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A b s t r a c t . Models of spherical dynamos are considered which involve the full interaction between 
the magnetic field and the motion of an incompressible conducting fluid. In the basic equations 
magnetic field and fluid velocity are expanded in series of certain decay modes. In this way 
these equations are reduced to an infinite set of ordinary first-order differential equations for the 
coefficients of these expansions. The behaviour of dynamos can then be studied by integrating 
a finite set of these equations numerically. Some first results obtained in this way are presented 
for mean-field models in which the growth of the magnetic field due to the α—effect is limited by 
large-scale motions generated by Lorentz forces. 
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1. The models 

The paper aims at contributing to the study of spherical dynamo models involv-
ing the full interaction between magnetic fields and fluid motions. The numerical 
approach proposed here applies to the dynamo problem in its original as well as in 
its mean-field formulation. We refer here to the mean-field equations ( which turn 
into the original ones by cancelling some specific terms). In that sense we suppose 
the mean magnetic flux density, B, to be governed by 

— = curl(u χ B + ε) + ηΔΒ, divB = 0, (1) 

inside the fluid body, and to continue in outer space as an irrotational solenoidal 
field vanishing at infinity. We further suppose the fluid body to be incompressible 
and its mean velocity, u, to obey 

c^u 1 
+ (u · V)u) = - V p + p i / Δ ι ι - 2ρΩ χ u + - c u r l B x B + f + g, 

div u = 0, (2) 

and a proper condition at the boundary of the fluid body. £ and Q are the electro-
motive and ponderomotive forces caused by fluctuations of the magnetic field and 
the fluid motion, which in general depend on Β and u . As usual, η is the magnetic 
diffusivity, ρ the mass density, ρ a modified pressure, u the kinematic viscosity and 
μ the magnetic permeability, all assumed to be constant. We refer to a rotating 
frame of reference. Ω means the angular velocity responsible for Coriolis forces, 
and f an external force. 

2. The numerical approach 

Our numerical approach is an extension of that used in earlier papers (Rädler et al. 
1989, 1990). To explain it we redefine B ,u , £ , f and G as dimensionless quantities, 
introduce dimensionless space and time coordinates and rewrite (1) and (2) into 

ĉ B 
A B - Ρη — = —curlF, divB = 0, (3) 
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and 

(4) 

with 

F = Rnu χ Β + 

G = -Ru (u · V)u -T^exu + N curlB χ Β + Qj f + Qg gè 

(5) 

(6) 

Ρη and Ρv are dimensionless parameters defined by R2/Τη and R2/Tv> where R is 
the radius of the fluid body and Τ an arbitrary time unit. Ρ is a modified pressure 
and e the unity vector Ω/Ω. Rn, R'v) RUyTa,N}Qf and Qg are again dimensionless 
parameters whose meaning can easily be seen; e. g., Rv and R„ are the magnetic 
and hydrodynamic Reynolds numbers UR/η and UR/v, Ta the Taylor number 
(2QR 2 /v)? , and Ν a modified Stuart number B2R/μρι/U, where U and Β are 
arbitrary units of the fluid velocity and the magnetic flux density. Of course, these 
equations have to be completed by the above condition on the continuation of Β 
in outer space and the boundary condition for u. 

Consider first the special case F = G = 0, which covers the two independent free 
decay problems for magnetic fields and for slow motions. As is well known there are 
solutions for Β in the form B,(x) exp[—\ft]. Analogously, there are solutions for u 
of the form U t (x) exp[ — T h e Bt· and the U,· define complete orthogonal sets 
which allow the expansion of solenoidal vector functions satisfying the continuation 
or boundary conditions for Β or u, respectively. 

Returning to the original problem with non-vanishing F and G we represent Β 
and il by 

where the first integral is over all space, the second one over the fluid body only. 
Then equations (3) and (4) can be replaced by an infinite set of ordinary differential 
equations, 

(7) 

and assume Bt· and U» normalized so that 

(8) 

(9) 

u d u i \U (10) 

where 

(11) 

with integrals taken over the fluid body. 
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Changing the notation we write now B^™^ , ^ and instead 
of Β,·, X f , U, and λ·7 . The index a takes the values Ρ or Τ which denote poloidal 
and toroidal fields. Referring to spherical polar coordinates ν,Ο,φ with r = 1 at 
the boundary of the body and r being the radius vector, we have 

ΒζΓ" ( x ) = -Ν*?« c u r l [ j „ ( / ! „ . , , , r ) r χ V Y ™ " ( θ , φ ) ] , (12) 

Β lTß (x) = j „ (μη ι r) r χ VY?" (θ,φ), (13) 

Α?,""" = / £ - , , „ (Η) 

and, introducing now the no-slip condition 11 = 0 at the boundary of the fluid body, 

ν ζ Γ β W - ~NniPm c u r l Kin (^n+1,1 r ) - j n ( , i „ + M ) r " ) r χ V Y ^ (0,<ρ)],{15) 

V l ^ (Χ) - Jn (μηΐν) Γ Χ V Y ^ Μ , (16) 
\UΡηιβ _ 2 xC/Tm/? _ 2 /ιγΛ 
η/ — ^π + Ι,/Ϊ η/ "Μη/· 

The Ν are normalization constants, the jn spherical Bessel functions and 
spherical harmonics, and the relations apply for η > 1 and 0 < m < η. The μη\ are 
the positive zeros of j n , that is, j η ( μ η ι ) = 0, and β takes two values distinguishing 
between spherical harmonics with cos πιφ and sinnig. 

For our numerical approach the expansions (7) are truncated so that (9) and 
(10) turn into a finite set of equations for bi and U{. This set is integrated by a 
modified second order Runge-Kutta method. In general, each /,· and </,· depends on 
all bi and u,·. However, apart from very special cases, the integrals in (11), which 
define this dependence, cannot be solved analytically. Therefore, in each time step 
the numerical values of /,· and (/,· have to be determined by numerical evaluation 
of these integrals. 

3. S o m e p r e l i m i n a r y r e s u l t s 

The numerical approach described so far has been applied to particular a-effect 
models as investigated already in a former paper ( Rädler et al 1990 ). To define 
them we specify equations (1) and (2) by 

£ = c*B, a = a o a(r ,0) , f = G = 0, (18) 

where QO is a constant and a a dimensionless function given by 

a — 30r2 (1 — ?>2)2 costf. (19) 

Proceeding to equations (3) to (6) for the dimensionless quantities we write then 
Ra instead of R,f and define it as a0R/i). On this level £ is equal to aB. 

The results presented here have been obtained with the further specification 
Rv — Rv = T 2 = 10, Ν = 40, and several values of Ra. For a certain range of Ra 

steady axisymmetric solutions have been found with magnetic fields antisymmetric 
or symmetric about the equatorial plane, i.e., AO or SO fields. The solutions can 
be roughly characterized by the magnetic and kinetic energies. For a few examples 
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a meridional plane, Ra = 6.0. 

a meridional pla.ne, Ra = G.O. 

Fig. 3. Magnetic field configuration of A l type (left) and corresponding velocity fields 
(right) in planes parallel to the equatorial plane at latitudes of 10° (upper panel) and 45° 
(lower panel), /Î« = G.O. 
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these energies are given in Tables I and II , and magnetic and velocity field con-
figurations arc depicted in Figures 1 and 2. Moreover, non-axisymmetric solutions 
have-been found, which arc no longer steady in a strict sense but have the form 
of waves travelling in azimuthal direction. In the example chosen for Figure 3 the 
energies arc independent of time but the magnetic field configuration, which is of 
Λ1 type, as well as the velocity field show an eastward rigid rotation with a rotation 
rate of about Λ.Ίη/R2. The examples mentioned demonstrate that the growth of 
a magnetic field due to a-cficct can well be limited by the fluid motion caused by 
tliis field. This seems, however, be restricted to a range of not too large Ra. Of 
course, the stability of these solutions remains to be checked. 

TAULE I 
Magnet ic energy En, kinctic energy Eu and their poloidal and toroidal parts for solutions 
with magnet ic fields of AO type in units of pU2 R*, /£« = 6-0. 

Rn En En η E trr Ευ Eu r EUT 

5.5 0.52 0.28 0.24 0.015 0.002 0.013 
5.7 1.01 0.59 0.42 0.053 0.015 0.048 
6.0 1.68 1.00 0.68 0.14 0.01 0.1 a 

T A B L E II 
T h e same as Tabic 1 but m lagnctic fields of SO type. 

Rn En En Ρ Enr Eu Eur EUT 

5.5 0.84 0 .44 0.40 0.0086 0.0032 0.0054 
5.7 2.60 1.36 1.24 0.051 0.017 0.034 
6.0 5.28 2.64 2.64 0.14 0.04 0.10 
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