, 2, 3) of each individual diffusing component (one of the diffusing
mechanisms may be heat) along the right- and left-hand vertical impermeable boundaries
is held at different constant value Cir and Cil, respectively. The x axis is horizontal and
perpendicular to the vertical planes, the z axis is pointing vertically upward and the y axis
is horizontal and parallel to the planes. The gravitational acceleration g, with modulus
g, acts in the downward vertical direction. The porous medium exhibits isotropic and
homogeneous characteristics, with negligible influence of viscous dissipation and the
absence of volumetric heating. The local thermal equilibrium between the solid and the
fluid phases is assumed and the Oberbeck–Boussinesq approximation holds. Besides,
the off-diagonal (Soret, Dufour and cross-diffusion) contributions to the fluxes of the
stratifying agencies are neglected. The density ρ of an incompressible fluid is assumed
to vary linearly in the form

ρ = ρ0

[
1 −

3∑
i=1

αi(Ci − Ci0)

]
, (2.1)
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Figure 1. A sketch of the physical model.

where ρ0 is the reference density at reference solute concentrations Ci0 = (Cil +
Cir)/2 and the coefficients αi are constants. The governing equations under the above
assumptions are

∇ · q = 0, (2.2)

∇p = −ρ0

3∑
i=1

αi(Ci − Ci0)g − μ

K
q, (2.3)

εi
∂Ci

∂t
+ (q · ∇)Ci = κi∇2Ci (i = 1, 2, 3), (2.4)

where q = (u, v,w) is the seepage velocity, p is the pressure, μ is the fluid viscosity,
K is the permeability, εi = ε = const. (i = 1, 2, 3) is the porosity, t is the time and κi (i =
1, 2, 3) are the solutal diffusivities. If one of the diffusing components is heat, say the
component i = 1, then ε1 in (2.4) stands for the ratio of heat capacities defined as ε1 =
[ε(ρc)f + (1 − ε)(ρc)s]/(ρc)f , where (ρc)f and (ρc)s are the heat capacities of the fluid
and the solid matrix, respectively, and its value is assumed to be 1. That is, the effect of
the heat capacity of the solid matrix is neglected and this simplification is valid when the
solid matrix is composed of low-heat-capacity materials such as metals.

The boundary conditions are

q · î = 0 at x = ±h, Ci = Cil at x = −h, Ci = Cir at x = h. (2.5a–c)
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The quantities are made dimensionless as follows:

q∗ = q
(κ1/h)

, t∗ = t
(εh2/κ1)

, ∇∗ = h∇, p∗ = p
(κ1μ/K)

,

C∗
i = Ci − Ci0

(Cir − Cil)
(i = 1, 2, 3).

(2.6a–e)

Using (2.6), (2.2)–(2.5) become (after ignoring the asterisks for simplicity)

∇ · q = 0, (2.7)

∇p =
3∑

i=1

RiCik̂ − q, (2.8)

∂Ci

∂t
+ (q · ∇)Ci = 1

Lei
∇2Ci (i = 1, 2, 3), (2.9)

q · î = 0, Ci = ±1/2 at x = ±1 (i = 1, 2, 3). (2.10)

Here, Ri = αig(Cir − Cil)hK/κ1ν and Lei = κ1/κi are the Darcy–Rayleigh numbers and
the Lewis numbers, respectively, for i = 1, 2, 3, while ν = μ/ρ0 is the kinematic viscosity
of the fluid and k̂ is unit vector along the z axis. Given the evident applicability of Squire’s
theorem (Barletta 2015; Shankar, Shivakumara & Naveen 2021), it has prompted the
introduction of the stream function ψ(x, z, t) in the form u = −∂ψ/∂z; w = ∂ψ/∂x and
consequently the pressure is eliminated by operating curl on the momentum equation, and
thus we obtain (

∂2ψ

∂x2 + ∂2ψ

∂z2

)
=

3∑
i=1

Ri
∂Ci

∂x
, (2.11)

∂Ci

∂t
− ∂ψ

∂z
∂Ci

∂x
+ ∂ψ

∂x
∂Ci

∂z
= 1

Lei
∇2Ci (i = 1, 2, 3). (2.12)

The boundary conditions now become

ψ = 0, Ci = ±1/2 at x = ±1 (i = 1, 2, 3). (2.13)

2.1. Basic state
The base flow is assumed to be fully developed, unidirectional, time-independent and
laminar. These assumptions reduce (2.11) and (2.12) to ordinary differential equations of
the form

d2ψb

dx2 =
3∑

i=1

Ri
dCib

dx
, (2.14)

d2Cib

dx2 = 0 (i = 1, 2, 3), (2.15)

where the suffix b serves to denote ‘basic flow’. The associated boundary conditions are

ψb = 0, Cib = ±1/2 at x = ±1 (i = 1, 2, 3). (2.16)
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The solution to the basic flow is found to be

ψb = (R1 + R2 + R3)

4
(x2 − 1), (2.17)

Cib = x
2

(i = 1, 2, 3). (2.18)

It may be noted that the nature of the basic velocity profile is not altered due to
the consideration of additional solute concentration fields but the additional stratifying
agencies change the magnitude of ψb.

2.2. Disturbance equations
In order to test the stability of the basic flow, the standard procedure is perturbing the
system. Accordingly, disturbances of small amplitude are superimposed in the form

ψ = ψb + ψ ′, Ci = Cib + C′
i (i = 1, 2, 3), (2.19)

where primes serve to denote the perturbation field. Substituting equation (2.19) into
(2.11)–(2.13) and linearizing we get (after ignoring the primes for simplicity)(

∂2ψ

∂x2 + ∂2ψ

∂z2

)
=

3∑
i=1

Ri
∂Ci

∂x
, (2.20)

∂Ci

∂t
− DCib

∂ψ

∂z
+ Dψb

∂Ci

∂z
= 1

Lei
∇2Ci (i = 1, 2, 3), (2.21)

ψ = 0 = Ci at x = ±1 (i = 1, 2, 3), (2.22)

where the operator D = d/dx.

2.3. Normal modes
We now focus on the dynamics of normal modes expressed as

(ψ,Ci)(x, z, t) = (Ψ,Φi)(x) eia(z−ct), (2.23)

with a real wavenumber a and temporal complex eigenvalue c (= cr + ici). We now
substitute equation (2.23) into (2.20)–(2.22), which yields the eigenvalue problem

(D2 − a2)Ψ =
3∑

i=1

RiDΦi, (2.24)

−iaDCibΨ + iaDψbΦi − 1
Lei
(D2 − a2)Φi = iacΦi (i = 1, 2, 3), (2.25)

Ψ = Φi = 0 (i = 1, 2, 3) at x = ±1. (2.26)

The imaginary part of the eigenvalue, i.e. the growth rate ci, is an important parameter as it
allows one to detect the linear stability (ci ≤ 0) or instability (ci > 0) of the basic solution.
We could not find a rigorous proof that the solution of (2.24)–(2.26) yields ci ≤ 0, as
proved by Gill (1969) for a single-diffusing-component system. We may expect that the
instability initiates when the parameter R1 exceeds a threshold value by considering the
other governing parameters as given. Thus, the above eigenvalue problem allows one to
evaluate numerically the threshold value of R1 for the onset of instability.
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3. Numerical procedure

To solve the stability eigenvalue problem governed by (2.24)–(2.26), the spectral
Chebyshev collocation technique has been employed. Accordingly, the governing
equations are discretized along the x direction at the Gauss–Lobatto collocation points
of Mth order in the domain [−1, 1]. The Gauss–Lobatto points are given as

xj = cos
(

πj
M

)
, j = 0, 1, 2, . . . ,M, (3.1)

where M represents the order of the base polynomial. These M + 1 grid points correspond
to the extreme points of the first kind Chebyshev polynomial of degree M:

τM(x) = cos(Mcos−1x). (3.2)

Using a truncated Chebyshev series, we construct an interpolating polynomial in terms
of unknown field variables at the collocation points. The unknown function f (x) and its
derivatives are then approximated in accordance with the values of this function at the
collocation points. The Mth-order polynomial representation of function f (x) is presented
as follows:

f (x) =
M∑

j=0

hj(x)f (xj), (3.3)

where the Lagrange interpolant hj(x) is defined as

hj(x) = (−1)j+1(1 − x2)τ ′
M(x)

M2cj(x − xj)
, (3.4)

with

cj =
{

1 1 ≤ j ≤ M − 1,
2 j = 0,M, (3.5)

and τ ′
M(x) denotes derivative of the Mth-order Chebyshev polynomial. The interpolant

hj(x) also adheres to the Kronecker delta property:

hj(xk) = δjk, (3.6)

where δjk is known as the Kronecker delta symbol. The explicit determination of
derivatives of varying orders can be achieved by differentiating equation (3.3). The
expressions for the first- and second-order derivatives at the collocation points xj are
provided below:

df
dx

∣∣∣∣
j
=

M∑
k=0

D(1)jk fk, j = 0, 1, . . . ,M, (3.7)

d2f
dx2

∣∣∣∣∣
j

=
M∑

k=0

D(2)jk fk, j = 0, 1, . . . ,M. (3.8)
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In this context, fk is essentially just f (xk). The Chebyshev differentiation matrices D(1)jk and

D(2)jk have an order of (M + 1)× (M + 1) and are defined as

D(1)jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj(−1)k+j

ck(xj − xk)
j /= k,

− xj

2(1 − x2
j )

1 ≤ j = k ≤ M − 1,

2M2 + 1
6

j = k = 0,

−2M2 + 1
6

j = k = M,

(3.9)

and D(2)jk = D(1)jm · D(1)mk . The comprehensive methodology is extensively elucidated in the
books by Canuto et al. (1988) and Peyret (2002). The application of this approach to (2.24)
and (2.25) gives

M∑
k=0

D(2)jk Ψk − a2Ψj −
M∑

k=0

3∑
i=1

RiD
(1)
jk Φik = 0, (3.10)

− ia
2
Ψj + ia

[
(R1 + R2 + R3)

2

]
xjΦij − 1

Lei

[ M∑
k=0

D(2)jk ik − a2ij

]

= iacΦij (i = 1, 2, 3). (3.11)

Equations (3.10) and (3.11) are now discretized for inner collocation points ( j = 1 to M),
and the boundary conditions are discretized for j = 0 (x = 1) and j = M (x = −1). This
procedure culminates in solving a generalized eigenvalue problem:

AX = cBX , (3.12)

where c and X are the eigenvalue and the eigenvector of field entities, respectively, while
A and B are square and complex matrices of order (4M + 4)× (4M + 4). A complex
analogue of the QZ algorithm developed by Moler & Stewart (1973) is used to solve the
aforementioned eigenvalue problem. The coordinates along the neutral stability curves are
determined through an iterative secant method, where either the wavenumber a is held
constant while varying R1, or vice versa, with R1 fixed while modifying a. This iteration
continues until the condition ci = 0 is fulfilled within a predefined error threshold. The
eigenvalue c is the eigenvalue with the largest imaginary part for the particular type
of disturbance in question. The errors associated with a and R1 at the neutral point
are assessed to be below 0.0001 %. The critical values of a and R1 are established
through polynomial interpolation based on data points near the nadir of the neutral curve.
The critical Darcy–Rayleigh number R1c = min(RS

1c,RT
1c), where RS

1c and RT
1c are the

critical Darcy–Rayleigh numbers for the stationary and the travelling-wave disturbances,
respectively.

4. Results and discussion

The results are presented exclusively for a KCl–NaCl–sucrose aqueous system for
which κ1 = 1.6 × 10−5 cm2 s−1, κ2 = 1.3 × 10−5 cm2 s−1, κ3 = 0.45 × 10−5 cm2 s−1
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(i.e. Le1 = 1, Le2 = 1.2307, Le3 = 3.5555) and also for an aqueous solution of
heat–KCl–sucrose system for which κ1 = 1.4 × 10−3 cm2 s−1, κ2 = 1.6 × 10−5 cm2 s−1,
κ3 = 0.45 × 10−5 cm2 s−1 (i.e. Le1 = 1, Le2 = 87.5, Le3 = 311.1111) (Griffiths 1979). In
the former case, it is seen that the Lewis numbers are not far from unity, as is typical of
molecular species in molten metals and magmas as well as of laboratory models using
salt–sugar solutions. The Darcy–Rayleigh numbers R2 and R3 are allowed to vary, while
R1 is taken as a free parameter. The presence of additional diffusing components instils
instability on the basic flow and a systematic study of the topology of neutral stability
curves has been undertaken by performing linear stability analysis. The neutrally stable
configuration is identified by ci = 0 which delimits the boundary between the regions of
parametric stability and instability in the (a,R1) plane.

4.1. Validation of the code
To validate the numerical code, we calculate the critical values of R1, a and c by
systematically adjusting the number of collocation points within the sample sets of
governing parameters. The findings presented in table 1 indicate that the convergence
of the numerical scheme improves as the number of collocation points increases. It
is apparent that employing 25 collocation points yields accurate results up to six
decimal places for the KCl–NaCl–sucrose system, regardless of the mode of instability.
Conversely, for the heat–KCl–sucrose system, achieving satisfactory convergence in the
results depends on the mode of instability and necessitates a greater number of collocation
points. In particular, when the instability manifests as a stationary mode, a minimum of
M = 30 points is required, whereas travelling-wave instability demands M = 60 points,
as outlined in table 1. Comparing our results under the limiting condition of R3 = 0 (i.e.
double-diffusive case) with those obtained by Shankar et al. (2022) in table 2 reveals a
high degree of agreement. This rigorous validation process underscores the reliability of
the current computational code.

4.2. Double-diffusive case
During the course of the investigation, some interesting results were found for
double-diffusive fluid systems and they are presented first to get a clear idea about
the present problem. In fact, these findings were not disclosed in any of the previous
investigations. Figure 2 shows the evolution of neutral stability curves for different values
of R2 when R3 = 0 for two values of Le2 = 1.2307 (dashed line) and 87.5 (solid line)
corresponding to KCl–NaCl and heat–KCl systems, respectively. From the figure, it is
observed that the neutral stability curves are closed, comprising either both stationary
and travelling-wave modes or only stationary modes, within which the flow is unstable
(ci > 0), while outside of which it defines the parametric conditions of linear stability
(ci < 0). Furthermore, the instability is possible only in a finite range of negative values
of R2 depending on the value of Le2. The salient implication of the closed neutral
curve is the requirement of two values of R1 to completely specify the instability of
fluid flow. For Le2 = 1.2307, it is evident that the closed neutral stability curve is
formed with two segments of consecutively occurring stationary and travelling-wave
modes when R2 = −1500 (figure 2a). However, for R2 = −700, the closed neutral curve
consists of only single portions of stationary and travelling-wave modes, wherein the
latter mode is reduced notably (figure 2b). With further increasing R2, the closed neutral
curve progressively transitions to encompass only the stationary mode (figure 2c– f ).
Furthermore figure 2(a– f ) shows the gradual shrinking of the closed neutral curve with
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Present study
Shankar et al. (2022) (Chebyshev collocation

(Galerkin method) method)

Le2 R2 R1c ac R1c ac

2 50 51.7327 1.2404 51.732699 1.240434
100 89.5805 0.8644 89.580817 0.864429

1000 874.0181 0.0884 874.017521 0.088791

10 10 7.9583 1.0248 7.958246 1.024844
100 71.3754 0.1399 71.375031 0.139980

1000 712.8887 0.0142 712.889519 0.014068

100 10 6.5863 0.1867 6.586270 0.186710
100 65.6941 0.0194 65.694321 0.019357

1000 656.9253 0.0020 656.925830 0.001936

Table 2. Comparison of results with those of Shankar et al. (2022) for double-diffusive system (R3 = 0).
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Figure 2. Evolution of neutral stability curves for different negative values of R2 for double-diffusive system
(R3 = 0) when Le2 = 87.5 (solid line) and Le2 = 1.2307 (dashed line). The black and red lines, respectively,
denote the stationary and travelling-wave modes and this convention also applies to figures 3–7, 10, 11 and
14–16.

increasing R2, which eventually collapses into a single point and completely disappears
at R2 = −216. Whereas, for Le2 = 87.5, the closed neutral stability curves include two
distinct portions of stationary and travelling-wave modes, a pattern extending across a
wider range of R2 (figure 2a–h). It is observed that the unstable region gradually decreases
with increasing R2, ultimately vanishing at R2 = −0.54 (figure 2a–j). Interestingly, in
the current scenario, the range of R2 within which the instability persists is increased.
Besides, the neutral curves of the KCl–NaCl system are encompassed by that of the
heat–KCl system with instability occurring at lower wavenumbers in the latter compared
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Figure 3. Evolution of neutral stability curves for different positive values of R2 when Le2 = 1.2307,
Le3 = 3.5555 and R3 = −100.

with the former. One common feature observed in all these figures is that the onset of
instability arises only through the stationary mode in the case of double-diffusive systems.

4.3. Triple-diffusive case
As mentioned earlier, two different sets of transport property ratios are considered in
discussing the instability of base flow. The results obtained for these two systems are
separately discussed.

4.3.1. KCl–NaCl–sucrose system (Le2, Le3 � 1)
(a) Topology of the neutral stability curves

The impact of a third diffusing component on the progression of neutral stability curves
is illustrated in figures 3 and 4, where different values of R2, spanning both positive and
negative domains, are considered when R3 = −100, Le2 = 1.2307 and Le3 = 3.5555. In
contrast to the double-diffusive case, the base flow is found to be unstable for both positive
and negative values of R2 and the shape of neutral stability curves is also somewhat unique.
For R2 = 50, it is seen that the closed neutral curve is formed by two alternative segments
of stationary and travelling-wave modes which exhibit local minimum and the least among
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Figure 4. Evolution of neutral stability curves for different negative values of R2 when Le2 = 1.2307,

Le3 = 3.5555 and R3 = −100.

the two corresponds to the stationary mode (figure 3a). With increasing R2, the closed
neutral curve progressively simplifies, eventually consolidating into a single segment
accommodating both stationary mode and travelling-wave mode, with the latter mode
diminishing (figure 3b) and even ceasing to exist (figure 3c). A noteworthy transformation
unfolds at R2 = 726, where both modes manifest as separate closed loops, with the
travelling-wave mode positioned beneath the stationary one. This alteration denotes a
shift in the mode of instability from the stationary to the travelling-wave mode – an
unprecedented finding absent in the context of double-diffusive fluid systems. Such a
transition mandates the examination of four R1 values to comprehensively analyse the
fluid flow stability. The disconnected neutral curve pertaining to the travelling-wave mode
expands and merges with the stationary neutral curve, thereby evolving into a unified loop
with increasing R2 (figure 3e–g). Moreover, a closed loop of the stationary neutral curve
emerges below the current loop signifying the reversion of instability to the stationary
mode when R2 reaches the value 837 (figure 3h). This closed stationary neutral curve
continues to grow (figure 3i) until it forms a single loop (figure 3 j,k). At R2 = 1353, it is
seen that yet another closed loop of the travelling-wave mode originates on the right-hand
side of the pre-existing loop (figure 3l) but it comes together and looms as a single
loop with further increase in R2 (figure 3m–o). Throughout this process (figure 3l–o),
the stationary mode consistently remains the dominant mode of instability even though
the instability region varies. In general, the global minimum decreases with increasing
R2. The behaviour of results for negative values of R2 differs significantly from those
obtained for positive values and the same is evident from figure 4. In this figure, the
closed neutral stability curves exhibit a consistent pattern, featuring pairs of stationary
and travelling-wave modes in succession. In contrast to the previous case, the instability
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Figure 5. Evolution of neutral stability curves for different negative values of R2 when Le2 = 1.2307,
Le3 = 3.5555 and R3 = 100.
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Figure 6. Evolution of neutral stability curves for different positive values of R2 when Le2 = 1.2307,
Le3 = 3.5555 and R3 = 100.

persists exclusively through the stationary mode across all considered values of R2.
Moreover, as R2 decreases, there is an increase in the instability region and also in the
minimum value of R1.

The neutral curves obtained for R3 = 100, using the same values of R2, Le2 and Le3 as
those considered in figures 3 and 4, are showcased in figures 5 and 6 for some isolation
cases. The observations reveal a complete reversal of the neutral curves compared with the
findings obtained for R3 = −100. A prominent deduction drawn from these visualizations
is the unswerving nature of the onset of mode of instability in this particular context, which
consistently assumes the form of the stationary mode. This is because, regardless of the
values of R2, when R3 = −100, the maximum value of R1 reached on the closed neutral
curve corresponds to the stationary mode.
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Figure 7. Evolution of neutral stability curves for different positive values of R2 when Le2 = 1.2307,
Le3 = 3.5555 and R3 = −200.

Figure 7 presents a comprehensive depiction of the neutral stability curves for different
positive values of R2 when R3 = −200. The neutral curve loop unravels intricate
dynamics involving both stationary and travelling-wave modes for R2 = 1050, featuring
two minima wherein the stationary mode predominates as the mode of instability
(figure 7a). Evidencing further complexity, at R2 = 1110, the neutral curve portrays three
local minima, with the initial minimum corresponding to the stationary mode and the
subsequent two to the travelling-wave mode. Notwithstanding this complex scenario,
the mode of instability continues as the stationary mode (figure 7b). Intriguingly, as R2
increases to 1150, a transition emerges, wherein the mode of instability transitions from
the stationary mode to the travelling-wave mode (figure 7c). A noteworthy change in
the nature of the neutral stability curves manifests at R2 = 1303, as they give up their
multi-minimum structure, rendering a single minimum that aligns with the travelling-wave
mode (figure 7d). Of particular interest is the transition observed at R2 = 1304, marked
by the emergence of an extra closed loop depicting the stationary mode (figure 7e),
necessitating the consideration of four critical values of the Darcy–Rayleigh number to
assess the stability of the system. Significantly, the stationary mode reasserts itself as
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Figure 8. Critical values of R1 versus R2 for both positive (a) and negative (b) values of R3 when Le2 =
1.2307 and Le3 = 3.5555. The solid line represents a stationary mode, while the dotted line corresponds to a
travelling-wave mode and this convention is also applicable to figures 9, 12 and 13.

the favoured mode of instability and the closed loop of the stationary mode grows with
further increase in R2 (figure 7 f ). Importantly, within the intricate interplay of these loops,
another closed loop emerges, characterizing the travelling-wave mode (figure 7g). This
emergent loop undergoes gradual evolution and subsequently establishes a connection
with the lower stationary loop (figure 7h,i), leading to their integration into a coherent
single loop (figure 7 j) as R2 progresses. Moreover, yet another closed loop representing
the travelling-wave mode appears independently without altering the mode of instability
(figure 7k,l) and ultimately amalgamates with the pre-existing closed loop (figure 7m–o).
This cumulative loop entails multiple segments, encompassing both stationary and
travelling-wave modes. The gradual transformation of these loop structures reveals the
complex behaviour of the system in response to varying R2 values, highlighting the
interplay between different modes of instability.

(b) Stability boundaries
The variation of critical Darcy–Rayleigh number R1c as a function of R2 for different

values of R3 when Le2 = 1.2307 and Le3 = 3.5555 is displayed in figure 8. It is clear
that the effect of increasing both R2 and R3 is to decrease R1c indicating their effect is
to destabilize the fluid flow. For the double-diffusive case (R3 = 0), instability is solely
possible through the stationary mode up to R2 = −216.08 and thereafter the flow remains
stable. In contrast to this, it is observed that the instability exists for all values of R2 if
the third diffusing component is present. Moreover, the transition of instability changes
from the stationary mode (denoted by solid lines) to the travelling-wave mode (denoted
by dotted lines) and again reverts back to the stationary mode with increasing R2, a
phenomenon intricately linked to the value of R3. In particular, the travelling-wave mode
instability is present only for negative values of R3 and it is confined to a finite domain of
positive values of R2 as illustrated in figure 8(b). Also note that this range of R2 initially
increases with decreasing R3 then starts decreasing and eventually converges to zero as
R3 experiences further reduction. The inherent instability characteristics of fluid flow,
manifested across distinct ranges of the parameter R2, corresponding to different values
of R3, have been discretely tabulated in table 3.
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Le2 = 1.2307, Le3 = 3.5555

R3 Stationary Travelling wave Stationary

−100 R2 ≤ 725.23 725.23<R2 < 836.54 R2 ≥ 836.54
−200 R2 ≤ 1119.72 1119.72<R2 < 1303.91 R2 ≥ 1303.91
−300 R2 ≤ 1594.83 1594.83<R2< 1734.86 R2 ≥ 1734.86
−400 R2 ≤ 2089.38 2089.38<R2 < 2147.88 R2 ≥ 2147.88

Table 3. Effect of R3 on the instability transitions from one mode to another in different ranges of R2 for the
KCl–NaCl–sucrose aqueous system.
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Figure 9. Critical values of a versus R2 for both positive (a) and negative (b) values of R3 when
Le2 = 1.2307 and Le3 = 3.5555.

The variation of corresponding critical wavenumber ac with R2 is presented in figure 9.
For positive and also for higher negative values of R3, no discontinuity in the curves of ac
exists as the instability occurs only through the stationary mode in the considered range of
values of R2. In particular, for R3 = 100 and 200, ac passes through a maximum value with
increasing R2, while for other positive values of R3 (= 300, 400, 1000), it decreases for all
values of R2 but the trend is found to be not so significant. An entirely distinct scenario
becomes visible for negative values of R3 (= −100,−200,−300,−400), a phenomenon
attributed to the presence of transition modes, which in turn leads to the emergence of
discontinuities in ac. For R3 = −1000, however, no transition occurs and there is only
a slight increase in ac throughout the range of considered values of R2. The critical
wavenumber corresponding to the stationary mode increases prior to the initiation of the
travelling-wave mode, while in post-transition, this ac value diminishes. It is pertinent
to note that within the travelling-wave mode regime, ac registers a decreasing trend. In
the framework of the double-diffusive context (R3 = 0), ac increases with increasing R2,
reaches the maximum value and then a downturn in ac follows as R2 further increases and
finally terminates at R2 = −216.08. The critical wave speed cc increases as R2 increases;
concurrently with a decrease in R3 values (figures are not shown). Notably, travelling-wave
disturbances propagate both upward and downward vertically at the same velocity, owing
to the existence of both positive and negative cc values.
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Figure 10. Evolution of neutral stability curves for different positive values of R2 with
Le2 = 87.5, Le3 = 311.1111 and R3 = −1000.

4.3.2. Heat–KCl–sucrose system (Le2, Le3 � 1)
(a) Topology of the neutral stability curves

The neutral stability curves are shown in figure 10 for different positive values of R2
when R3 = −1000, Le2 = 87.5 and Le3 = 311.1111. As observed in the previous case,
the neutral curves form closed and connected patterns, consisting of both stationary
and travelling-wave modes. For R2 = 1000, multiple minima linked to both modes
are evident, with primary minimum corresponding to the stationary mode, which is
identified as the favoured mode of instability (figure 10a). Interestingly, two segments
of the neutral stability curve of stationary mode possessing their own local minimum
appear for R2 = 1050 and again the instability occurs at the initial wavenumber region
(figure 10b). Analogously, when R2 = 1100, the neutral stability curves follow the same
pattern (figure 10c), but the primary instability is now dominated by the local minimum
occurring at a higher wavenumber of the stationary mode neutral curve. This particular
mode maintains its dominance as the preferred mode of instability even with increased
values of R2 (figure 10d,e).

Figure 11 portrays the neutral stability curves for different negative values of R2 when
R3 = 200, Le2 = 87.5 and Le3 = 311.1111. We note that a single loop of neutral stability
curve featuring multi-minima associated with both modes can be seen with the stationary
mode as the preferred mode of instability for R2 = −344 (figure 11a). However, an entirely
detached closed travelling-wave neutral curve emanates for R2 = −343 which lacks any
physical significance for the onset of instability of the system as the minimum R1 still
corresponds to the stationary mode (figure 11b). In the subsequent cases, the detached
travelling-wave loop gradually expands (figure 11c) and eventually merges (figure 11d– f )
with the pre-existing neutral curve with increasing R2. Remarkably, during this process, a
significant shift takes place in the instability mode, transitioning from the stationary mode
to the travelling-wave mode (figure 11e). However, as R2 continues to increase, the system
reverts back favouring the stationary mode of instability once again (figure 11 f ).

(b) Stability boundaries
Figures 12 and 13 demonstrate, respectively, the variation of R1c and ac as a function

of R2 for different values of R3 when Le2 = 87.5 and Le3 = 311.1111. In the figures,
the curve of R3 = 0 corresponds to the double-diffusive system and it is observed that
R1c tends to infinity for values of R2 > −0.541 indicating that the flow is always stable,
because the perturbations display a negative growth rate. While for values of R3 /= 0, the
instability is found to pervade the entire R2 domain, as depicted in both panels of figure 12.
More specifically, the instability predominantly manifests through the travelling-wave
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Figure 11. Evolution of neutral stability curves for different negative values of R2 with
Le2 = 87.5, Le3 = 311.1111 and R3 = 200.
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Figure 12. Critical values of R1 versus R2 for both positive (a) and negative (b) values of R3 when
Le2 = 87.5 and Le3 = 311.1111.
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Figure 13. Critical values of a versus R2 for both positive (a) and negative (b) values of R3 when Le2 = 87.5
and Le3 = 311.1111.

Le2 = 87.5, Le3 = 311.1111

R3 Stationary Travelling wave Stationary

100 R2 ≤ −138.21 −138.21<R2<−120.01 R2 ≥ −120.01
200 R2 ≤ −302.56 −302.56<R2<−219.00 R2 ≥ −219.00
500 R2 ≤ −802.18 −802.18<R2<−515.57 R2 ≥ −515.57
1000 R2 ≤ −1652.49 −1652.49<R2 <−999.78 R2 ≥ −999.78

Table 4. Effect of R3 on the instability transitions from one mode to another in different ranges of R2 for the
heat–KCl–sucrose aqueous system.

mode (illustrated by dotted lines) within a specific interval of negative R2 for positive
R3 values, while in other regimes, instability exclusively arises through the stationary
mode (illustrated by solid lines). Additionally, it is noteworthy that the span of R2
values, where instability is induced through travelling waves, diminishes as R3 decreases.
Moreover, it is worth noting that increasing both R2 and R3 serves to speed up the
onset of thermoconvective instability in both stationary and travelling-wave modes. The
salient observations discussed above are quantified in table 4, providing a comprehensive
summary. The critical wavenumber ac demonstrates distinct trends with increasing values
of either R2 or R3 (figure 13). A noteworthy observation for positive values of R3 is the
abrupt jump in ac values within the negative domain of R2, signifying a pivotal transition
in the instability mode from stationary to travelling wave and this behaviour is confirmed
quite clearly by the neutral curves displayed in figure 11. Also, during the travelling-wave
mode, the variation in ac becomes relatively less pronounced as R2 increases. While for
negative values of R3, a sudden variation in ac curves ensues in the positive domain of R2
due to the shift in the mode of stationary instability from lower- to higher-wavenumber
region (cf. figure 10). The critical wave speed cc increases proportionally with increased
values of R2 and R3 (figures are not shown).
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Figure 14. Comparison of neutral stability curves between KCl–NaCl–sucrose (dashed line) and
heat–KCl–sucrose (solid line) aqueous systems for different positive values of R2 with R3 = −100.
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Figure 15. Comparison of neutral stability curves between KCl–NaCl–sucrose (dashed line) and
heat–KCl–sucrose (solid line) aqueous systems for different positive values of R2 with R3 = −1000.

4.3.3. Comparative study between KCl–NaCl–sucrose and heat–KCl–sucrose systems
A comprehensive comparative analysis between the KCl–NaCl–sucrose and heat–KCl–
sucrose systems has been undertaken to thoroughly understand both the shared
characteristics and unique distinctions for the stability of fluid flow. This is facilitated
by presenting neutral stability curves in figures 14–16, for identical values of R2 and
R3. Within these graphical representations, the dashed and solid lines symbolize the
KCl–NaCl–sucrose and heat–KCl–sucrose systems, respectively. The neutral curves of
the KCl–NaCl–sucrose system either fall comfortably within or intersect with those of
the heat–KCl–sucrose system. However, the instability region delineated by the neutral
curves of the KCl–NaCl–sucrose system is significantly smaller when compared with the
latter system. Additionally, it is observed that the onset of instability happens first in the
heat–KCl–sucrose system, no matter what values the governing parameters take. A keen
scrutiny of the aforementioned figures also indicates that the transition mode of instability
for these two aqueous systems takes place in different regimes of R2 and R3. Furthermore,
an observation of significance emerges, indicating that the KCl–NaCl–sucrose system
necessitates the identification of four critical values of the Darcy–Rayleigh number
to establish the linear stability criteria under specific parametric conditions. In stark
contrast, the heat–KCl–sucrose system mandates only two critical values for this purpose,
irrespective of the values assumed by R2 and R3.
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Figure 16. Comparison of neutral stability curves between KCl–NaCl–sucrose (dashed line) and
heat–KCl–sucrose (solid line) aqueous systems for different negative values of R2 with R3 = 200.

5. Conclusions

The linear stability of natural convection in a vertical triple-diffusive fluid-saturated
porous layer is investigated. The dynamics of convection is governed by Darcy’s law,
while the buoyancy effects are characterized by employing the Oberbeck–Boussinesq
approximation. A numerical solution of the stability eigenvalue problem has been obtained
based on the Chebyshev collocation method for two different transport property ratios
relating to KCl–NaCl–sucrose and heat–KCl–sucrose aqueous systems. The evolution of
neutral stability curves is examined in detail and it is observed that these two systems
exhibit qualitatively different behaviour for the stability of base flow under different
regimes of solute Darcy–Rayleigh numbers R2 and R3. Besides, the presence of a third
diffusing component not only renders the system unstable without any restriction, in
contrast to double-diffusive systems, but it also introduces a transition mode that is found
to be absent within the ambit of double-diffusive systems.

Some of the novel peculiar features gathered from the foregoing study under different
regimes of R2 and R3 may be summarized as follows:

(i) When R2 and R3 are concurrently positive or negative, the neutral stability curves
exhibit a single loop encompassing stationary and travelling-wave modes and the
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instability occurs only through the stationary mode for both the aqueous systems
(i.e. no transition mode occurs). Also, two critical values of the Darcy–Rayleigh
number are needed to dwell upon the stability criteria. This phenomenon is akin to
that observed in double-diffusive fluid systems.

(ii) For values of R2 < 0 and R3 > 0, the possibility of two entirely disjointed neutral
curves emerging is found for the KCl–NaCl–sucrose system indicating the necessity
of four critical values of the Darcy–Rayleigh number to precisely delineate the
stability criteria and the instability exclusively materializes in a stationary mode.
On the contrary, the heat–KCl–sucrose system exhibits the sufficiency of two critical
values of the Darcy–Rayleigh number for the precise specification of stability criteria
despite the neutral curves demonstrating multiple minima and going through a
transition mode. The range of R2 at which the travelling-mode occurs increases with
increasing R3.

(iii) When R2 takes on positive values and R3 adopts negative values, the neutral
curves are totally disconnected under a certain parametric condition as in (ii)
for the KCl–NaCl–sucrose system. Yet, this shift in configuration precipitates a
transition in the mode of instability. Specifically, a regime of travelling-wave mode
emerges within a defined domain of positive R2 which progressively diminishes as
R3 decreases further. While for the heat–KCl–sucrose system, only a single loop
structure emerges without any transition mode.

Thus the presence of additional diffusing components and the magnitude of transport
property ratios assume a pivotal role in delineating the stability characteristics of the
system. The instability region outlined by the neutral curves of the KCl–NaCl–sucrose
system is notably smaller in contrast to the heat–KCl–sucrose system. Furthermore,
the heat–KCl–sucrose system demonstrates greater destabilization compared with the
KCl–NaCl–sucrose system. A common feature across both the systems is that increasing
the values of either R2 or R3 advances the onset of instability, regardless of the mode of
instability.

The findings discussed in this study disclose a spectrum of potential avenues
for future advancements. One possibility of exploration entails the conceptualization
of a sandwiched porous slab, characterized by uniform external layers but varying
thermophysical properties within the core layer. This aspect holds significant importance
as it offers a deeper insight into convection dynamics in complex configurations.
Additionally, a separate research initiative will aim to extend the current work by
incorporating the general boundary conditions on velocity, temperature and/or solute
concentrations. Another notable concern revolves around the nonlinear stability which may
reveal the potential emergence of subcritical instability, providing a valuable comparison
to establish the stability threshold.
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