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Abstract
We show that Kozen and Tiuryn’s substructural logic of partial correctness S embeds into the equational
theory of Kleene algebra with domain, KAD. We provide an implicational formulation of KAD which sets S
in the context of implicational extensions of Kleene algebra.
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1. Introduction
Kleene algebra with tests (Kozen 1997), KAT, is an algebraic framework for reasoning about
equivalence and correctness of imperative programs. KAT comprises two-sorted algebras with a
Boolean algebra of tests embedded into a Kleene algebra of programs. A Hoare-style partial cor-
rectness assertion {b} p {c}, meaning that condition c holds after each terminating execution of
program p starting in a state satisfying b, is represented in KAT by the equation bpc̄= 0 or, equiv-
alently, bp= bpc. The equational theory of KAT is PSPACE-complete (Cohen et al. 1996). The
quasi-equational theory of KAT is undecidable (Kozen 2002), but its fragment consisting of quasi-
equations where the assumptions are all of the form r = 0 embeds into the equational theory of
KAT (Kozen and Smith 1997) and is PSPACE-complete as well.

Kozen and Tiuryn (2003) extend the language of KATwith an implication operator⇒ and show
that, in the resulting system S, partial correctness assertions can be formalized as implicational
formulas bp⇒ c. They argue that the implicational rendering of partial correctness assertions has
certain advantages over the equational one, for example, it facilitates a better distinction between
local and global properties. Kozen and Tiuryn formulate a sequent system for S which bears some
resemblance to sequent calculi for substructural logics (Galatos et al. 2007). They show that their
implication connective ⇒ is similar to implication in some well-known substructural logics, but
that it has also many specific features not common in substructural logic. Particular combinations
of Kleene algebra and substructural logics were studied in numerous works (Buszkowski 2006;
Jipsen 2004; Kozen 1994b; Kuznetsov 2021; Palka 2007; Pratt 1991). It is therefore interesting to
look at the exact nature of the relation between S and these combinations. For one, the latter
are usually undecidable (Buszkowski 2006; Kuznetsov 2021; Palka 2007), whereas S is PSPACE-
complete (Kozen 2003).

In the conference paper (Sedlár and Wannenburg 2022), we showed that S embeds into a spe-
cific combination of residuated Kleene algebra and Kleene algebra with domain, KAD (Desharnais
et al. 2006; Desharnais and Struth 2011). In this paper, we improve on this embedding result in
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two respects. First, we show that S embeds into KAD itself. Hence, it is not necessary to use resid-
uated implication connectives and the adjoint to the (co)domain operator as we did in Sedlár
and Wannenburg (2022), and it is not even necessary to assume ∗-continuity of KAD to obtain
the result. Second, we show that KAD has an equivalent implicational formulation, iKAD, where
the antidomain operator of KAD is represented using an implication operator and the constant
0. This perspective on KAD is useful from the viewpoint of the original motivation of Sedlár and
Wannenburg (2022) which was to describe the relation of S and implicational extensions of Kleene
algebra. Moreover, owing to the fact that KAD is decidable (EXPTIME-complete, as shown in
Sedlár 2023), we obtain a (perhaps rare) example of a decidable implicational extension of Kleene
algebra.

The paper is organized as follows. Section 2 recalls S and discusses its relation to Groenendijk
and Stokhof ’s Dynamic Predicate Logic (DPL) (Groenendijk and Stokhof 1991) and Bochman and
Gabbay’s Sequential Dynamic Logic (SDL) (Bochman and Gabbay 2012). Section 3 shows that S
embeds into the equational theory of KAD. Section 4 puts forward iKAD, the implicational formu-
lation of KAD, and discusses the main differences between iKAD and the standard implicational
extensions of Kleene algebra.

2. KAT and S
In this section, we recall KAT (Section 2.1) and we outline Kozen and Tiuryn’s logic S (Section 2.2).
We observe a connection between S and Groenendijk and Stokhof ’s DPL in Section 2.3, and we
note that S is a fragment of Bochman and Gabbay’s SDL in Section 2.4.

2.1 Kleene algebra with tests
This section recalls some basic information about Kleene algebra with tests (Kozen 1997; Kozen
and Smith 1997). We assume that the reader is familiar with the notion of an idempotent semiring.

Definition 1. A Kleene algebra (Kozen 1994a) is an idempotent semiring (K,+, ·, 0, 1) expanded
with an operation ∗ :K →K such that

1+ xx∗ ≤ x∗ (1)
1+ x∗x≤ x∗ (2)

y+ xz ≤ z =⇒ x∗y≤ z (3)
y+ zx≤ z =⇒ yx∗ ≤ z (4)

(We define x≤ y as x+ y= y and we write xy instead of x · y.)

It follows from the definition that x∗ is the least element z such that 1≤ z, xz ≤ z and zx≤ z.
A standard example of a Kleene algebra is a relational Kleene algebra where K is a set of binary
relations over some set S, · is relational composition,+ is set union, ∗ is reflexive transitive closure,
1 is the identity relation on S, and 0 is the empty set. Another standard example is the Kleene
algebra of regular languages over a finite alphabet where · is concatenation of languages and ∗ is
finite iteration (Kleene star).

Definition 2. A Kleene algebra with tests (Kozen 1997) is a structure of the form:

(K, B,+, ·, ∗, −, 0, 1) ,
where

• (K,+, ·, ∗, 0, 1) is a Kleene algebra,
• B⊆K, and (B,+, ·, ¯, 0, 1) is a Boolean algebra.
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(That is, we assume that B is closed under the semiring operations; the negation operator − is a
partial function defined only on B.)

Every Kleene algebra is a Kleene algebra with tests; take B= {0, 1} and define 0̄= 1, 1̄= 0.
A standard example of a Kleene algebra with tests is a relational Kleene algebra expanded with a
Boolean subalgebra of the negative cone, that is, the elements x≤ 1, also called subidentities, which
in the relational case are subsets of the identity relation. The class of Kleene algebras with tests is
denoted as KAT.

Kleene algebras with tests are able to represent while programs and facilitate equational
reasoning about their properties such as partial correctness and equivalence:

• skip= 1
• p ; q= pq
• if b then p else q = (bp)+ (b̄q)
• while b do p = (bp)∗b̄
• {b} p {c} corresponds to bpc̄= 0 (equivalently, bp= bpc)

The reader is referred to Kozen (1997) and references therein for more details.

2.2 Substructural logic of partial correctness
This section outlines the logic S (Kozen and Tiuryn 2003). As with KAT, the logic S is many-sorted.
Let B= {bi | i ∈ω} be the set of test variables and let P= {pi | i ∈ω} be the set of program variables.
The language of S, LS, consists of the following sorts of syntactic objects:

tests b, c := bi | 0 | b⇒ c

programs p, q := pi | b | p⊕ q | p⊗ q | p+

formulas e, f := b | p⇒ f

environments �,� := ε | �, p | �, f
sequents � 
 f

We define 1 := 0⇒ 0,¬b := b⇒ 0 and p∗ := 1⊕ p+. We will sometimes write pq instead of p⊗ q
and b̄ instead of ¬b. Let E= B∪ P and let ES, the set of S-expressions, be the union of the sets of
formulas, programs, and environments.

Kozen and Tiuryn (2003) introduce three kinds of semantics for their language: semantics
based on guarded strings, traces, and binary relations, respectively. We will work only with binary
relational semantics.

Definition 3. An S-model is a pairM = (W,V), whereW is a non-empty set and V : E→ 2W×W

such that V(b)⊆ idW for all b ∈ B.
For each S-modelM, we define theM-interpretation function [ ]M : ES → 2W×W as follows:

• [b]M =V(b)
• [p]M =V(p)
• [0]M = ∅
• [b⇒ c]M = {(s, s) | (s, s) ∈ [b]M or (s, s) ∈ [c]M}
• [p⊕ q]M = [p]M ∪ [q]M
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Figure 1. The sequent proof system for S.

• [p⊗ q]M = [p]M ◦ [q]M
• [p+]M = [p]+

M
• [p⇒ f ]M = {(s, s) | ∀t.(s, t) ∈ [p]M =⇒ (t, t) ∈ [f ]M}
• [ε]M = idW
• [�,�]M = [�]M ◦ [�]M

(The symbol + denotes transitive closure and ◦ denotes relational composition.) A sequent � 
 f
is valid in M iff, for all s, t ∈W, if (s, t) ∈ [�]M , then (t, t) ∈ [f ]M (notation: � 
M f ).

Observe that [f ]M ⊆ idW for all formulas f ; if (s, s) ∈ [f ]M , then we may say that formula f is
true in s. Note that [bp⇒ c]M is the set of (s, s) such that, for all t, if (s, s) ∈ [b]M and (s, t) ∈ [p]M ,
then (t, t) ∈ [c]M . Hence, bp⇒ c represents a partial correctness assertion: the formula is true in
s iff b is true in s and p connects s with a state t only if c is true in t.

Fig. 1 shows the sequent proof system for S. A sequent � 
 f is provable in S iff there is a finite
sequence of sequents that ends with � 
 f each of which is either of the form (Id) or (I0) or is
derived from previous sequents using some of the inference rules.

Theorem (Kozen and Tiuryn 2003). � 
 f is provable in S iff � 
 f is valid in all S-models.

It is evident from the semantics that p⇒ f corresponds to the (test of the) modal formula [p]f
of Propositional Dynamic Logic, PDL (Fischer and Ladner 1979; Harel et al. 2000). Hence, each
environment � corresponds to a program of PDL and it can be shown that � 
 f is provable in S
iff [�]f is valid in PDL. Similarly, ep
 f is provable in S iff e→ [p]f is valid in PDL. The logic
S is clearly a syntactic expansion of KAT (modulo the choice of primitive operators). Kozen and
Tiuryn (2003) show that KAT |= p= q iff both p⇒ b
 q⇒ b and q⇒ b
 p⇒ b are provable in
S where b is a Boolean variable not occurring in p or q.
S can be seen as a substructural logic (Galatos et al. 2007; Restall 2000). However, S contains

some rules that are unusual from the substructural logic perspective, namely, the sort-specific
weakening rules (Wf ) and (Wp), and the implication-formula rules (TC) and (I⇒). It is therefore
interesting to inquire how S relates to mainstream substructural logics. Results of the next two
sections will shed some light on the matter.
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2.3 Dynamic consequence and dynamic implication
It is clear from the previous section that S can be seen as an extension of KAT that has two specific
features. First, S comes with a somewhat unusual notion of semantic entailment. In fact, the usual
notion of entailment based on the subset relation would not make much sense in the present
setting owing to the syntactic restriction on sequents allowing only formulas in the consequent.
Second, the language of S contains an implication connective which differs semantically from the
residuals of relational composition, as found in the relational semantics for Pratt’s action logic,
for example. This is related to the first point since, as the reader can easily verify, the implication
connective gives rise to the following semantic deduction theorem:

�, p
M f ⇐⇒ � 
M p⇒ f .

As a matter of fact, the entailment relation and the implication connective of S can be seen as
restrictions of dynamic consequence and dynamic implication in DPL (Groenendijk and Stokhof
1991). InDPL, formulas of the standard first-order language are evaluated on pairs of valuations on
a relational structure. Without going into details, we just mention the operations on binary rela-
tions that give rise to semantic interpretations of dynamic negation ∼ and dynamic implication
→ in models of DPL:

• ∼R= {(s, s) | ¬∃t.(s, t) ∈ R};
• R→Q= {(s, s) | ∀t.((s, t) ∈ R =⇒ ∃u.(t, u) ∈Q)}.

Moreover, a formula ϕ entails ψ in DPL iff, for all models and all valuations s, t, if (s, t) is in the
interpretation of ϕ, then there is u such that (t, u) is in the interpretation ofψ . It is easily seen that
R→Q= ∼(R ◦ ∼Q), and this observation will be important later on in Section 4.

It is clear that S uses the same semantic clause for⇒ as DPL does for→ with the proviso of the
syntactic restriction on implicational formulas in S: the consequent of an implicational formula is
always a formula, that is, an expression whose semantic value is a subset of the identity relation.
A similar remark applies to the comparison between the notion of entailment in S and the one
in DPL. This semantic observation entails that S can be seen as a fragment of a combination of
relational Kleene algebra with tests with a propositional fragment of DPL. Such a combination
was studied by Bochman and Gabbay (2012).

2.4 Sequential Dynamic Logic
Bochman and Gabbay’s Sequential Dynamic Logic SDL∗ (Bochman and Gabbay 2012) combines
features of relational Kleene algebra with tests and the propositional fragment of DPL. In partic-
ular, it adds the dynamic negation connective ∼ to KAT. Bochman and Gabbay provide a sound
and weakly complete sequent system for dynamic entailment, and they observe that SDL∗ bears
strong resemblance to S while lifting the syntactic restrictions of S. They leave a more thorough
investigation of relations with S to another occasion. In this section, we formulate the semantics
of SDL∗ and we make the straightforward observation that S corresponds to a syntactic fragment
of SDL∗.

Formulas of the language of SDL∗ are defined using the following grammar:

ϕ,ψ := p | b | 0 | ϕ ⊕ψ | ϕ ⊗ψ | ϕ∗ | ∼ϕ
where p ∈ P and b ∈ B. SDL∗-sequents are expressions of the form � 
 ϕ where � is a finite
sequence of SDL∗-formulas and ϕ is a SDL∗-formula. (Bochman and Gabbay use ∧ instead of
⊗ and ∨ instead of ⊕. They do not use the constant 0; instead, their sequent system allows an
empty conclusion.) Expressions of the language of SDL∗ are finite sequences of SDL∗-formulas.
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Definition 4. An SDL∗-model is a pair M = (W,V), where W is a non-empty set and V : E→
2W×W such that V(b)⊆ idW for all b ∈ B.

For each SDL∗-model M, we define the M-interpretation function [ ]M : FmSDL∗ → 2W×W as
follows:

• [b]M =V(b)
• [p]M =V(p)
• [0]M = ∅
• [ϕ ⊕ψ]M = [ϕ]M ∪ [ψ]M
• [ϕ ⊗ψ]M = [ϕ]M ◦ [ψ]M
• [ϕ∗]M = [ϕ]∗

M
• [∼ϕ]M = {(s, s) | ¬∃t.(s, t) ∈ [ϕ]M}

(where R∗ is the reflexive transitive closure of relation R). We define [�]M := [ψ1]M ◦ . . . ◦
[ψn]M in case � = (ψ1, . . . ,ψn). If � is empty, then [�]M = idW . A sequent � 
 ϕ is valid in
M iff, for all s, t ∈W, if (s, t) ∈ [�]M , then there is u such that (t, u) ∈ [ϕ]M (notation: � �M ϕ).

Let δ : ES → ESDL∗ such that δ(p)= p, δ(b)= b, δ commutes with ⊕,⊗ and the environment-
forming comma operator, δ(p+)= δ(p)⊗ δ(p)∗, and

δ(p⇒ f )= ∼(δ(p)⊗ ∼δ(f )) .

Proposition 5. � 
 f is provable in S iff δ(�)�M δ(f ) for all SDL∗-models M.

Proof. It is sufficient to observe that every S-model that is a counterexample to� 
 f can be turned
into a SDL∗-model that is a counterexample to δ(�)� δ(f ) and vice versa. We only need to note
that if F ⊆ idW , then

P ⇒ F = P → F = ∼(P ◦ ∼F) .

Bochman and Gabbay provide a sound and weakly complete sequent system for dynamic con-
sequence over SDL∗ which bears strong resemblance to the sequent system for S and extends
sequent systems for dynamic consequence over weaker languages studied earlier (Kanazawa 1993;
van Benthem 1995, 1996; van der Does et al. 1997). We omit the details.

3. Embedding S into KAD
In this section, we outline KAD (Section 3.1) and we prove that the set of S-provable sequents
embeds into the equational theory of KAD (Section 3.2). We opt for a more instructive direct
proof of the embedding result instead of proving the embedding via PDL or SDL∗.

3.1 Kleene algebra with domain
In this section, we recall KAD.Our discussion will be brief, and the reader is referred toDesharnais
et al. (2006) and Desharnais and Struth (2011) for details. We note that we assume the one-sorted
version of KAD where the domain operator is defined using the primitive antidomain operator
(Desharnais and Struth 2011). An extension of KAT with a primitive domain operator (also called
KAD at that time) is presented in Desharnais et al. (2006).

The language of KAD, LKAD, is one-sorted:
p, q := pi | 0 | 1 | p · q | p+ q | p∗ | a(p) .

We define d(p) := a(a(p)). A domain term is a term of the form d(p).
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Kleene algebras with domain are expansions of Kleene algebras with a unary antidomain oper-
ator. The abstract definition below generalizes the properties of the dynamic negation operator on
binary relations:

∼R= {(s, s) | ¬∃t.(s, t) ∈ R} .
We note that, in the literature on KAD, the link between this “relational antidomain” operator
and dynamic negation does not seem to have been noted yet. Relational antidomain has a natural
interpretation independent of the linguistic motivations of DPL: if R is seen as the input–output
relation determined by a program, then ∼R is the input–output relation determined by the test
whether the program diverges.

Definition 6. A KAD is a structure of the form

K= (K,+, ·, ∗, a, 0, 1)

such that (K,+, ·, ∗, 0, 1) is a Kleene algebra, a :K →K and the following are satisfied for all
x, y, z ∈K, assuming that d(x) := a(a(x)):

a(x)x= 0 (5)
a(xy)≤ a(x d(y)) (6)

d(x)+ a(x)= 1 (7)

An equation p= q is valid in K iff v(p)= v(q) for all valuations v (that is, all homomorphisms
from LKAD into K).

We will usually write p≡K q to indicate that p= q is valid in K, and we will write p≡KAD q to
indicate that the equation p= q belongs to the equational theory of KAD (i.e. it is valid in every
algebra belonging to KAD); the latter will often be shortened to p≡ q if the class of algebras in
question is clear from the context.

A standard example of a KAD is the Kleene algebra of binary relations over a set S extended
with the dynamic negation operation ∼. Note that the relational domain operation D defined by:

D(R) := ∼∼R= {(s, s) | ∃t.(s, t) ∈ R}
is related to the projection operation familiar from relational databases. If R is seen as the input–
output relation determined by a program, then D(R) is the input–output relation determined by
the test whether the program halts. The Kleene algebra of regular languages over a finite alphabet

 can be extended to a KAD by adding a : 2
∗ → 2
∗ such that

a(L)=
{

{ε} if L= ∅
∅ otherwise.

The quasivariety of Kleene algebras with domain will be denoted as KAD. Not every Kleene algebra
expands to a KAD (Desharnais and Struth 2011), but the above example of a Kleene algebra of
regular languages with domain shows that the equational theory of KAD is a conservative extension
of the equational theory of KA. The equational theory of KAD is EXPTIME-complete (Sedlár 2023).

A domain element of a KAD is an x such that x= d(y) for some y. In what follows, we indicate
the assumption that a given x is a domain element by writing x̂. A similar notational convention
is applied to domain terms.

In the rest of the paper, we will often use the equalities stated in the following lemma without
explicit mention.

Lemma 7. The following hold in each KAD:
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(1) a(0)= 1 and a(1)= 0;
(2) d(0)= 0 and d(1)= 1;
(3) da(x)= a(x) and dd(x)= d(x);
(4) d(x+ y)= d(x)+ d(y);
(5) d(x)≤ 1 and a(x)≤ 1;
(6) a(xy)= a(x · d(y));
(7) x≤ y only if a(y)≤ a(x);
(8) x= d(x)x;
(9) d(x)= 0 only if x= 0;
(10) x= xẑ iff xa(ẑ)= 0;
(11) x̂ẑ = ẑx̂;

Proof. These are well-known facts about KAD; see Desharnais and Struth (2011). Some items are
proven explicitly in the appendix.

Definition 8. For all K, we define x� y as x= xy. We will write p�KAD q instead of p≡KAD pq.

The relation � is a generalization of the consequence relation of S (which corresponds to the
case where y is a domain element), but it does not coincide with dynamic consequence. The latter
corresponds to x� d(y). Note that � is a transitive relation and it coincides with ≤ on domain
elements. The following lemma states some of its further useful properties.

Lemma 9. The following hold in all K:

(1) if x≤ y and ẑ ≤ û, then y� ẑ only if x� û;
(2) if x� z and y� z, then x+ y� z;

Proof. (1) If y= yẑ, then d(y · a(ẑ))= 0 and so d(x · a(û))= 0 since x≤ z and ẑ ≤ û. (2) If x= xz
and y= yz, then x+ y= xz + yz = (x+ y)z.

3.2 Embedding S into Kleene algebra with domain
In this section, we define a translation function Tr from the language of S into the language of
KAD and we show that it embeds the set of sequents provable in S into the equational theory of
KAD.

Definition 10. Let Tr : ES → LKAD be defined as follows:

• Tr(pn)= p2n
• Tr(bn)= d(p2n+1)
• Tr(p⇒ f )= a(Tr(p) · a(Tr(f )))
• Tr(p⊕ q)= Tr(p)+ Tr(q)
• Tr(p⊗ q)= Tr(p) · Tr(q)
• Tr(p+)= Tr(p) · Tr(p)∗
• Tr(ε)= 1
• Tr(�,�)= Tr(�) · Tr(�)

It is easily verified that, for each formula f ∈ ES, the term Tr(f ) is equivalent to a domain
term; see Lemma 15 in the appendix. Moreover, note that Tr(b̄)= Tr(b⇒ 0)= a(Tr(b) · a(0)) is
equivalent to a(Tr(b)).
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Theorem. For all �, f ∈ ES,

� 
 f is provable in S ⇐⇒ Tr(�)� Tr(f ) in KAD .

Proof. To establish the implication from right to left, let us assume that � 
 f is not provable in S.
By Theorem 2.2, there is an S-model M = (W,V) and states s, t ∈W such that (s, t) ∈ [�]M but
(t, t) ∈ [f ]M . Equivalently,

[�]M = [�]M ◦ [f ]M .

DefineK as the KAD over the set of all binary relations onW, and let [[ ]] be the unique valuation
on K such that, for all n ∈ω,

• [[p2n]] = [pn]M , and
• [[p2n+1]] = [bn]M .

It can be shown by induction on the complexity of expressions χ ∈ ES that

[[Tr(χ)]] = [χ]M .

The base case for pn holds by definition and the base case for bn is established by noting that
[bn]M =D([bn]M) since [bn]M ⊆ idW , and D([bn]M)= [[d(p2n+1)]]. The induction step is
uneventful, perhaps with the following exception:

[p⇒ f ]M = ∼([p]M ◦ ∼[f ]M)
= ∼([[Tr(p)]] ◦ ∼[[Tr(f )]])
= [[a(Tr(p) · a(Tr(f )))]]
= [[Tr(p⇒ f )]] .

(For a more detailed justification, see Lemma 16 in the appendix.) It follows that

[[Tr(�)]] = [[Tr(�)]] ◦ [[Tr(f )]] .

Hence, Tr(�) is not equivalent to Tr(�) · Tr(f ) in KAD.
The converse implication is established by induction on the length of proofs. Most of the cases

of the inductive proof use only Kleene algebra; here, we prove the cases of the induction step
containing implication. (The proof is carried out in more detail in the appendix; see Lemma 17.)

To establish the case corresponding to (TC), it is sufficient to show that

xûy� v̂ xa(û)y� v̂
xy� v̂

.

This is established using Lemma 9(2). The assumptions entail that xûy+ xa(û)y� ẑ, but

xûy+ xa(û)y= x(û+ a(û))y= xy .

To establish the case corresponding to (R⇒), it is sufficient to show that

xy= xyû
x= xa(ya(û))

.

If xy= xyû, then the following holds. First,

d(xd(ya(û)))= d(xya(û))
= d(xyûa(û))
= 0 ,
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and so xd(ya(û))= 0. Second,
x= xd(ya(û))+ xa(ya(û))

= 0+ xa(ya(û))
= xa(ya(û)) .

To establish (I⇒), it is sufficient to show that
a(x · a(ẑ))x≤ xẑ .

(The desired result is then obtained using Lemma 9(1).) We reason as follows:
a(xa(ẑ))x= a(xa(ẑ))(xẑ + xa(ẑ))

= a(xa(ẑ))xẑ + a(xa(ẑ))xa(ẑ)
= a(xa(ẑ))xẑ + 0
= a(xa(ẑ))xẑ
≤ xẑ

This (together with the other cases discussed in the appendix) concludes the proof of Theorem
3.2.

We note that essentially the same technique can be used to show that SDL∗ embeds into KAD
in the sense that � 
 ϕ is valid in all SDL∗-models M iff λ(�)� d(λ(ϕ)) is valid in KAD for a
translation λ that sends pn to p2n and bn to d(p2n+1).

4. Implicational Kleene Algebra with Domain
In this section, we return to the main question of Sedlár and Wannenburg (2022), namely the
question of how S relates to substructural logics based on implicational expansions of Kleene
algebra. We observe that KAD itself can be seen as an implicational expansion of Kleene algebra. In
particular, we introduce an extension of Kleene algebra with an implication operator which we call
implicational Kleene algebra with domain, iKAD, and we establish a mutual embedding between
the equational theories of KAD and iKAD. This mutual embedding is inspired by the mutual inter-
translatability of ∼ and → in DPL. We discuss the similarities and differences between iKAD and
other implicational extensions of Kleene algebra (such as Pratt’s 1991 action logic).

4.1 Kleene algebra with dynamic implication
We observed in the previous section that a(x · a(ẑ)) behaves like Kozen and Tiuryn’s implication
x⇒ ẑ. From this point of view, a(x) is equivalent to “x implies 0”, that is, to a(x · a(0)). This
motivates the following question: Can we capture antidomain in terms of a primitive implication
operator?

Definition 11. An iKAD is an algebra of the form:
K= (K,+, ·,→, ∗, 0, 1)

where (K,+, ·, ∗, 0, 1) is a Kleene algebra and → is a binary operation satisfying the following
axioms:

(x→ 0)x= 0 (8)
(x→ y)+ ((x→ y)→ 0)= 1 (9)

(xy→ z)= (x→ (y→ z)) (10)
(x→ y)= (x→ ((y→ 0)→ 0)) (11)

We define ∼x := x→ 0.
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The guiding example of an iKAD is a relational Kleene algebra with the dynamic implication
operation of DPL, namely,

R→Q= {(s, s) | ∀t : (s, t) ∈ R =⇒ ∃u(t, u) ∈Q} .
Dynamic implication expresses a test of the following liveness property: the program represented
by Q has a terminating execution starting in any final state of a terminating execution of the
program represented by R (we can always continue with Q after R, as put by Hollenberg 1997). In
the particular instance whereQ is a test, this means thatQ holds after every terminating execution
of R (partial correctness). Note that R→ ∅ boils down to dynamic negation of R.

A domain element (term) is an element of the form ∼∼x (p instead of x). As before, we use the
notation x̂ (p̂) to indicate that the element x (term p) is a domain element (term).

Pratt’s action logic (Pratt 1991) is a well-known implicational extension of Kleene algebra
which was studied intensively in the recent decades (Buszkowski 2006; Jipsen 2004; Kozen 1994b;
Kuznetsov 2021; Palka 2007). Action logic is based on residuated Kleene algebras, adding to Kleene
algebras a pair of binary operations� and �such that

y≤ x� z ⇐⇒ xy≤ z ⇐⇒ x≤ z �y . (12)

As axiom (10) shows, an “axiom version” of residuation holds for → in iKAD, bringing → close
to the �operator of action logic. However, it can be shown that → does not residuate with ·. In
particular, a counterexample to

xy≤ z =⇒ x≤ y→ z (13)

is a three-element Kleene algebra consisting of the linearly ordered set of elements 0< 1< 2 where
· is commutative and x · 2= 2 in case x = 0, 2∗ = 2 and where the following table characterizes→:

→ 0 1 2
0 1 1 1
1 0 1 1
2 0 1 1

It is clear that 2 · 0≤ 0, but not 2≤ 0→ 0. A similar counterexample to the converse of (13) exists.
In general, it is clear that (13) should fail since y→ z ≤ 1 for all y, z. We leave a more thorough
comparison of iKAD and residuated Kleene algebras to another occasion.

4.2 KAD and iKAD
In this section, we show that KAD and iKAD are equivalent in the sense that the equational theory of
one embeds into the equational theory of the other. A corollary of this result is that the equational
theory of iKAD is decidable (EXPTIME-complete by Sedlár 2023). This is an interesting contrast
to residuated Kleene algebras (Pratt’s action logic).

Definition 12. Let τ : LKAD → LiKAD such that

• τ (p)= p for all p ∈ P;
• τ commutes with the Kleene algebra operators;
• τ (a(p))= τ (p)→ 0.
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Let σ : LiKAD → LKAD such that

• σ (p)= p for all p ∈ P;
• σ commutes with the Kleene algebra operators;
• σ (p→ q)= a(σ (p) · a(σ (q))).

Lemma 13. The following hold:

(1) KAD |= p= q implies iKAD |= τ (p)= τ (q);
(2) iKAD |= p= q implies KAD |= σ (p)= σ (q);
(3) KAD |= p= σ (τ (p));
(4) iKAD |= p= τ (σ (p)).

Proof. To prove the first item, it is sufficient to show that the translations of the antidomain
axioms of KAD are valid in iKAD. Validity of the translations of (5) and (7) follows easily from
(8) and (9), respectively. To deal with (6), it is sufficient to use the following equivalences which
are established using Lemma 18 in the appendix:

∼(x · ∼∼y)= x→ ∼∼∼y
= x→ ∼y
= ∼(xy) .

To prove the second item, it is sufficient to show that the translations of the implicational axioms
of iKAD are valid in KAD. This is easy; see Lemma 14 in the appendix. To prove the third item, it is
sufficient to observe that a(x · a(0))= a(x) holds in KAD. The final item is established easily using
axiom (11).

Theorem. The following hold:

(1) For all p, q ∈ LKAD: KAD |= p= q iff iKAD |= τ (p)= τ (q);
(2) For all p, q ∈ LiKAD: iKAD |= p= q iff KAD |= σ (p)= σ (q).

Proof. This is established easily using Lemma 13.

Theorem 4.2 shows that S embeds into a specific implicational expansion of Kleene algebra,
and that this expansion is decidable (EXPTIME-complete by Sedlár 2023).

5. Conclusion
In this sequel to the conference paper (Sedlár andWannenburg 2022), we have shown that Kozen
and Tiuryn’s substructural logic of partial correctness S embeds into the equational theory of KAD.
We introduced a formulation of KAD that replaces the antidomain operator a with an implication
operator →, thereby showing that S embeds into a particular implicational expansion of Kleene
algebra. We discussed the main differences between the implicational formulation of KAD and the
standard implicational expansions of Kleene algebra based on residuated semirings such as Pratt’s
action logic. We hope that these results contribute to a better understanding of the place of S in
the wider context of substructural logics and implicational expansions of Kleene algebra.

We also noted a close relation between KAD and the propositional fragment of DPL. One
aspect of this connection is the relation of S to SDL∗ of Bochman and Gabbay which we also
commented on. We note that we could obtain our embedding result via an embedding of either
PDL or SDL∗ into KAD, but we opted for a more instructive direct proof.
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The connections observed in this paper and elsewhere motivate a more systematic study of
algebras with (a generalization of) the dynamic negation operator. We leave such a study for
another occasion.
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Appendix A. A technical appendix
This appendix contains the expanded proofs of some of the results stated (or needed) in the main
text.

Lemma 7. The following hold in each Kleene algebra with domain:

(1) a(0)= 1 and a(1)= 0;
(2) d(0)= 0 and d(1)= 1;
(3) da(x)= a(x) and dd(x)= d(x);
(4) d(x+ y)= d(x)+ d(y);
(5) d(x)≤ 1 and a(x)≤ 1;
(6) a(xy)= a(x · d(y));
(7) x≤ y only if a(y)≤ a(x);
(8) x= d(x)x;
(9) d(x)= 0 only if x= 0;
(10) x= xẑ iff xa(ẑ)= 0;
(11) x̂ẑ = ẑx̂;

Proof. We prove some of the items explicitly. (9) d(x)= 0 only if a(x)= 1. Then 0= a(x)x= 1x=
x. (10) If x= xẑ, then xa(dxz)= xẑa(ẑ)= 0. Conversely, x= x(ẑ + a(ẑ))= xẑ + xa(ẑ)= xẑ + 0=
xẑ.

Lemma 14. The following hold in each Kleene algebra with domain (where x→ y := a(x · a(y))):
(1) (x→ 0)x= 0;
(2) (x→ y)+ a(x→ y)= 1;
(3) (xy→ z)= (x→ (y→ z));
(4) (x→ y)= d(x→ y)

Proof. Item 1: a(x · a(0))x= a(x1)x= a(x)x= 0. Item 2: if z = a(x · a(y)), then (x→ y)+ a(x→
y)= a(z)+ d(z)= 1. Item 3: (xy→ z)= a(xy · a(z))= a(xd(y · a(z)))= x→ (y→ z)). Item 4:
d(x→ y)= da(x · a(y))= a(x · a(y))= x→ y.

Lemma 15. For each formula f ∈ ES, the term Tr(p) is equivalent to a domain term. That is,

Tr(f )≡KAD d(q)

for some q ∈ LKAD.

Proof. There are three cases to consider (it is not necessary to reason by induction on the
complexity of f ):

• Tr(bn)= d(p2n+1)
• Tr(0)= 0≡ d(0);
• Tr(p⇒ f )= a(Tr(p) · a(Tr(f )))≡ da(Tr(p) · a(Tr(f ))).

This concludes the proof.
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Recall the definitions of dynamic negation (relational antidomain) and the relational domain
operator, for any R⊆W ×W:

∼R := {(s, s) | ¬∃t : (s, t) ∈ R}
D(R) := ∼∼R= {(s, s) | ∃t : (s, t) ∈ R} .

Lemma 16. The following hold in each S-model, assuming the above definitions of ∼ and D:

(1) for all f , [f ]M =D[f ]M;
(2) for all p and all f , [p⇒ f ]M = ∼([p]M ◦ ∼[f ]M).

Proof. The first claim is obvious from the inspection of the semantic clauses for formulas, and
the fact that D(R)= R for R⊆ idW . The second claim is established as follows (we omit the
subscriptM):

∼([p] ◦ ∼[f ])= {(s, s) | ¬∃t.(s, t) ∈ ([p] ◦ ∼[f ])}
= {(s, s) | ¬∃t.(s, t) ∈ [p] & (t, t) ∈ ∼[f ]}
= {(s, s) | ∀t((s, t) ∈ [p] =⇒ ∃u.(t, u) ∈ [f ])}
= {(s, s) | ∀t((s, t) ∈ [p] =⇒ (t, t) ∈ [f ])}
= [p⇒ f ]

Lemma 17. If � 
 f is provable in S, then

Tr(�)≡KAD Tr(�) · Tr(f ) .

Proof. Induction on the length of derivations in the sequent system for S. Most rules are checked
routinely, and the implicational rules are handled in the main text. Here, we add the proof related
to the rule (I+), for which we used the assumption of ∗-continuity in the conference paper (Sedlár
and Wannenburg 2022). In particular, we show that the quasi-equation

e≤ 1 & ep= epe & ep= epq =⇒ ep+ = ep+q (A1)

is valid in Kleene algebra. In order to show this, we use the fact that the following equation and
two quasi-equations are valid in Kleene algebra:

p(qp)∗ = (pq)∗p (A2)
ep= epq =⇒ (ep)+ = (ep)+q (A3)

e≤ 1 & ep= epe =⇒ ep+ = (ep)+ (A4)

For a proof of (A2), see Kozen (1994a), Corollary 2.5. The quasi-equation (A3) is established as
follows:

ep= epq (A5)
(ep)∗ep= (ep)∗epq (A6)
(ep)+ = (ep)+q . (A7)

To establish the quasi-equation (A4), we will show that

ep≤ (ep)+ (A8)
ep= epe =⇒ (ep)+p≤ (ep)+ (A9)
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Then, using (4), one can infer that ep+ ≤ (ep)+; conversely, one can show that
(ep)+ = ep(ep)∗ ≤ epp∗ = ep+

using the assumption e≤ 1.
Validity of (A8) is straightforward (since 1≤ q∗). Validity of (A9) is established using (A2) and

the assumption ep= epe as follows:
(ep)+p= ep(ep)∗p

= (ep)∗epp
= (ep)∗epep
= (ep)+ep
≤ (ep)+

The last step is valid since qq∗ ≤ q∗ is valid in Kleene algebra. This concludes the proof of (A9)
and so (A1) is established.

Lemma 18. The following hold in each iKAD:

(1) ∼(xy)= x→ ∼y
(2) ∼∼∼x= ∼x

Proof. Item 1: ∼(xy)= xy→ 0= x→ (y→ 0)= x→ ∼y. Item 2 follows easily from axiom (11).

Cite this article: Sedlár I (2024). Implicational Kleene algebra with domain and the substructural logic of partial correctness.
Mathematical Structures in Computer Science 34, 645–660. https://doi.org/10.1017/S0960129524000045

https://doi.org/10.1017/S0960129524000045 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000045
https://doi.org/10.1017/S0960129524000045

	Implicational Kleene algebra with domain and the substructural logic of partial correctness
	Introduction
	KAT and S
	Kleene algebra with tests
	Substructural logic of partial correctness
	Dynamic consequence and dynamic implication
	Sequential Dynamic Logic

	Embedding S into KAD
	Kleene algebra with domain
	Embedding S into Kleene algebra with domain

	Implicational Kleene Algebra with Domain
	Kleene algebra with dynamic implication
	KAD and iKAD

	Conclusion
	A technical appendix


