J. Aust. Math. Soc. 79 (2005), 277-296

SPREADABLE ARRAYS AND MARTINGALE STRUCTURES

B. GAIL IVANOFF and N. C. WEBER"™
(Received 20 November 2003; revised 22 January 2004)

Communicated by V. T. Stefanov

Abstract

Kallenberg has introduced the concept of conditional spreadability for random sequences and has devel-
oped characterizations of this property in terms of one dimensional martingales and optional times, and as
well has proven a predictable sampling theorem. This paper investigates the relationship between planar
martingale structures and the natural analogues of conditional spreadability when extended to arrays of
random elements. Analogues of the predictable sampling theorem are also established for spreadable
arrays.
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1. Introduction

The concept of spreadability of finite and infinite sequences of random elements
has been studied by many authors, including Ryll-Nardzewski [11], Kingman [9]
and Kallenberg ([5, 7]). A sequence is said to be exchangeable if its distribution
is invariant under permutations that leave all but a finite number of elements fixed
whereas a sequence is said to be spreadable if all subsequences of the same size have
the same distribution.

In [7] Kallenberg has related spreadability of sequences to a filtration & to
which the sequence is adapted, and has linked the concepts of % -spreadability and
& -martingales. In light of the richness and diversity of the theory of multidimensional
martingales (see, for example, Merzbach [10]), the goal of this work is to explore the
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connections between these two structures in the context of arrays of random elements.
We shall see that the various natural two-dimensional analogues of the concept of
spreadability give rise to different martingale structures on the plane.

In the case of infinite sequences, Ryll-Nardzewski [11] showed that spreadability
and exchangeability are in fact equivalent, so by de Finetti’s Theorem an infinite
spreadable sequence is mixed i.i.d. Kingman {9] noted that the two structures are not
equivalent for finite sequences. While finite echangeable sequences can be represented
as mixtures of ‘urn’ sequences (see, for example, Aldous [2]), no such characterization
exists for finite spreadable sequences.

Extending the idea of spreadability to arrays leads to two different approaches. For
the stronger, separate spreadability, we select a subsequence of column indices and a
separate subsequence of row indices to determine the elements that form a subarray.
For the weaker, joint spreadability, we apply the same subsequence of indices to both
rows and columns to form the subarray. (See [6] and [4].)

For a sequence, when spreadability is related to a filtration &, we shall see that there
are martingale characterizations of % -spreadability in terms of either a translation
operator or a deletion operator. Although the two operators are essentially equivalent
for sequences, this is no longer the case for arrays. Translations lead naturally to
weaker definitions of conditional spreadability than do deletions.

In the case of arrays, conditional exchangeability was defined and characterized in
Ivanoff and Weber [4]. In light of the preceding discussion, combining the different
approaches to conditional spreadability for arrays gives rise to four different structures,
each of which will be shown to have its own martingale characterization.

Further, new predictable sampling theorems will be established for each of the
conditional spreadable array structures. In some cases, one-dimensional technology
can be applied to establish these results, but when the sampling is done using times
that are predictable in a two-dimensional sense, new techniques are required.

2. Notation and definitions

A sequence of random elements (X, ..., X,) (n may be 00) taking their values in
some measurable space (G, ¥) is spreadable if for any finite m < n and increasing
subsequence of indices k; < : -+ < k,

1) Xy oo X)) =9 (X1, ..., Xp).

Kallenberg has suggested that ‘contractable’ is a more suitable name for this property.
From [7] we note that when n < o0, (1) is equivalent to the condition

03
¢k0X:= (Xl"-'vxk—lvxk+ly-'-’Xn)=9 (Xl,...,X,.._l)=¢,,OX, Vk<n-
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We shall refer to ¢, as the deletion operator. By induction, it is easily seen that
(2) implies (1) and so the behaviour of the contracted sequence after deletion of one
or more elements determines the spreadability property. To extend (2) to infinite
sequences, we see that (1) is equivalent to the condition that for » finite or infinite and
any finite k, j, 1 <k,j <n,

(3) ¢k0X=g¢jOX.

If (1) is true for any finite subset of distinct (but not necessarily increasing) indices,
then the sequence is exchangeable.

As in the case of exchangeability, conditional spreadability for sequences is defined
with respect to a discrete filtration F = (%, F#;,...). We say that the sequence
(X1, ..., X,) is F-spreadable if it is adapted to & and when conditioned on %,
(X441, - -+ X,) is spreadable for every k. This property can be expressed in two
equivalent ways: first,

4) conditioned on %, 6, o X is spreadable, Yk < n,

where 8,0 X is the shifted sequence (X1, .. ., X,). Asin[7], to avoid the requirement
of the existence of regular conditional distributions, we interpret (4) in terms of
conditional probabilities given any set A € %, with P(A) > 0. It is trivially true
that any spreadable sequence is % -spreadable with respect to the minimal filtration
generated by the sequence.

Using (3), we see that (4) is equivalent to the following:

(5) ¢hoX=9|yk¢joX, Vk<h,]§n;k,h,j<w

where ‘=g, ¢, indicates equality in distribution, given %;.

We shall see that the two dimensional analogue of (5) is strictly stronger than the
analogue of (4).

For clarity and notational convenience in what follows, given a ¢ x r array we shall
generally assume that either both ¢, r < 00 or ¢ = r = 0o. However, all definitions
and theorems can be adapted in a straightforward way to include the case in which
only one of ¢ and r is finite.

LetX =(X; :1<i<c¢1<j <r)beac x rarray of random elements taking
their values in some measurable space (G, ¥). X is separately spreadable (SS) if for
alm<c,g<rimgqg<ooandiy < - - <y, j1 <--- <jg

(6) Xij,:1<k<ml<h<qg)=9g X;:1<i<m1<j=<gq).

In analogy to (3), X is SS if and only if for every h,k < cand I,m < r; h,k,
l,m < o0,

(7) ¢;,. oX =9 ¢k~ oX and
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®) $10X =9 pmoX,

where ¢,. o X is the array X with column & deleted, and ¢, o X is the array X with
row [ deleted. Note that ¢,. and ¢, commute and denote ¢, = ¢ o ¢..

The square array X = (X; : 1 < i,j < n) (n may be 00) is jointly spreadable (JS)
ifforall finite m <nandi; <--- < i,

) X : 1 sk,h<m)=9g (X :1<i,j <m).
Equivalently, X is JS if and only if forevery j, k < n;j, k < 00,

(10$) ¢jjoX =9 dpuoX.

There is an extensive literature on exchangeable and related arrays which has
grown from the seminal works of Aldous [1] and Hoover [3] that extended de Finetti’s
theorem to infinite arrays with appropriate symmetries. Aldous [2] is an excellent
general reference on exchangeability. Similar representations for infinite spreadable
arrays have been established by Kallenberg [6]. The following characterizations are
developed without reference to these representations and the techniques used here
apply to both finite and infinite arrays.

In order to define conditional spreadability for arrays, we assume that we are given
an arbitrary filtration # = (&#; : 0 <i < ¢,0 <j < r)towhich X is adapted (that s,
Fi € Puifi <handj <k, and X is &F;-measurable, Vi, j ). Roughly speaking,
we will say that an array has a particular property in the weak & sense if, conditioned
on %;,, the translated array 6;, 0 X := (X :j + 1 <h <c,k+1 <1< r)hasthe
required property for all (j, k) € {1,...,¢c} x {1, ..., r} (cf. (4)). On the other hand
(cf. (5)), suppose that the actions defining the property in question are carried out in
such a way that the first j columns and & rows are left unchanged and consider the
conditional distribution of the entire array given %;,. Then we say that the array has
the property in the strong % sense if the conditional distributions of the new array
and the original are the same for all (j, k) € {1,...,c} x {1,...,r}. Figures 1 (a)
and (b) illustrate the fundamental difference between the various weak % - and strong
& -properties. As can be seen, when conditioning on %, the weak #-properties
involve only the conditional distribution of the shifted array 6;, o X indicated by the
shaded region in Figure 1 (a), whereas the shaded region in Figure 1 (b) illustrates that
the strong &% -properties involve the conditional distribution of the entire shell outside
Xm:1<h<j,1=<l<k),whichincludes the shoulder regions S, and §,, that is,
the set of variables in the first k rows that are not in the first j columns, or in the first j
columns but not in the first k rows.

With these concepts in mind, we define the various conditional spreadability prop-
erties as follows.
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(a) The weak & -property (b) The strong % -property

FIGURE 1. The weak and strong .% -properties.

We call X weak & -SS if (cf. (4))
an conditioned on Fjy, O, 0 X is SS, Vj <cand Yk <r.
Similarly, the n x n array X is weak & -JS if
(12) conditioned on Fy, G o X isJS, Vk < n.

We will say that X is strong #-SS if (cf. (5), (7), (8)) for any i < h,k < cand
J<lm=<rhkl m<oo,

(13) ¢h- oX =9\%; ¢k- oX and
(14) $10X =918, pmo X.

The n x n array X is strong % -IS if (cf. (5), (10)) forevery i < j, k <n;j, k < 00,
$jj 0 X =92, bu o X.

It is clear that the strong % -properties imply the weak % -properties, and they
are equivalent when % is the minimal filtration generated by the array (since in this
case, X is separately (respectively, jointly) spreadable if and only if the corresponding
strong % - and weak % -properties hold). For general filtrations, the converse is not
true: an example is given in [4, page 350] that is weak #-SS but not strong £ -SS.
We repeat it here, denoting the ith column of an array X by X;. and the j th row of X
by X ;.
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EXAMPLE 2.1. Let {§;}, {n;} and {A;} be independent U(0, 1) random variables.
Let X; = &njAy and F; = olé, k < ism, Aw, 1 < j,h = 1} fori,j > 1. Given
Fij.0; o X is SS, and so X is weak #-SS. However, for any j > 1, given #; the
columns X;,,., X;,2., ... are not identically distributed, and so X is not strong % -SS.

For simplicity in the following sections, we shall refer to the strong # properties
simply as #-SS or #-JS when no ambiguity arises.

Both 1- and 2-dimensional martingale structures and random times will be used
in the sequel. Given the filtration & = (£¥; : 0 < i < ¢,0 < j < r) denote the
(one-dimensional) filtrations #' = (F! : 1 <i<cad F =(F}:1<j <),
where £! = \/[_| #; and F} = /| £;;. Anintegrable process

M={M;:0<i<c 0<j<r}

adapted to a filtration % is an (% -) martingale if for all i, j, h, k such that i < h,
J <k, EMu | F;] = M; as. M is a l-martingale if for all i, j, h such that i < h,
EMy | F1= M; as. Analogously, M is a 2-martingale if for all i, j, k such that
J <k, E[My| 5"].2] =M, as.

The random vector (S, T) taking values in N? is an adapted random time with
respect to F if (S=i, T =j} e &;, forall i,j > 1. Itis a predictable random
timeif (S=i T =j} € Fi_yj-, foralli,j > 1. Similarly, the Z,-valued random
variable S is an % !-adapted (predictable) random time if {S = i} € F!(ZFL)), for
all i > 1. F*-adapted and predictable random times are defined similarly. Note
that if (S, T) is % -adapted (predictable), then S and T are #'- and #2-adapted
(predictable), respectively. However, in general the converse is not true. (Note that
we have avoided use of the more standard term of stopping or optional time due to the
fact that two dimensional stopping times can be defined in various ways.)

3. Separate spreadability

3.1. Strong .#-separately spreadable arrays Recall that an array X is strong
Z-SS, or just Z-SS, if and only if for every i < h,k < candj < I,m < r;
hok,l,m < 00,

¢h~ oX =91 Fy ¢k- oX and ¢,10X =91%, ¢.,,, oX.

The fact that j is arbitrary in the first equation above and i in the second yields a very
simple lemma that will allow us to apply known results for spreadable sequences to
SS arrays.
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LEMMA 3.1. Let X be a finite or infinite array. X is & -SS if and only if the sequence
of column vectors (X;.;1 < i < ¢) is #'-spreadable and the sequence of row vectors
(X;31<j <r)is #2-spreadable.

PROOF. We shall consider only the column vectors as the proof for rows is identical.
Assume that X is #-SS. We must show thatfori < h, k < c; i, h, k < 00,

(15) ¢h o (X]., Xz., . ) =9|yil ¢k o (Xl., Xz., .. )

As pointed out in Section 1, we interpret (15) in terms of elementary conditional
probabilities given any set A € 9‘.‘ with P(A) > 0. Therefore, (15) is an immediate
consequence of (13), since it is sufficient to check equality of conditional probabilities
on J;_, &, a n-system that generates ..

The converse is trivial: (15) implies (13) since &F; C ZF. O

Lemma 3.1 allows us to give an analogue of [7, Lemma 3.1] for SS arrays. First, the
sequence (X;;1 < i < ¢) is & '-stationary if 6, o (X1., X3.,...) =9 (X1, X2,...)
for every bounded .#!-adapted time t. For ¢ < 00, this is interpreted as

Xesry ooy Xegr) =9 X1.,..., X)) whenever T +k < ca.s.

We define % ?-stationarity analogously for the row vectors of X.
We next define the prediction sequences

(16) i = Pl6;o (X1, Xz,...) €| F]
(17) mj = Ploo(X1,Xa...) €| F1

As before, the necessity of regularity properties of the conditional probabilities is
avoided by interpreting (16)—(17) in terms of elementary conditional probabilities.
We say that u;. forms an £ !-martingale if

810X, X2,...)=960(X1,X2,...)
over &/ forall i > 0, that is, for A € £}, i >0,
P[0y 0 (X1, X3, ...) € ;A1 = PlOi o (X1, X2, ...) € 5 AL
For finite sequences, this condition is interpreted as: fori =0,...,c— 2,
Xis2s-or Xo) =9 Kigr ..., X)) over FL.

We define the #2-martingale condition for . ; analogously.
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We may also define truncated prediction sequences, using truncated arrays. For
j < r,denote X = (Xy,1 <i < ¢ 1 <k < j)and fori < c, denote

X% =(Xy,1 <h <i,1<j <r). Wedefine the prediction sequences
(18) py = Plo,o XV, X3", .)€ | F)
(19) py = Pl6; o (X1, X, ..) e | F1.

The following lemma characterizes an % -SS array in terms of martingale structures.

LEMMA3.2. LetX = (X : 1 <i < ¢, 1 £j < r)beafiniteorinfinite ¥ -adapted
random array in some measurable space G. The following are equivalent:
1) Xis #-SS.
(2) (Xi31 <i<c)is F'-stationary and (X j;1 < j <r) is F>-stationary.
(3) wi forms an F'-martingale and . forms an % *-martingale.
(4) py forms a 1-martingale and p;; forms a 2-martingale.

PROOF. The equivalence of conditions (1)—(3) above is an immediate consequence
of [7, Lemma 3.1] and Lemma 3.1. The equivalence of (3) and (4) follows from the
simple observation that the law of an array is determined by the laws of the truncated
arrays. a

A martingale characterization for spreadability of sequences can be expressed in
terms of deletion operators. First, we observe that for a sequence X = (X;;1 <i < n)
of random elements adapted to a filtration &,

pio(X, X2 .. )=y, ..., Xim,6i0 (X1, Xy, ...)).

Defining vy = P[¢s1 0 X € - | £#;], we obtain Lemma 3.3 below, which gives an
alternative martingale characterization to [7, Lemma 3.1].

LEMMA 3.3. Let X = (X;;1 < i < n) be a finite or infinite sequence of random
elements adapted to a filtration & . The following are equivalent:
(1) X is & -spreadable.
(2) For any ¥ -predictable bounded random time tv such that 1 < m < o0 a.s.,

$:0X =9 ¢pnoX.
(3) v is an F -martingale.

The proof of this lemma is easily adapted from the proof of Lemma 4.1 in Section 4.
In light of Lemma 3.3, the martingale characterizations in Lemma 3.2 can be restated
in terms of deletion operators.

We next extend the concept of optional skipping or predictable sampling to SS
arrays, and we shall do so in terms of both 1- and 2-dimensional random times.
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THEOREM 3.4. Let X be a finite or infinite & -SS array.

(1) Let S; < 8 < --+ < S, be finite F'-predictable times in (1, ..., c} and let
I, < T <--- < T, be finite Fpredictable timesin {1, ..., r}. Then

(20) X5 s Xs.) =9 X1,...,X;) and
02} X, ... Xg) =9 Xa,..., X;).

(2) Let S, < 83 < --- < §; be finite F'-predictable times in {1, ..., c} and let
Ty < T < -+- < T; be finite ¥ *-predictable times in {1, . . ., r} and suppose that one
of the following two conditions is satisfied:

(@) Sy is Fl-measurable, forallh = 1,...,i or T, is &, -measurable, for all
k=1,...,j.

(b) Forallh=1,...,iandk =1,...,], (S, T;) are F -predictable times in
{1,...,¢c} x{1,...,r}.
Then

(22) Xsr;1<h<i,1<k<j)=9 Xm;1=h=<i1=<k=<j).

PROOF. We begin by proving the theorem for a finite array, and assume that both
¢, r < 0o0. The extension to the case of an infinite array is discussed at the end of the
proof.

(1) This is an immediate consequence of [7, Proposition 5.1] and Lemma 3.1.
(2) (a) Assume that Ty is #;-measurable, forallk = 1,...,j. Let fir : G — Rbe
bounded measurable functions, h =1, ...,i;k=1,...,j. Then

i AR
E [n ]—Ifhk(xshﬂ):l =E E( l—[fhk(XS;.n) l 901)]

h=1 k=1 h=1 k=1
oL
(23) =E|E ( [T/ mXnm) | 9&)]
N h=1 k=1
i J
=E nfhk(XhT.)]
Lh=1 k=1
i
(24) =E ]'Ifhkmk)] :
_h=1 k=1

We apply the predictable sampling theorem for spreadable sequences ([7, Proposi-
tion 5.1]) and (23) follows from the % !-spreadability of the column vectors and
the fact that, given %, the rows become fixed. Equality (24) then follows from the
% *-spreadability of the row vectors. A monotone class argument completes the proof.
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(2) (b) Let f1x : G — R be bounded and measurable, 1 < h < i, 1 <k <j. By
symmetry, we may assume without loss of generality that i < j. Applying conditional
spreadability iteratively,

i J
E [ﬂ ]'[fmxsm)]
h=1 k=1

—

iJ
S1 =aq ...,S,' = a;,
= Z E ]—[fhk(XSi.Tk _b’ T =b
1yeevs bij = Uj
l<ai<--<ai<c  Lh=1k=1
I<by<.--<bj<r

r ]‘
= Y E (f,,(xa,b,)l'[fh,(xahb>Hf,k(xa,b,>m, u,,-l)

l1<a)<---<a;<c
1<by<...<bj<r

—1j-1

SfriXan,)s

S;=a1,...,S a;,
h=b,....,T; = b

i-]
< [1
h=1 k=1

i-1 j-1
@5 = E [E (f, Xer) [T Xad [T FaeX e | 9‘,,,-1.1,,_1)
1<a)<--<a;<c h=1 k=1

lgb1<--~<b,- <r
i-1j~1
Sl =a,..., S =a,
x [T man): 7 Q7 }
h=1k=1 Loeeen 4

i—1 j-1
> E [f, X [ Xs [T faeXer)
1 h=1 k=1

1<ay<r-<a;_ <c~
1<by < <bj <r—1

Gut A Sl—alv"'vsi—l=ai—lv
x nnfhk(xs,.n =b T .\ =b
h=1 k=1 Tooeey i1 j =1

it

(26)

f

Z E [fij XedficrjXemi)fij1Xer—1)fic1j-1{X c-1,,1)

1<a)<--<a;-2<c-2
1<by < <b;_2<r-2

-2 j-2
 [1fri-1Xspr1)f (xsh,)l'[f. k(X o1, m)fa(X )
h=1 =]
i-2j-2
Sl =a1,...,S,~_2=a,-_2,
X ;
x}:[lgfhk( SiT) Ti=by....T2=b 3 ]

j—i+1 i j—i+l
Qn ==y []‘[ FuXsp) ] T X eminm)

1<ay<c—i+1 h=2 k=1
1<by<--<bj ip1Sr—i+1

Sl =a, T =b,...,
-1+l _b}—l+l

X n SuXs, -,+k)]—[ n Sre(X ceithr—j+4)3

k=j—i+2 h=2k=j—i+2
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j-i
28 = > E [E (fl.,-_m(xa.b,_,.“) [T uXan)

1<a;<c—i+l k=1
1<b; <---<b,- —ipt Sr—i+l

x ]_Ifh, i+1 (X c—ihb; ,H)]_I]—[fhk(xc—wh b) ]_[ SuXayr—j+i)
h=2 k=1 k=j —i+2

Sl =a1le =blv--"

Tiiv1 = bj_in

i j
x n ]—[ FreX cmivhr—j+k) | Far—16y_a—1 | 5

h=2k=j —i+2

i j-i
Z E [I—[ nfhk(Xc—i+h,T,,)

1<b <-<by_;<r— h=1 k=1

(29)

i J
x I—[ H SueXe—ivhr-j+e)i i =b1, ..., Ti—i = bj—;
h=1k=j ~i+1

i j—i-1
Z [ (l_[fh] iXemivnty V[T TT X ez

1<by <--<b; h=1 k=1

X l—[ n Sue(X c—ixnr—j+i) | 9,,2]._‘._, shi=by,..., i =bj_;

=1 k=j—i+1

i j—i-1
> E []’[ [ fuXeziznn)

1gby<-<bj_j_1<r—i—1 h=1 k=1

(30)

i
< [T T fueXemishrojsds i =by,..., Ty =bj_iy |

h=1k=j—i

i i
= E{r[fmxc-m.n)Hﬂfhk(xc-i+h,,_,~+k);n=b1]

I<b gr—j+1 h=1 h=1k=2

Z E [E (l—[fhl(xc—i+h,b|)
h=1

1<by <r—j+1

i
x l_[nfhk(xc—i+h,r—j+k) | 9,,21_1) ‘T = bl]
h=1 k=2
[
Z E |:n nfhk(xc—i+h.r—j+k); L = bl:l

1<bi<r—j+1  Lh=1k=1

i i
32) =E [n nfhk(xc—i+h'r—j+k)] =E l:n nfhk(xhk)] .

h=1k=1 h=1k=1

(3hH

Conditional separate spreadability given %, _;; 1 is used to obtain (25); (26) is
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obtained by a similar argument conditioning on 9,,,._,_1,;,1._1_1 and then adding over
a;_ and b;_,. We continue to apply separate spreadability and condition successively
on Foy-tbya=1s - - - » Far-1.b;sa~1 t0 Obtain (27) and next on F, 1, _,,,~1 to obtain
(28) and (29). We now have to deal only with spreadability of the row vectors to
obtain (30) and (31). One last application of separate spreadability yields (32). The
proof is completed with a monotone class argument.

All the above cases can be extended to infinite arrays and bounded sequences of
predictable times by the simple observation that any finite subarray of an infinite
& -SS array is & -SS. Finally, to extend the preceding results to general sequences of
predictable times, as in the proof of [8, Theorem 11.13], introduce the bounded % !-
and & *-predictable times

Sy =8 I{Syh <m}+(m+mI{Sy>m}, h=1,...,i and
=TI <m}+(m+KI{T,>m}, k=1,...,].

Clearly, (S, T;") is & -predictable if (Si, T) is, and so in all cases we may letm — 00
and (20), (21) and (22) follow. O

COMMENT 3.5. In the proof of (2) (b) above, & -predictability was required only
for the pairs (S1, Tj_is1), (82, Tj_i32), ..., (Si, T;). However, the more general state-
ment in the theorem allows an immediate extension to infinite arrays and infinite
increasing sequences (S), Sz, ...) and (T, T3, .. .) of finite #!- and #*-predictable
stopping times. In this case, the statement of the theorem holds for every pair of finite
subsequences (Sy, ..., $) and (T3, ..., T}).

3.2. Weak ¥ -separately spreadable arrays We now turn our attention to weak
& -SS arrays. From (11), X is weak %#-SS if conditioned on &}, 6; o X is SS for all
Jj < ¢, and all k < r. As pointed out in Section 2, weak #-SS does not imply #-SS.

In this context, we say that the array X is & -stationary if 857 o X =4 X for every
bounded adapted random time (S, T). For ¢, r < o0, this is interpreted as

Xn; S+l <h<SH+,TH+1<k<TH+m =g Xu;l<h<l1<k<m

whenever S+ ! <cand T+ m < ras.
Next, we consider the two-parameter prediction sequence

[LU=P(9,JOXG|9U)

We say that u; forms an & -martingale if forallh > i,k > j, 60X =9 60X
over #; forall i,j > 0, thatis, for A € &;,i,j >0,

PlpoX € Al = P[f; o X € -} Al
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For finite arrays, this condition is interpreted as: for 1 <i <h<c¢-1,1<j <k <
r—1
Ximh+1<l<ck+1=m=<r)
=9 Ximi+1<l<c—h+ij+1<m=<r—k+j) over &;.

LEMMA 3.6. Let X be a finite or infinite array. The following are equivalent:
(1) X is aweak & -SS array.
2) X is & -stationary.
(3) i forms an ¥ -martingale.

PROOF. 1 = 2: If X is an infinite weak Z-SS array, the proof that X is & -
stationary is identical to that of [4, Theorem 1] noting that only spreadability is
required.

2 = 3: By [4, Lemma 1], it is enough to show for any bounded .#-adapted time
(S, T) that Efusr) = E[pool-

Elusr]=) > Eluy:S=i T =j]
i

=Y Y ElP@joXe-|F);S=i,T=j]
i
=) ) EIEU@sroX €8=i,T=j)| F]
i
= P[@s70X €]
(33) =P[X €]
= E[pool-
(33) is a result of & -stationarity, and so the martingale property follows.
3 = 1: A simple argument by induction shows that X is weak #-SSiffor0 <i <,

O0<j=r,
(34) Pl ;0X e-| F]1=PlB0X €| F;] and
(35) P[e,_l.HOXE'I«g,J]:P[guOXG'lyy].

It is easily seen that (34) and (35) are immediate from the martingale property. O

COMMENT 3.7. Here, we cannot readily express the martingale condition in the
preceding lemma in terms of the deletion operator. As pointed out in Section 3.1,
for a sequence, from a distributional point of view the shift operator §; and deletion
operator ¢; are essentially equivalent, given #;_;. This is not true for an array X.
Given #;, the distribution of §; o X involves only the shifted array, whereas the
distribution of ¢, ;41 o X involves the entire shell region.
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We come to a predictable sampling theorem for weak .#-SS arrays.

THEOREM 3.8. Suppose that X is a finite or infinite weak % -SS array and that
(1,1) (81, ) < -+ < (8, T) < (¢, r) are finite F -predictable random times.
Then (Xsl'rl, ---’XS,.'I;.) =9 (X”, .. .,X,,,,).

PROOF. In what follows, we assume that X is a finite ¢ x r array. Then we may use
the same argument as in the proof of Theorem 3.4 to extend the result to an infinite

array.
Let (S, T) be a predictable random time. For a bounded measurable function
f:G6— R,
Elf Xs)l=D_ Y EIf (X4);(S, T) = (i,5)]
i=1 j=1
(36) =Y D Elf Xo): (S, T) = (i, j)]

i=1 j=1
=E[f (X.)1= E[f X))
(36) follows by weak % -spreadability and the fact that {(S, T) = (i, j)} € Fi_1; 1.

As in the proof of [7, Theorem 5.1], we proceed by induction on n. Assuming
that the statement of the theorem is true for increasing sequences of n — 1 predictable

times, for f;, : G — R bounded and measurable, h =1, ..., n,
n . c—n+1r-n+1 ™ n
E[]'Ifh(xsm)] =Y > E|[fixXp[[frKXsn) (S, T = (i,j)]
h=1 i=1 j=1 L h=2
c—n+1 r—n+l1 n
37 =) Y E fl(x,,)I"[fh(X.-M_l,,M-,);(sl,n)=(i,j)]
i=1  j=I L h=2
c—n+1 r—-n+1 [ n
(38) =Y Y E Hfh(xc-"+h,,_n+,.);<s..m=(i,j)]
i=1  j=1 | h=t1

=F [l—lfh (Xc—n+h.r—n+h)]

h=1
(39) =E []‘[f,.(xh,n] :
h=1

To prove (37), the induction hypothesis is applied to the array (f,(X;),6; o X),
which is conditionally spreadable, given &;. Next, (38) follows from the fact that
given F,_,;_1,6,_y;_1 0 X is spreadable. Finally, (39) follows from the spreadability
of X. O
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COMMENT 3.9. We note that the statement of Theorem 3.8 is much weaker than that
of Theorem 3.4, in that the predictable times must be strictly increasing in the partial
order on Z2. The reason for this is that the weak % -SS property is based on successive
shifts, and so it is not possible to deal with random times that are incomparable with
respect to the partial order. As discussed in Section 2, such incomparable points
would lie in shoulder regions with respect to some o-fields, and the behaviour is not
determined by the weak .#-SS property.

4. Joint spreadability

4.1. Strong .#-jointly spreadable arrays We now focus on square n x n arrays
(n may be 00) and perform the same operations on the rows and columns. X is strong
F-IS, orjust Z-JS, if forevery i < j,k<n;j, k <00,¢;;0X =92, puoX. We
observe that if X is JS, then all of the diagonal elements must have the same distribution.
Likewise, the random variables (X ;i < j) must be identically distributed, and the
random variables (X ;;j < i) must also be identically distributed. However, the three
distributions can be different.

For the martingale characterization of .%#-JS arrays, we define only one (1-dimen-
sional) prediction sequence p; = Pldryrrs1 0 X € - | Fucl-

Here we note that we must use the deletion operator rather than the shift operator in
order to control the behaviour of the entire shell, rather than simply the shifted array
(see Comment 3.7).

We say that u; forms an .%;;-martingale if foralln > h > i > 1, ¢p0X =g ¢;;0X
over F;_1 ;-

LEMMA 4.1. Let X be an n X n array (n may be 00). The following are equiva-
lent:
(1) Xis Z-JS.
(2) Forany finite m < n and any % ;;-predictable random time T such thatt < m <
o0 as., thenp,, 0 X =9 @m0 X.
(3) w; is an #;-martingale.

PROOF. 1 = 2: Let X be #-]IS and assume 7 is #;;-predictable and bounded a.s.
by m. Then for f : G¥*~P — R a measurable and bounded function, by conditional
spreadability given F,_; ;_1,

E[E(f (o X) | Fisyim1)iT =]

Elf $rc0 X)] = ) E[f (per 0 X); T = ]
i=1
i=1
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=Y EE(f @nmoX) | Firic)iT = ]

i=1

= E[f (@mm 0 X)].
The result follows by a monotone class argument.
2=3:LetA € £ ;. forsomel <i<nandleth > i. Define
I on A;
T =
h on A-.

It follows that T is %;;-predictable, and so for f : G**V — R bounded and
measurable,

EUf ($er 0 X)] = EUf (4 0 X)]
=>ff(¢.-.-oX)dP+f f<¢hhoX)dP=ff(¢hhoX)dP
A A€ Q

=>/f(¢ii°x)dp=ff(¢hhoX)dP.
A A

Therefore, by a monotone class argument, on %;_; ;_1, om0 X =9 ¢;; 0 X.
3 = 1: Since y, is an % ;;-martingale, fori <j <k <n;j, k < o0,

Plpu o X € || Fil = E(Plpuk 0 X € | Frc141| Fui]
= E[pi1|Fil = Elu; 1| Zi] = Plgjj o X € -| £l

This is the £ -JS property. a

We have the following predictable sampling theorem. The proof is omitted, as
the method is similar to that used to prove Theorem 3.4. Note that in the case of
joint spreadability, both components of the random times must come from a single
sequence of (one dimensional) predictable times.

THEOREM 4.2. Let X be a n x n (n may be 00) F-JS array and suppose that
1 <71 <.+ < 1 < nis asequence of finite ¥ ;;-predictable times. Then

X3 120, k) =9 (X431 <i,j < k).

4.2. Weak #-jointly spreadable arrays Turning to the weak % property, the
n x n array X is weak £ -JS if conditioned on F, G o X is JS, for all k < n. Here
we have a characterization of the weak #-JS property in terms of a (two parameter)
martingale, but we shall see that the martingale must be defined by conditioning on a
different filtration J# that is essentially one-dimensional.
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First, we begin with a weaker but simpler result: we say that X is % -jointly
stationary if 6;; o X =5 X for every bounded %;;-adapted random time t. For
n < 00, this is interpreted as {(Xp; T+ 1 < hk <t +1} =9 {Xpi;1 < h, k <1}
whenevert + [ < nas.

Next, define u; = P[6;;0 X € - | #;]. As before, u; forms an %#;;-martingale if
foralll > i,60,0 X =9 6, o X over &,;. For finite arrays, we interpret this as: for
l<iglz<n-—1{Xpsl+1<hk=<nl=9{Xui+l=<hk=<n-I1+i)
over &;;.

LEMMA 4.3. Let X be a finite or infinite n x n weak & -JS array. Then

() X is & -jointly stationary;
2) u; forms an F;-martingale.

PROOF. It is easily seen that (1) and (2) are equivalent, so we will show that #-
joint stationarity is implied by weak % -joint spreadability. If X is weak #-JS and
T<m-—kas,(m<nm<oo)andif f; : G — Ris bounded and measurable for
alll <i,j <k,then

||':»

—

tr
| S— |
=

~.

fij (Xt+i,r+j ):l

m—k [k &

=Y E|J]I1fiKesies)iz = h]
h=0 L i=1 j=1
m—k

Il
N,
tz

>
Il
=

i=1 j=1

kk
E (l—[ nflj (Xm—k+i,m—k+j) l yhh) T = h]

i=1 j=1

0
k k k k
=E [n I_[fzj (Xm—k+i.m—k+j)] =E [l_[ l—[f‘l (XU)] .
i=1 j=1

i=1 j=1

- koK _
LE (1'[ [1/5 Khsine) | 9,,,,) JT= h]

3
|
E

N
]
tny

>
I

Once again, a monotone class argument proves % -joint stationarity. 0

COMMENT 4.4. It is not true that (1) and (2) of Lemma 4.3 imply that X is weak
F-JS, as the following deterministic counterexample shows: for a and b distinct real
numbers, let
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Here X is jointly stationary but not jointly spreadable (consider the array after deletion
of the second row and column).

In order to understand the more complicated martingale structure that is required
for weak £ -joint spreadability, we observe that in Lemma 4.1, the (one-dimensional)
martingale was defined via symmetric deletions, while in Lemma 3.6, the (two-
dimensional) martingale was defined in terms of shifts in the rows and columns sepa-
rately. Here, a combination of a shift followed by a deletion (both one-dimensional)
is needed to determine the weak % -JS property. If only deletions are used, the entire
shell is affected. If a (symmetric) shift 6;; is used, the effect will be to delete all the
first i rows and columns. As seen in the counterexample above, if i > 1, it is not
possible to delete, say, only the i"* row and column using symmetric shifts. In fact,
the n x n (n may be 00) array X is weak £-JS if and only if for every i < n and
J.k<n—i wherei j,k < oo,

pjjobioX =¢jjo(fioX) =gz, duo (0iioX)=¢rob;oX.

It is the combination of the shift and the deletion that will define the indices of
the martingale, but only the index associated with the shift is used to determine the
conditioning in the definition of the martingale. With this in mind, we observe that
the weak #-JS property also implies, for every i <! < nandj, k < n — I, where
i,j, k1 < oo,

(40) @jjo0bioX =93, puobyoX.
(This is interpreted in the obvious way for finite arrays:

@) Xep:abeli+l,....i+j—-1i+j+1....n=1=D}
=o2, X a,be{l+1,...,l+k—11+k+1,... n}.

This follows as the right-hand side of (40) is 8;; o X with the first ] — i rows and
columns deleted, as well as the (I — i + k)™ row and column deleted.

Let 5¢; = %, for all i, j. This is a 2-dimensional filtration that is really just
1-dimensional. We note that X is not S#-adapted, and so in what follows, al-
though we will be making use of ##-adapted random times (S, T) (that is, {S = i,
T =j}e st = F;, foralli,j), we donot use the term J#-stationary in describing
the behaviour of X.

Now, let wy = PlpuobyoX € - | #4],0<l<n—-1,0<k <n,andk,! < 00.
Here puy, is an 5#-martingale if for all (I, k) > (i, j) and for all A € J&; (= F.),

PlpuobyoX € ;A] = P[¢;; 06,0 X € ;A

The martingale condition is interpreted as in (41) for finite arrays.
We now have a martingale characterization of the weak #-JS property:
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LEMMA 4.5. Let X be a finite or infinite n x n array. The following are equiva-
lent:

(1) X is weak F-JS,

(2) ¢rrobssoX =9 ¢ 06, 0 X for all 7¥-adapted bounded random times (S, T)
withS§<l<oo, T<k<oo,l+k<nas.;

(3) wu is an ¥ -martingale.

PROOF. 1 = 2: Assume that X is weak .#-]S and let (S, T) be ##-adapted with
S<land T <kas. Let f : G¥"'-D — R be a measurable and bounded function.
Using (40), we obtain

Ik
EU(¢TT°95s°X)]=ZZE[E(f(¢jj 00i0X)| Fu);S=i, T=j]

i=0 j=1

) k
=Y Y EIE(f@uobuoX)| F);S=iT=j]

i=0 j=1
= E[f (prx 0Oy o X)].

Now apply a monotone class argument.
2=>3:Leti<l<nandj,k<n-—1I whereij, kI <oc. LetA € 5 = F;
and define
i, j on A;
(5. T) = (i, 7)
(,k) on A-
Let f : G**=) 5 R be measurable and bounded. From (2),
E{f (171 0055 0 X)] = E[f (P 0 O 0 X)]

=>/f(¢jj°9n°X)dP+f f(¢kk°9H°X)dP=/f(¢kk°9110X)dP
A ¢ Q

=>/f(¢jj°9ii°X)dP=/f(¢kk09u°X)dP-
A A

Therefore, on S, ¢;; 06,0 X =g P 0Oy 0 X.
3 = I: If p is an #-martingale, then by definition, ¢;; 0 6;; 0 X =92, ¢ 000 X,
and so X is weak .#-JS. g

Our final predictable sampling theorem is a straightforward application of the
predictable sampling theorem for a spreadable sequence.

LEMMA 4.6. Let X bean x n (n may be o0) weak F-JSarray. If 1 <1, < --- <
T, < m is a sequence of finite F,;-predictable times, then

(erv sy Xrl.n,) =92 (th ceey chk)~
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