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We present two generalized hybrid kinetic-Hall magnetohydrodynamics (MHD) models
describing the interaction of a two-fluid bulk plasma, which consists of thermal ions and
electrons, with energetic, suprathermal ion populations described by Vlasov dynamics.
The dynamics of the thermal components are governed by standard fluid equations in the
Hall MHD limit with the electron momentum equation providing an Ohm’s law with Hall
and electron pressure terms involving a gyrotropic electron pressure tensor. The coupling
of the bulk, low-energy plasma with the energetic particle dynamics is accomplished
through the current density (current coupling scheme; CCS) and the ion pressure tensor
appearing in the momentum equation (pressure coupling scheme; PCS) in the first and
the second model, respectively. The CCS is a generalization of two well-known models,
because in the limit of vanishing energetic and thermal ion densities, we recover the
standard Hall MHD and the hybrid kinetic-ions/fluid-electron model, respectively. This
provides us with the capability to study in a continuous manner, the global impact of the
energetic particles in a regime extending from vanishing to dominant energetic particle
densities. The noncanonical Hamiltonian structures of the CCS and PCS, which can
be exploited to study equilibrium and stability properties through the energy-Casimir
variational principle, are identified. As a first application here, we derive a generalized
Hall MHD Grad–Shafranov–Bernoulli system for translationally symmetric equilibria
with anisotropic electron pressure and kinetic effects owing to the presence of energetic
particles using the PCS.

1. Introduction

The presence of energetic, suprathermal particle populations, which can modify the
global plasma dynamics owing to their high kinetic energies while having small density
compared with that of thermal particles, is a common feature in astrophysical and fusion
plasmas. For example, such energetic particles are part of the galactic cosmic rays (Amato
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& Blasi 2018) originating outside the solar system and penetrate the magnetospheric
plasma. Additionally, charged particles are energized and accelerated during solar flares
and coronal mass ejections, owing to magnetic reconnection and shock formation (Klein
& Dalla 2017). Furthermore, it is known that in the magnetospheric ring-current plasma,
energetic particles coexist with particles of significantly lower energy that constitute
the plasma bulk (e.g. see Daglis et al. 1999). Although, the density of the thermal
particles is dominant, the high-energy content of the fast particles renders even small
populations capable of significantly affecting the plasma dynamics. Analogous situations,
where suprathermal particles are produced and interact with a thermal plasma bulk, occur
in fusion experiments by external plasma heating mechanisms, such as neutral beam
injection (NBI) and ion cyclotron resonance heating (ICRH), which accelerate hydrogen
isotopes and 3He to energies of order 1 MeV (Start et al. 1999). Also, in a burning
plasma, the deuterium–tritium (D–T) fusion reactions produce particularly energetic alpha
particles (3.5 MeV) that are expected to heat the plasma, and consequently their impact
on the dynamics of burning plasmas cannot be neglected. Energetic particles in fusion
experiments are responsible for the destabilization of the Alfvén eigenmodes (AEs) (e.g.
see Chen & Zonca 2007; Wesson 2011; Todo 2019) owing to resonant wave–particle
interactions occurring when there exists a particle population with velocities near the
phase velocity of the Alfvén wave. These interactions lead eventually to particle losses,
which prevent the energetic particles from transferring their energy to the thermal plasma
and thus deteriorate the heating efficiency.

The coexistence of a thermal or cold bulk and suprathermal populations has motivated
the development of several hybrid multi-scale plasma models using fluid equations to
describe the bulk plasma and Vlasov, or reduced kinetic equations (drift kinetic and
gyrokinetic), to describe the energetic particle dynamics. Of course, a fully kinetic
description using, for example, the Maxwel–Vlasov system, contains all the micro- and
macro-physics involved in such systems. However, the hybrid fluid–kinetic description
significantly reduces the computational cost because it is not required to simulate the
dynamics of all particle species using kinetic equations. This makes the hybrid models
important tools for performing numerical simulations and studying nonlinear dynamics
because resolving all the kinetic scales of large systems with complex geometries is an
extremely demanding task in terms of computational resources.

The hybrid models require a set of fluid and kinetic equations that should
self-consistently describe the interaction of the plasma bulk with the energetic particles
and the electromagnetic fields. For the fluid equations, the most popular choice is to
consider an MHD description while for the kinetic component, one may use the Vlasov or
reduced kinetic theories if the magnetic field is strong and the particle magnetic moment
is an adiabatic invariant. To couple the dynamics of the plasma components, there are
two main strategies: one relies on coupling through the current density, called the current
coupling scheme (CCS), while the other is a pressure coupling scheme (PCS), where
the kinetic effects are introduced through the pressure tensors appearing in the fluid
momentum equation. The kinetic-MHD model in the PCS was introduced by Cheng (1991)
and the first CCS kinetic-MHD, which considered gyrokinetic particles, was introduced by
Park et al. (1992) to study the nonlinear behaviour of energetic particle effects. Since then,
several hybrid drift kinetic and gyrokinetic MHD models have been employed to simulate
plasma dynamics containing Alfvén eigenmodes, using either the CCS or the PCS, for
example Briguglio et al. (1995), Todo & Sato (1998), Park et al. (1999) and Zhu, Ma &
Wang (2016).

The CCS and PCS variants of the drift kinetic and gyrokinetic MHD models were
formulated using Hamiltonian variational principles and Euler–Poincaré reduction (Burby
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& Tronci 2017; Close, Burby & Tronci 2018), and before that, a Hamiltonian approach to
the hybrid description of plasmas combining the noncanonical Poisson bracket (Morrison
& Greene 1980; Morrison 2009) of ordinary MHD with the particle bracket was developed
by Tronci (2010) (see also Morrison, Tassi & Tronci 2014). This approach resulted in
Vlasov kinetic-MHD models in the CCS and the PCS. The Hamiltonian construction
of these models opened up the possibility to employ the energy-Casimir Hamiltonian
variational principle (Morrison 1998) to derive equilibrium and stability conditions for
planar kinetic-MHD using CCS and PCS in the studies by Morrison et al. (2014)
and Tronci, Tassi & Morrison (2015). Tronci (2010) also provides the derivation of a
noncanonical Poisson bracket that correctly describes the dynamics of a standard hybrid
model that treats the electrons as a fluid with zero inertia while retaining a Vlasov
description for the ions (see e.g. Winske et al. 2003). This model resolves the ion kinetic
scales but not those of the electron, thus saving computational resources while reproducing
the structural details of the reconnection region, which may consist of thin current sheets
with thickness of the order of the ion inertial length. These characteristics render the model
a popular choice for studying magnetic reconnection (Hesse & Winske 1994; Le et al.
2016; Cerri & Califano 2017).

Recently, a generalized, quasineutral hybrid model, which contained an additional
fluid ion component while considering an arbitrary number of kinetic species, was
presented by Amano (2018). This model makes no assumptions regarding the electron
mass and employs the CCS for coupling the fluid and kinetic components. The generalized
model of Amano (2018) incorporates the quasineutral two-fluid (QNTF) description and
the common hybrid approach of purely kinetic ions and fluid electrons with finite or
vanishing electron inertia. This unifying framework enables the study of kinetic effects
in a continuous manner, starting from the fluid description and proceeding to situations
with several kinetic and thermal species.

In this paper, we follow the approach of Amano (2018) to derive the corresponding
model in the CCS for inertia-less electrons accompanied with its Hamiltonian formulation.
Starting from Hamiltonian theories, such as the Hall MHD (Holm 1987; Lingam, Morrison
& Miloshevich 2015) and the Vlasov equation, which has no collision operator, one
expects to find a Hamiltonian structure for the resulting hybrid model. The identification of
this structure might be important for the construction of structure preserving Hamiltonian
algorithms that improve the stability and the fidelity of plasma simulations (Kraus et al.
2017; Morrison 2017). Such a structure-preserving code has been recently developed for
the simulation of MHD waves that interact with energetic particles in the framework of
hybrid kinetic-MHD (Holderied, Possanner & Wang 2021). Moreover, we obtain a second
model upon considering the method of Hamiltonian construction of Tronci (2010) for the
PCS. This new model has a set of Casimir invariants, i.e. global constants of motion
whose gradients are elements of the Poisson kernel (Morrison 1998), which provide
an interesting coupling between the fluid and the kinetic components, as was the case
for the corresponding Hamiltonian kinetic-MHD model studied by Tronci et al. (2015).
This coupling leads to novel equilibrium conditions upon employing the energy-Casimir
variational principle (Morrison 1998). An additional feature of our study is that we
consider an anisotropic, gyrotropic electron pressure tensor. Electron pressure anisotropy
is a rather ubiquitous feature in guide-field magnetic reconnection, caused by electron
trapping in the parallel electric fields (Egedal et al. 2008; Le et al. 2009; Egedal,
Le & Daughton 2013), and can contribute to reconnection rates even for vanishing
non-diagonal elements (Cassak et al. 2015). Also, we should note that for negligible
electron inertia, a gyrotropic pressure tensor can be consistently considered, as was done
by Ito, Ramos & Nakajima (2007). An analogous treatment for Amano’s QNTF model

https://doi.org/10.1017/S0022377821000994 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000994


4 D.A. Kaltsas, G.N. Throumoulopoulos and P.J. Morrison

would require the introduction of finite-Larmor-radius and gyroviscous effects, which is
not trivial in the Hamiltonian framework. The inclusion of electron inertial effects, along
with non-diagonal electron pressure elements, seems to be important to reproduce fully
kinetic results regarding magnetic reconnection and relevant processes within the electron
diffusion region (Muñoz et al. 2018; Finelli et al. 2021). The use of a Hamiltonian approach
to hybrid models with finite electron inertia would open up the possibility to construct
structure-preserving algorithms for simulating a large variety of phenomena where the
electron inertial effects play an important role. Although this is left for future research,
we note that approaches used in the past to bridge the Hall MHD and the extended MHD
Hamiltonian structures could possibly be exploited here, for example, see the works of
Lingam et al. (2015) and D’Avignon, Morrison & Lingam (2016). In terms of the pressure
non-gyrotropy, we note that the early approach in the context of reduced fluid modelling
by Hazeltine, Hsu & Morrison (1987), which was significantly generalized by Lingam,
Morrison & Wurm (2020), shows that working with the Hamiltonian structure can enable
the introduction of such effects.

The rest of the paper is organized as follows: in § 2, we present the parent equations,
the method for constructing the CCS and the associated Hamiltonian structure. In § 3, we
derive the novel hybrid model in the PCS using Tronci’s method and we compare it to the
model that would have been obtained using a standard (non-Hamiltonian) approach. In § 4,
we derive the translationally symmetric counterpart of the PCS Hamiltonian structure and
the associated Casimir invariants. We employ also the energy-Casimir variational principle
that leads to equilibrium equations and § 5 summarizes our results.

2. Current coupling scheme
2.1. Model equations

The starting point for deriving the model equations in the CCS is the same as that used by
Tronci (2010) and Amano (2018), i.e. a set of multifluid equations governing the dynamics
of the thermal components accompanied by the Vlasov equation for the energetic particles,
which provide self-consistent closure to Maxwell’s equations:

∂tns + ∇ · (nsV s) = 0, (2.1)

msns(∂tV s + V s · ∇V s) = esns(E + V s × B)− ∇ · Ps, (2.2)

∂tfp = −v · ∇fp − ep

mp
(E + v × B) · ∇vfp, (2.3)

∂tB = −∇ × E, (2.4)

∂tE = ε−1
0 μ−1

0 ∇ × B − ε−1
0 J , (2.5)

∇ · E = σ/ε0, ∇ · B = 0, (2.6a,b)

σ = σf + σk, σf =
∑

s

esns, σk =
∑

p

ep

∫
d3vfp, (2.7a–c)

J = J f + J k, J f =
∑

s

esnsV s, J k =
∑

p

ep

∫
d3vfpv, (2.8a–c)

where Ps is the pressure tensor of the thermal species s, fp = fp(x, v, t) is the Vlasov
distribution function, i.e. the particle density in phase space (x, v) for the particle
species p. In this paper, we assume that the kinetic species consist of energetic ions, e.g.
populations of alpha particles or resonant ions. Note that the system (2.1)–(2.8a–c) is not
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fully kinetic because it has been assumed that the moment hierarchy that yields the fluid
equations (2.1) and (2.2) has been truncated in view of some appropriate fluid closure that
results in independent expressions for the pressure tensors Ps of the fluid species. For a
two-fluid plasma bulk, the subscript s is s = i, e. Note that v is the microscopic particle
velocity, and therefore,

∂vi

∂xj
= 0, ∀ i, j. (2.9)

In the low-frequency limit, it is legitimate to impose quasineutrality in a strict manner,
i.e. setting σ = 0. The quasineutrality assumption renders the displacement current term
negligible and the Gauss law redundant. In addition, when the electron inertial effects can
be ignored but the electron pressure is comparable to the magnetic pressure, the electron
momentum equation results in the following generalized Ohm’s law:

E = −V e × B − ∇ · Pe

ene
. (2.10)

A rigorous derivation of (2.10) requires an appropriate ordering of the various terms
in the electron fluid momentum equation. We may employ an Alfvén normalization by
introducing the dimensionless quantities below:

∇̃ = �0∇, t̃ = t
�0/VA

, ñs = ns

n0
,

B̃ = B
B0
, Ṽs = Vs

VA
, P̃s = Ps

B2
0/μ0

,

J̃ = J
B0/(�0μ0)

, Ẽ = E
B0VA

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

where VA = B0/
√
μ0min0 is the Alfvén speed, and B0, n0 and �0 are the characteristic

magnetic field, number density and length, respectively. The electron momentum equation
can then be written in the following non-dimensional form:

E = −V e × B − di
∇ · Pe

ne
− d2

e

di

dV e

dt
. (2.12)

Here, the tildes have been dropped and the parameters de and di are the relative electron
and ion skin depths, respectively. Neglecting O(d2

e) terms (note that for an electron-proton
plasma de/di ∼ 0.023), thus eliminating electron length scales, the electron inertial term is
removed, while the electron pressure tensor survives. Then, restoring dimensions in (2.12)
yields (2.10). This result stems from the assumption that the electron pressure scales as
the magnetic pressure and hence it is legitimate for plasmas with high electron β. In an
alternative ordering scheme, e.g. for very low β, the order of the electron pressure term
would be lower than the order of the Hall term and it could thus be neglected.

As regards the form of Pe, because of the specific ordering described above, we may
consider a gyrotropic electron pressure. To see this, let us write the electron pressure
equation as it emerges from the moment hierarchy of the Vlasov equation (e.g. see Hunana
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et al. 2019),

me[∂tPe + ∇ · (V ePe + Qe)+ Pe · ∇V e + (Pe · ∇V e)
�]

= e[B × Pe + (B × Pe)
�], (2.13)

where the superscript � denotes transpose and Qe is the electron heat flux tensor.
Performing the Alfvén normalization (2.11), the electron pressure equation becomes

d2
e

di
[∂tPe + ∇ · (V ePe + Qe)+ Pe · ∇V e + (Pe · ∇V e)

�]

= [B × Pe + (B × Pe)
�]. (2.14)

Neglecting electron length scales (de → 0), only the right-hand side of (2.13) survives, and
thus Pe satisfies B × Pe + (B × Pe)

� = 0. A general solution of this equation is given by
the gyrotropic pressure tensor

Pe = Pe‖ − Pe⊥
B2

BB + Pe⊥I, (2.15)

where
Pe‖ = Pe : bb,

Pe⊥ = 1
2 Pe : (I − bb).

}
(2.16)

Here, b := B/|B| and A : B indicates double contraction between the second-order tensors
A and B, i.e. A : B = AijBij. We consider this specific form of electron pressure throughout
the rest of the paper, because it is not only legitimate in the small electron length-scale
limit, but, as will be seen in the next section, facilitates also the identification of an
appropriate Hamiltonian structure.

Now, using ∇ × B = μ0J and (2.8a–c), the electron velocity can be written as

V e = ni

ne
V − 1

ene

(
μ−1

0 ∇ × B −
∑

p

ep

∫
d3v vfp

)
, (2.17)

where V ≡ V i. Inserting (2.17) in the Ohm’s law (2.10), we obtain

E = − ni

ne
V × B + 1

ene
(μ−1

0 ∇ × B − J k)× B − ∇ · Pe

ene
. (2.18)

Note that owing to the energetic particle component, quasineutrality does not imply
ni = ne, but ni = ne − e−1σk. In view of (2.18), Faraday’s law (2.4) leads to the following
induction equation:

∂tB = ∇ ×
[

ni

ne
V × B − 1

ene
(μ−1

0 ∇ × B − J k)× B + ∇ · Pe

ene

]
. (2.19)

Inserting the generalized Ohm’s law (2.18) into the ion momentum equation (2.2) and the
Vlasov equation (2.3), we obtain respectively

mni(∂tV + V · ∇V ) =
[

ni

ne
σkV + ni

ne
(J − J k)

]
× B − ni

ne
∇ · Pe − ∇Pi, (2.20)

∂tfp + v · ∇fp + ep

mp

{[
v − ni

ne
V + 1

ene
(J − J k)

]
× B − ∇ · Pe

ene

}
· ∇vfp = 0, (2.21)
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where, from now on, m ≡ mi. Here, we have assumed that the thermal ions have isotropic
pressure. For a magnetized plasma, a consistent consideration of thermal pressure effects
for the ions within the two-fluid framework requires the inclusion of anisotropic (and
in particular non-gyrotropic) pressure effects. This will be the topic of future research.
Presently, it suffices for our purposes to consider an isotropic pressure Pi assuming low
temperature ions because thermal ions that deviate from the isotropic pressure description
can be incorporated in the kinetic component described by the Vlasov equation.

The continuity equation for the ions remains unchanged, while for the electron fluid,
inserting (2.17) into (2.1), we find

∂tne = −∇ · (niV )− ∇ · J k

e
, (2.22)

that is,
e∂t(ni − ne) = ∇ · J k, (2.23)

which is an equation for electric charge conservation. The complete system of the
dynamical equations consists of the ion continuity equation, the induction equation (2.19),
the momentum equation (2.20), the Vlasov equation (2.21), and the electron continuity
equation (2.22) or equivalently the charge conservation equation (2.23). Computing the
first-order velocity moment of the Vlasov equation, one finds

∂tσk + ∇ · J k = 0, (2.24)

which, combined with (2.23), gives the local charge conservation. Thus, for e(ni − ne)+
σk = 0 at t = 0, the quasineutrality constraint, which is invoked in various derivations in
this paper, is preserved by the dynamics.

2.2. Hamiltonian structure
Let us now follow the procedure introduced by Tronci (2010) to derive the Hamiltonian
structure of the above model. The difference here is that we apply the procedure in a
more general model, by considering a two-fluid bulk plasma and generalizing also for
electron pressure anisotropy. The starting point for this derivation is the combination of
the Hall MHD noncanonical bracket, derived by Holm (1987), with the particle Poisson
bracket. This can be done by directly adding the two brackets, which are written, however,
in terms of the canonical momentum density M̄ := ρV + (e/m)ρA, where ρ := mni, and
the canonical particle momenta π p = mpv + epA, where A is the vector potential.

Before we proceed to this construction, let us recapitulate here some basic notions
of noncanonical Hamiltonian dynamics. The Lagrange–Euler map from the Lagrangian
to the Eulerian description, renders the Poisson brackets explicitly dependent on the
dynamical variables of the system, say ξ , i.e. it has the form

{F,G} = 〈Fξi,Jij(ξ)Gξj〉, (2.25)

where Fξ represents the functional derivative of F with respect to ξ and J (ξ) is the
so-called Poisson operator.

This noncanonical Poisson bracket still satisfies the antisymmetry condition and the
Jacobi identity:

{F,G} = −{G,F}, (2.26)

{F, {G,H}} + {H, {F,G}} + {G, {H,F}} = 0, (2.27)

where F,G,H are functionals that are defined on the functional phase space. Owing to
the explicit dependence on the dynamical variables, there exist non-trivial functionals C
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satisfying
{C,F} = 0, ∀ F. (2.28)

These functionals C are called Casimirs. The equations of motion result from the following
Hamilton equations:

∂tξi = {ξi,H}, (2.29)

where H is the Hamiltonian of the model. Obviously, the Hamiltonian is conserved in
view of the antisymmetry of the Poisson bracket and the Casimirs are constants owing
to their commutative property. Such Hamiltonian structures have been identified in the
context of fluid mechanics and ordinary magnetohydrodynamics (Morrison & Greene
1980; Morrison 1982, 1998), Hall MHD (Holm 1987; Lingam et al. 2015), extended-MHD
(Abdelhamid, Kawazura & Yoshida 2015; Lingam et al. 2015), and Vlasov–Poisson and
Vlasov–Maxwell theories (Morrison 1980) (with a correction for Vlasov–Maxwell in the
papers by Weinstein & Morrison (1981), Marsden & Weinstein (1982), Morrison (1982)
and a limitation to the correction pointed out by Morrison (1982), which was followed
up more recently by Morrison (2013); Heninger & Morrison (2020) and then by Lainz,
Sardón & Weinsten (2019)). For a more comprehensive presentation of the noncanonical
Hamiltonian dynamics emerging in the Eulerian description of fluids and other continuum
theories, the reader is referred to the paper by Morrison (1998). For Vlasov models, the
interested reader can consult the paper by Morrison (2009).

Regarding our model, the sum of the Hall MHD and the particle brackets expressed in
terms of canonical momenta is given by

{F,G} =
∫

d3x

{
M̄ · (GM̄ · ∇FM̄ − FM̄ · ∇GM̄)

+ ρ(GM̄ · ∇Fρ − FM̄ · ∇Gρ)− e−1(GA · ∇Fne − FA · ∇Gne)

− 1
ene
(∇ × A) · (FA × GA)+

∑
p

∫
d3π fp[[Ff̄p,Gf̄p ]]πp

}
, (2.30)

where
[[g, h]]πp = ∇g · ∇πp h − ∇h · ∇πp g, (2.31)

and f̄p is the distribution function expressed in terms of π p, i.e. f̄p = f̄p(x,π p, t).
The above Poisson bracket, along with the appropriate Hamiltonian, which is the

sum of the Hall MHD and particle Hamiltonians expressed in terms of M̄,π , describe
correctly the dynamics of the system. However, the canonical momentum variables are not
convenient because they mix up the velocity and the magnetic field potential. Ultimately,
we would like to have a system of equations that treats velocity and magnetic field
variables separately, i.e. like the system we derived by the standard approach in the
previous subsection. To this end, following Tronci (2010) and Marsden & Weinstein
(1982),we may perform the following change of variables:

M̄ → V , f̄p(x,π p, t) = f̄p(x,mpv + epA, t) → fp(x, v, t), (2.32a,b)

where
V = ρ−1M̄ − e

m
A. (2.33)

For convenience, this change of variables will be performed in two stages. First, we
can write the bracket in terms of fp and then we can complete the change transforming
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from M̄ to V . For the first change, we can directly use a result from Marsden &
Weinstein (1982), that is, for any functional F[A, fp] and functions g(x, v), h(x, v), we
have F[A, fp(x, v, t)] = F̄[A, f̄p(x,π p, t)], g(x, v) = ḡ(x,π p), h(x, v) = h̄(x,π p), and the
following transformation rules must hold:

[[ḡ, h̄]]πp = 1
mp

[[g, h]] + ep

m2
p

(∇ × A) · (∇vg × ∇vh), (2.34)

F̄A = FA −
∑

p

ep

mp

∫
d3vfp∇vFfp, (2.35)

where
[[g, h]] := ∇g · ∇vh − ∇h · ∇vg. (2.36)

Using (2.34) and (2.35), the bracket (2.30) takes the following form:

{F,G} =
∫

d3x

{
M̄ · (GM̄ · ∇FM̄ − FM̄ · ∇GM̄)

+ ρ(GM̄ · ∇Fρ − FM̄ · ∇Gρ)− e−1(GA · ∇Fne − FA · ∇Gne)

− 1
ene
(∇ × A) · (FA × GA)− e−1

∑
p

ep

mp
fp[∇Gne · ∇vFfp − ∇Fne · ∇vGfp ]

+ 1
ene

∑
p

ep

mp
fp(∇ × A) · (∇vFfp × GA − ∇vGfp × FA)

− 1
ene
(∇ × A) ·

∫ ∫
d3v d3v′

(∑
p

ep

mp
fp∇vFfp

)
×
(∑

p′

ep′

mp′
fp′∇v′Ffp′

)

+
∑

p

∫
d3v

fp

mp

[
[[Ffp,Gfp ]] + ep

mp
(∇ × A) · (∇vFfp × ∇vGfp

)]}
. (2.37)

Now, we can proceed by expressing this bracket in terms of V and B = ∇ × A, instead of
M̄ and A. Let us note first that from (2.33), an arbitrary variation of V can be written as

δV = ρ−1δM̄ − ρ−2M̄δρ − e
m
δA. (2.38)

Considering a functional F̄ of M̄,A and ρ, and then expressing it in terms of V ,B and
ρ, the equality F̄[M̄,A, ρ] = F[V ,B, ρ] must hold. Upon taking the first variation of this
relation and using the chain rule for the functional derivatives, the following relations can
be deduced:

F̄M̄ = ρ−1FV , (2.39)

F̄ρ = Fρ − ρ−1
(

V + e
m

A
)

· FV , (2.40)

F̄A = ∇ × FB − e
m

FV . (2.41)
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Substituting (2.33) and (2.39)–(2.41) to (2.37), we find the final bracket, which reads1

{F,G} =
∫

d3x

{
(GV · ∇Fρ − FV · ∇Gρ)+ ρ−1(∇ × V ) · (FV × GV )

+ e
m2

(
mne − ρ

ρne

)
B · (FV × GV )+ m−1(GV · ∇Fne − FV · ∇Gne)

+ 1
mne

B · [FV × (∇ × GB)− GV × (∇ × FB)] − 1
ene

B · [(∇ × FB)× (∇ × GB)]

+ 1
ene

∑
p

ep

mp

∫
d3vfpB ·

[
∇vFfp × (∇ × GB)− ∇vGfp × (∇ × FB)

+ e
m
(∇vGfp × FV − ∇vFfp × GV )

]

− 1
e

∑
p

ep

mp

∫
d3vfp(∇Gne · ∇vFfp − ∇Fne · ∇vGfp)

− 1
ene

B ·
(∑

p,p′

ep

mp

ep′

mp′

∫ ∫
d3v d3v′fpfp′∇vFfp × ∇vGfp′

)

+
∑

p

∫
d3v

fp

mp

[
[[Ffp,Gfp ]] + ep

mp
B · (∇vFfp × ∇vGfp)

]}
. (2.42)

Observe, unlike the bracket (2.30), (2.42) is gauge invariant. Now, having computed the
bracket of our model, we write down the Hamiltonian functional, which is the direct sum
of the fluid and particle Hamiltonians, i.e.

H =
∫

d3x
[
ρ

|V |2
2

+ ρU(ρ)+ neUe + |B|2
2μ0

]
+
∑

p

∫ ∫
d3x d3vmp

v2

2
fp. (2.43)

Here, U(ρ) is the specific internal energy of the thermal ion fluid and Ue is some electron
internal energy function. The dependence of this function is dictated by the nature of the
electron pressure. In our case, it was first shown by Morrison (1982) (and subsequent
work, e.g. Hazeltine, Mahajan & Morrison 2013) that gyrotropic pressure tensors of the
form (2.15) follow from an internal energy that depends explicitly on ne and |B|. If an
electron internal energy has the form

Ue = Ue(ne, |B|), (2.44)

then the following equations give the pressure tensor components Pe‖ and Pe⊥:

∂Ue

∂ne
= Pe‖

n2
e

, (2.45)

∂Ue

∂|B| = Pe⊥ − Pe‖
ne|B| ; (2.46)

1Note that for deriving the bracket (2.42), we have made use of the vector calculus identity ∇b · a = a × ∇ × b +
a · ∇b.
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and hence

δH
δne

= Ue + Pe‖
ne
, (2.47)

δH
δB

= μ−1
0 (1 − γ )B, (2.48)

where γ := (Pe‖ − Pe⊥)/(B2/μ0) is a function that measures the electron pressure
anisotropy. Note that the Poisson structure (2.42) is valid for barotropic (Ue = Ue(ne))
and gyrotropic [(2.45) and (2.46)] electron pressure. The identification of an appropriate
Hamiltonian structure for a generally non-gyrotropic electron pressure tensor will be
pursued in a future work.

The equations of motion follow from (2.29) with the Poisson bracket (2.42), the
Hamiltonian (2.43) and also using (2.47), (2.48). It can be readily seen that ∂tne =
{ne,H} and ∂tρ = {ρ,H} are indeed (2.22) and the continuity equation for the fluid ions,
respectively. The latter is

∂tρ = −∇ · (ρV ). (2.49)

The remaining equations, i.e. the momentum, the induction and the Vlasov equation that
stem from (2.29), are

∂tV = V × ∇ × V − ∇
(

h + V2

2

)
+ e

m

(
1 − ni

ne

)
V × B

+ 1
mne

(μ−1
0 ∇ × B − J k)× B − m−1∇

(
Ue + Pe‖

ne

)
− ∇ × (γB)

μ0mne
× B, (2.50)

∂tB = ∇ ×
[

ni

ne
V × B − 1

ene
(μ−1

0 ∇ × B − J k)× B
]

+ μ−1
0 ∇ ×

[
γ

ene
(B · ∇B − ∇B · B)+ ∇γ × B

ene
× B

]
, (2.51)

∂tfp = −v · ∇fp − ep

mp

[(
v − ni

ne
V
)

× B

+ 1
ene

(
μ−1

0 ∇ × B − J k
)× B − 1

e
∇
(
Ue + Pe‖

ne

)
− ∇ × (γB)

μ0ene
× B

]
· ∇vfp.

(2.52)

It is a matter of vector calculus manipulations to prove that

− 1
m

∇
(
Ue + Pe‖

ne

)
− ∇ × (γB)

μ0mne
× B

= − 1
mne

[∇Pe⊥ + μ−1
0 (γB · ∇B + BB · ∇γ )] = −∇ · Pe

mne
. (2.53)

The last equality can be easily proven by taking the divergence of the gyrotropic pressure
equation (2.15). In light of (2.53), the momentum and the Vlasov equations, (2.50) and
(2.52), respectively, which arise from the Hamiltonian formulation, are identical to (2.20)
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and (2.21). In addition, performing some manipulations on the last term of (2.51), it can
be seen that

μ−1
0 ∇ ×

[
γ

ene
(B · ∇B − ∇B · B)+ ∇γ × B

ene
× B

]

= ∇ ×
[∇ · Pe

ene
− 1

e
∇Ue − 1

e
∇
(

ne
∂Ue

∂ne

)]
= ∇ × ∇ · Pe

ene
. (2.54)

Hence, (2.51) is indeed the induction equation (2.19).

2.3. Casimir invariants
A typical procedure to identify the Casimirs of a noncanonical Poisson bracket, e.g. (2.42),
is to rearrange it in the following form:

{F,G} =
∫

d3xFuiJijGuj, (2.55)

where J is the Poisson operator associated with this bracket, and then seek solutions to
the following system of Casimir-determining equations:

JijCuj = 0, i = 1, . . . , 5. (2.56)

By this procedure, we find the following Casimir invariants:

C1 =
∫

d3xρ, C2 =
∫

d3xne, (2.57a,b)

C3 = 1
2

∫
d3xA · B, (2.58)

C4 = 1
2

∫
d3x

(
V + e

m
A
)

·
(
∇ × V + e

m
B
)
, (2.59)

Cp =
∫ ∫

d3x d3vΛp( fp). (2.60)

This set of Casimirs, typical of magnetofluid models (e.g. Lingam, Miloshevich &
Morrison 2016), has two helicity invariants, but is augmented by an additional kinetic
Casimir for each particle species p, which involves the corresponding distribution function,
while there are no cross-fluid-kinetic Casimirs. Here, Λp( fp) are arbitrary functions of
their respective distribution functions fp.

3. Pressure coupling scheme
3.1. Transformation of the Hamiltonian CCS

As it is well known, another method to couple the energetic and the fluid components is
through the pressure tensor appearing in a center-of-mass momentum equation rather than
through the current density. This can be done upon taking the first-order fluid moment of
the Vlasov equations, which govern the dynamics of the energetic species, and adding it to
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the momentum equation of the thermal ions. The first-order fluid moment of (2.3) yields

mp∂t(npV p) = epnp(E + V p × B)−
∑

p

∇ · P̃p, (3.1)

where

np =
∫

d3vfp, V p = 1
np

∫
d3vvfp, P̃p = mp

∫
d3vvvfp. (3.2a–c)

Adding (3.1) and (2.2) for s = i and using the Ohm’s law (2.18), we obtain the following
momentum equation:

∂tM + m∇ · (niV V ) = μ−1
0 (∇ × B)× B − ∇Pi − ∇ · Pe −

∑
p

∇ · P̃p, (3.3)

where

M := mniV +
∑

p

mpnpV p. (3.4)

If we replace (2.20) of the CCS model by (3.3), we obtain a totally equivalent model
coupling though the fluid and the particle components through the particle species
pressure tensor terms in (3.3). It is logical then to expect that this reformulation of the
model would have a Hamiltonian structure resulting from some change of dynamical
variables. Tronci (2010) showed that the reformulation of the Hamiltonian structure is
effected by considering M instead of V as an independent dynamical variable. Performing
this change of variables, one can see how the functional derivatives with respect to the old
and the new sets of dynamical variables should relate. Requiring

δF[ni, ne,V ,B, fp] = δF̃[ni, ne,M,B, fp], (3.5)

and employing the chain rule for functional derivatives, the following equations can be
deduced

Fne = F̃ne, FB = F̃B, FV = mniF̃M ,

Fni = F̃ni + mV · F̃M , Ffp = F̃fp + mpv · F̃M .

}
(3.6)

Substituting equations (3.6) into the Poisson bracket (2.42) and using the definition (3.4)
of M , we find, after some algebra, the following bracket:

{F,G} =
∫

d3x
{

M · (GM · ∇FM − FM · ∇GM)+ ni(GM · ∇Fni − FM · ∇Gni)

+ ne(GM · ∇Fne − FM · ∇Gne)+ B · [FM × (∇ × B)− GM × (∇ × FB)]
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−
∑

p

ep

emp

∫
d3vfp(∇vFfp · ∇Gne − ∇vGfp · ∇Fne)

+ 1
ene

∑
p

ep

mp

∫
d3vfpB · [∇vFfp × (∇ × GB)− ∇vGfp × (∇ × FB)]

− 1
ene

B ·
∫ ∫

d3v d3v′ ∑
p,p′

epep′

mpmp′
fp(v)fp′(v′)∇vFfp × ∇v′Gfp′

+
∑

p

m−1
p

∫
d3v fp

[
[[Ffp,Gfp ]] + ep

mp
B · (∇vFfp × ∇vGfp)

+mp([[Ffp, v · GM ]] − [[Gfp, v · FM ]])
]

− 1
ene

B · [(∇ × FB)× (∇ × GB)]
}
.

(3.7)

We should also write the Hamiltonian in terms of M and then invoke Hamilton’s equations
to retrieve the dynamical system in this PCS formulation. The transformed Hamiltonian
reads

H =
∫

d3x
[ |M − M|2

2mni
+ niUi(ni)+ neUe(ne, |B|)+ |B|2

2μ0

]

+
∑

p

mp

2

∫ ∫
d3x d3vfpv

2, (3.8)

where

M :=
∑

p

∫
d3vmpfpv. (3.9)

The functional derivative of H with respect to the new variable M is

δH
δM

= V . (3.10)

Also, one should notice that the functional derivative with respect to fp is not the same as
in the previous case of the CCS, but

δH
δfp

= mp
v2

2
− mpv · V . (3.11)

We can verify that Hamilton’s equations are indeed the dynamical equations of the CCS
model with the momentum equation being replaced by (3.3).

3.2. Conventional construction of a PCS
The Hamiltonian system described in the previous subsection is equivalent to the CCS
model of § 2 because it is obtained from CCS by a mere change of variables. However, it
is a commonality in the hybrid fluid–kinetic models to employ pressure coupling schemes
which involve a simpler coupling of the bulk plasma with the energetic particles assuming
that np � ni and M/ρ ∼ V in the dynamical equations. These assumptions result in a
momentum equation governing the ion momentum density, instead of the total momentum
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density M , and containing the divergence of a pressure tensor associated with the energetic
particles (e.g. see Park et al. 1992; Kim, Sovinec & Parker 2004; Fu et al. 2006; Takahashi,
Brennan & Kim 2009). A similar treatment in our case with a two-fluid, Hall-MHD bulk,
results in the following set of equations:

∂tn + ∇ · (nV ) = 0, (3.12)

ρ(∂tV + V · ∇V ) = J × B −
∑

p

∇ · Pp − ∇ · Pe − ∇Pi, (3.13)

∂tB = ∇ ×
[

V × B − 1
en

J × B + 1
en

∇ · Pe

]
, (3.14)

∂tfp + v · ∇fp + ep

mp

[
(v − V )× B + 1

en
J × B − 1

en
∇ · Pe

]
· ∇vfp = 0. (3.15)

Here, n = ni = ne, which is the zeroth order quasineutrality condition for np/ni � 1.

3.3. Hamiltonian construction of a PCS
It has been stressed in several works (Tronci 2010; Tronci et al. 2014; Burby & Tronci
2017; Close et al. 2018) that such PC models, which are widely employed in the study
of energetic particle effects on plasma stability, do not conserve some energy functional
as all consistent ideal plasma models do (e.g. Morrison & Greene 1980; Marsden &
Weinstein 1982; Lingam et al. 2015). In addition, it has been shown that a Vlasov–MHD
model in the pressure-coupling scheme exhibits spurious instabilities attributed to the
lack of energy conservation (Tronci et al. 2014). In contrast, a Hamiltonian variant of
the model, derived by a procedure that ensures energy conservation (Tronci 2010), does
not contain these unphysical modes. Prompted by this observation, we employ the method
of Tronci (2010) in our case so as to derive a simplified, yet Hamiltonian, PCS model. The
idea is, instead of assuming np � ni to simplify the equations of motion, to replace the
ion momentum density M − M by the total momentum density M in the Hamiltonian
functional, implicitly assuming that M ≈ mniV on the Hamiltonian level. Hence, the term
|M − M|2/(2mni) in (3.8) becomes |M |2/(2mni), which leads to

H =
∫

d3x
[ |M |2

2mni
+ niUi(ni)+ neUe(ne, |B|)+ |B|2

2μ0

]

+
∑

p

mp

2

∫ ∫
d3x d3vfpv

2

=
∫

d3x
[

mni

2
|u|2 + niUi(ni)+ neUe(ne, |B|)+ |B|2

2μ0

]

+
∑

p

mp

2

∫ ∫
d3x d3vfpv

2, (3.16)

where u := M/(mni) is a weighted sum of the ion velocities. Note that for np �
ni, and if V p are comparable to V , then u = V up to zeroth order in np/ni. It is
convenient for us, in terms of comparing with the results of the previous section and
other studies, to write the Poisson bracket (3.7) in terms of the velocity variable u.
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This is done in Appendix A. The Casimirs of the bracket given in Appendix A are

C1 =
∫

d3xni, C2 =
∫

d3xne, (3.17a,b)

C3 = 1
2

∫
d3xA · B, (3.18)

C4 =
∫

d3x u ·
(

1
2
∇ × u + e

m
B
)

−
∑

p

∫
d3x

mp

mni

∫
d3vfpv ·

[
∇ ×

(
u − 1

2mni

∑
p′

mp′

∫
d3v′fp′v′

)
+ e

m
B

]
,

(3.19)

Cp =
∫

d3x d3vΛp( fp). (3.20)

The equations of motion that arise from Hamilton’s equations with the Poisson bracket
(A2) (Appendix A) and the Hamiltonian (3.16) are

∂tni = −∇ · (niu), (3.21)

∂tne = −∇ · (neu)− 1
e
∇ · J k, (3.22)

∂tB = ∇ ×
[

u × B − 1
ene
(μ−1

0 ∇ × B − J k)× B + 1
ene

∇ · Pe

]
, (3.23)

∂tu = u × ∇ × u − ∇(hi + u2/2)− ρ−1∇ · Pe

− ρ−1
∑

p

∇ · P̃p + μ−1
0 ρ

−1(∇ × B)× B, (3.24)

∂tfp = −(v + u) · ∇fp − ep

mp

[
v × B + 1

ene
(μ−1

0 ∇ × B − J k)× B

− 1
ene

∇ · Pe

]
· ∇vfp + ∇vfp · ∇u · v, (3.25)

where ρ = mni and hi = (1/m)d[niUi(ni)]/dni is the specific enthalpy of the thermal ion
fluid. Computing the first-order velocity moment of the Vlasov equation (3.25), we find

∂tσk = −∇ · (σku)− ∇ · J k, (3.26)

which, combined with (3.21) and (3.22), yields

∂tσ = −∇ · (σu), (3.27)

which is a continuity equation implying global but not local charge conservation. However,
if the plasma is initially quasineutral, i.e. σ = 0 at t = 0, then quasineutrality is ensured
by (3.27) ∀t > 0.
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4. Translationally symmetric formulation and energy-Casimir equilibria
4.1. Translationally symmetric formulation

In this section, we consider simplified dynamics with all dynamical variables being
invariant along a fixed straight axis in physical space. In this translationally symmetric
case, the magnetic field and macroscopic velocity can be expressed in terms of five scalar
Clebsch potentials. Note that the distribution functions, although translationally symmetric
in space, still depend on all three microscopic velocity coordinates. Translationally
symmetric models facilitate computer simulations, because the dependency on one spatial
coordinate is dropped and can be considered good approximations whenever a strong
guiding magnetic field directed in a fixed direction is present. Using Cartesian coordinates
(x, y, z) in physical space and assuming invariance along the z axis, the velocity and the
magnetic field can be written as

u = uz(x, y, t)ẑ + ∇χ(x, y, t)× ẑ + ∇Υ (x, y, t), (4.1)

B = Bz(x, y, t)ẑ + ∇ψ(x, y, t)× ẑ. (4.2)

To obtain a Hamiltonian formulation in this symmetric case, we need to translate this
field decomposition in a decomposition of the vector functional derivatives in terms
of functional derivatives with respect to the scalar fields uz,Bz, χ, ψ, Υ . The process
of deriving these relations has been described several times before, e.g. by Andreussi,
Morrison & Pegoraro (2010), Kaltsas, Throumoulopoulos & Morrison (2017), Grasso et al.
(2017) and Kaltsas, Throumoulopoulos & Morrison (2018). Following the same procedure
here, we find

Fu = Fuz ẑ + ∇FΩ × ẑ − ∇Fw, (4.3)

FB = FBz ẑ − ∇(Δ−1Fψ)× ẑ, (4.4)

where Δ−1 is the inverse Laplacian operator, Ω := −�χ ẑ and w := �Υ . The
translationally symmetric Hall MHD bracket is known from Kaltsas et al. (2017),
Grasso et al. (2017), and hence we have to compute the translationally symmetric
cross-kinetic-Hall MHD terms and the term accounting for electron fluid thermodynamics.
This is done in Appendix B upon substituting (4.3) and (4.4) in the bracket (A2) of
Appendix A. The resulting translationally symmetric bracket is

{F,G}TS =
∫

d2x
{

Fρ�Gw − Gρ�Fw

+ ne

ρ
([FΩ,Gne ] − [GΩ,Fne ] + ∇Fw · ∇Gne − ∇Gw · ∇Fne)

+ ρ−1Ω([FΩ,GΩ] + [Fw,Gw] + ∇Fw · ∇GΩ − ∇FΩ · ∇Gw)

+ uz([FΩ, ρ−1Guz ] − [GΩ, ρ
−1Fuz ] + ∇(ρ−1Guz) · ∇Fw

− ∇(ρ−1Fuz) · ∇Gw + ρ−1FΥGuz − ρ−1GΥFuz)

+ ψ([FΩ, ρ−1Gψ ] − [GΩ, ρ
−1Fψ ] + [FBz, ρ

−1Guz ] − [GBz, ρ
−1Fuz ]

+ ∇Fw · ∇(ρ−1Gψ)− ∇Gw · ∇(ρ−1Fψ)+ ρ−1FΥGψ − ρ−1GΥFψ)
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+ ρ−1Bz([FΩ,GBz ] − [GΩ,FBz ] + ∇Fw · ∇GBz − ∇Gw · ∇FBz)

+ 1
e
ψ([GBz, n−1

e Fψ ] − [FBz, n−1
e Gψ ])− 1

ene
Bz[FBz,GBz ]

− 1
e

∑
p

ep

mp

∫
d3v[n−1

e Bz∇v⊥ fp · (Gfp∇FBz − Ffp∇GBz)

+ ψ([n−1
e Ffp∂vz fp,GBz ] − [n−1

e Gfp∂vz fp,FBz ]

+ ∇ · (n−1
e FψGfp∇v⊥ fp)− ∇ · (n−1

e GψFfp∇v⊥ fp))]

+ 1
e

∑
p

ep

mp

∫
d3v(∇v⊥ fp) · (Ffp∇Gne − Gfp∇Fne)

− 1
ene

∑
p,p′

ep

mp

ep′

mp′

∫ ∫
d3v d3v′fpfp′[Bz〈Ffp,Gfp′ 〉

− ∇ψ · (∂vz Ffp∇v′
⊥Gfp′ − ∂v′

z
Gf ′

p
∇v⊥Ffp)]

+
∑

p

∫
d3v

fp

mp
[[[Ffp,Gfp ]]⊥ + ep

mp
(Bz〈Ffp,Gfp〉

+ ∇ψ · [∂vz Gfp∇v⊥Ffp − ∂vz Ffp∇v⊥Gfp ])

+ mp([[Ffp, ρ
−1(vzGuz + ẑ · v⊥×∇GΩ − v⊥ · ∇Gw)]]⊥

− [[Gfp, ρ
−1(vzFuz + ẑ · v⊥×∇FΩ − v⊥ · ∇Fw)]]⊥)]

}
. (4.5)

Note that we have introduced a new bracket notation, namely,

[a, b] := (∇a × ∇b) · ẑ, (4.6)

〈a, b〉 := (∇v⊥a × ∇v⊥b) · ẑ, (4.7)

[[a, b]]⊥ := ∇⊥a · ∇v⊥b − ∇⊥b · ∇v⊥a. (4.8)

The translationally symmetric Hamiltonian reads as follows:

H =
∫

d3x
[

1
2
ρ(u2

z + |∇χ |2 + 2[Υ, χ ] + |∇Υ |2)

+ B2
z

2μ0
+ |∇ψ |2

2μ0
+ ρUi(ρ)+ neUe(ne,Bz, |∇ψ |)

]

+
∑

p

∫
d3x d3v

1
2

mpfpv
2, (4.9)

and the functional derivatives of H with respect to the two scalars associated with the
magnetic field are

δH
δBz

= μ−1
0 (1 − γ )Bz, (4.10)

δH
δψ

= −∇ · [μ−1
0 (1 − γ )∇ψ]. (4.11)
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Having these expressions and also computing the functional derivatives with respect to the
remaining scalars, one can derive the translationally symmetric dynamical equations, and
in addition, equilibrium and stability conditions. For equilibrium and stability analysis,
one has to identify the families of Casimir invariants C that span the non-trivial null space
of the Poisson bracket (4.5). From the Casimir determining equations, stemming from the
requirement Cξi = 0, where Cξi appear in the following rearrangement of (4.5):

{F,G} =
∫

d3x

⎧⎨
⎩FρCρ + FneCne + FBzCBz + FψCψ + FχCχ + FΥ CΥ +

∑
p

∫
d3v FfpCfp

⎫⎬
⎭ ,

(4.12)

we were able to identify the following families of Casimirs

C1 =
∫

d3xneN(ψ), (4.13)

C2 =
∫

d3xρK(ϕ), (4.14)

C3 =
∫

d3xBzF(ψ), (4.15)

C4 =
∫

d3x

(
Ω + e

m
Bz −

∑
p

mp

∫
d3v[ρ−1fp, v · x]

)
G(ϕ), (4.16)

Cp =
∫ ∫

d3x d3v Λp( fp), (4.17)

where N,K,F,G and Λp are arbitrary functions of their respective arguments, and

ϕ := uz + e
m
ψ − ρ−1

∑
p

mp

∫
d3vfpvz, (4.18)

is a generalized ion stream function, modified owing to the presence of kinetic particle
species. For fp → 0, this stream function and the entire set of Casimir invariants
(4.13)–(4.17) reduce to their translationally symmetric Hall MHD counterparts (Kaltsas
et al. 2017). In this fluid limit, quasineutrality implies ne = ni, because np = ∫

d3v fp = 0.

4.2. Energy-Casimir equilibria
Owing to spatial symmetry, the Casimirs (4.13)–(4.17) constitute infinite families of
invariants, thereby allowing for the derivation of sufficient stability conditions by the
energy-Casimir method, which has been used for hybrid kinetic-MHD models by Tronci
et al. (2015) and for the extended and Hall MHD models by Kaltsas, Throumoulopoulos
& Morrison (2020). A preliminary step though is the definition of the stationary state
that serves as the initial condition for the dynamics. The set of equilibrium equations are
derived in the first step of the energy-Casimir method by setting the first-order variation
of the extended Hamiltonian equal to zero. In the MHD and extended MHD models, this
procedure resulted in a system of Grad–Shafranov–Bernoulli (GSB) equations. Here, we
derive the corresponding GSB system for translationally symmetric hybrid kinetic-Hall
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MHD in the PCS. The energy-Casimir functional, or extended Hamiltonian, is given by

F = H −
4∑

i=1

Ci −
∑

p

Cp, (4.19)

where H is given by (4.9) and C are the Casimirs (4.13)–(4.17). The first variation of (4.19)
can be written as

δF =
∫

d3x

(
R1δne + R2δρ + R3δuz + R4δχ + R5δΥ

+ R6δBz + R7δψ +
∑

p

∫
d3vRpδfp

)
. (4.20)

Assuming independent, arbitrary variations of the scalar dynamical variables, the
requirement δF = 0 is equivalent to Ri = 0, i = 1, . . . , 7 and Rp = 0,∀p. These
equations lead to the following equilibrium conditions:

Ue + n−1
e Pe‖ − N(ψ) = 0, (4.21)

hi(ρ)+ u2

2
− K(ϕ)− ρ−1K ′(ϕ)

∑
p

mp

∫
d3vfpvz

− ρ−2

(
Ω + e

m
Bz −

∑
p

mp

∫
d3v[ρ−1fp, v · x]

)
G′(ϕ)

∑
p′

mp′

∫
d3vfp′vz

− ρ−2
∑

p

mp

∫
d3vfp[v · x,G] = 0, (4.22)

− ∇ · (ρ∇Υ )+ [χ, ρ] = 0, (4.23)

− ∇ · (ρ∇χ)+ [ρ, Υ ] +�G(ϕ) = 0, (4.24)

ρuz − ρK ′(ϕ)−
(
Ω + e

m
Bz −

∑
p

mp

∫
d3v[ρ−1fp, v · x]

)
G′(ϕ) = 0, (4.25)

μ−1
0 (1 − γ )Bz − F(ψ)− e

m
G(ϕ) = 0, (4.26)

μ−1
0 ∇ · [(1 − γ )∇ψ] + neN ′(ψ)+ BzF′(ψ)+ e

m
ρK ′(ϕ)

+ e
m

(
Ω + e

m
Bz −

∑
p

mp

∫
d3v[ρ−1fp, v · x]

)
G′(ϕ) = 0, (4.27)

1
2

mpv
2 −Λ′

p( fp)+ mpvz
[
K ′(ϕ)

+ ρ−1

(
Ω + e

m
Bz −

∑
p

mp

∫
d3v[ρ−1fp, v · x]

)
G′(ϕ)

]

+ ρ−1mp[v · x,G(ϕ)] = 0. (4.28)
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Equation (4.21) provides a relation between Pe‖ and the variables ne, ψ and Bz. Upon
combining (4.21) with (2.46), we find an equation for Pe⊥ also. This one reads as follows:

Pe⊥ = ne

[
|B| ∂Ue

∂|B| + N(ψ)− U(ne, |B|)
]
. (4.29)

In terms of Bz and |∇ψ |, (4.29) becomes

Pe⊥ = ne

[
|B|2

(
1
Bz

∂Ue

∂BZ
+ 1

|∇ψ |
∂Ue

∂|∇ψ |
)

+ N(ψ)− Ue(ne,Bz, |∇ψ |)
]
. (4.30)

Therefore, to fully define an equilibrium state, we need an equation of state for the electron
fluid, i.e. Ue = Ue(ne,Bz, |∇ψ |). For example, such equations, which are associated with
collisionless magnetic reconnection, are provided by Le et al. (2009).

From (4.26), we readily obtain an equation that relates Bz with ψ, ϕ and γ ,

Bz = μ0
F(ψ)+ (e/m)G(ϕ)

1 − γ
. (4.31)

Equation (4.31) is in general an implicit equation for determining Bz because the anisotropy
function, γ , depends on Bz as well, and hence Bz appears nonlinearly in (4.26). We could
possibly make γ independent of Bz under some special assumption, i.e. selecting the
functional dependence of Ue on Bz in a particular manner.

Now, by multiplying (4.28) with fp, integrating over the velocity space and summing
over the particle species, we obtain the following equation:

∑
p

∫
d3v

mp

2
fpv

2 +
∑

p

K ′(ϕ)
∫

d3vmpfpvz −
∑

p

∫
d3vfpΛ

′
p( fp)

+ ρ−1

(
Ω + e

m
Bz −

∑
p

mp

∫
d3v[ρ−1fp, v · x]

)
G′(ϕ)

∑
p

∫
d3vmpfpvz

+
∑

p

mpρ
−1
∫

d3vfp[v · x,G(ϕ)] = 0. (4.32)

Combining equations (4.22) and (4.32), we find a Bernoulli equation of the form

ρh(ρ) = ρK(ϕ)− 1
2
ρu2 −

∑
p

[∫
d3v fpΛ

′
p( fp)−

∫
d3v

mp

2
fpv

2

]
. (4.33)

The two Grad–Shafranov equations, one for the thermal ions and one for the electron fluid,
stem from (4.25) and (4.27), respectively, using (4.23), (4.24) and (4.26), along with the
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definition of ϕ. These GS equations are

G′(ϕ)∇ ·
(

G′

ρ
∇ϕ

)
+ ρ

(
ϕ − e

m
ψ
)

− ρK ′(ϕ)− μ0
e
m

F(ψ)+ e
m G(ϕ)

1 − γ
G′(ϕ)

+
∑

p

mp

∫
d3v( fpvz + G′[ρ−1fp, v · x]) = 0, (4.34)

μ−1
0 ∇ · [(1 − γ )∇ψ] + neN ′(ψ)+ μ0

F(ψ)+ e
m G(ϕ)

1 − γ
F′(ψ)

+ e
m
ρ

(
ϕ − e

m
ψ + ρ−1

∑
p

mp

∫
d3vfpvz

)
= 0. (4.35)

Note that in (4.35), the anisotropy parameter γ appears inside the differential operator,
and hence this partial differential equation might not be always elliptic (Ito et al. 2007)
as is the case for an isotropic electron pressure. Finally, we need a set of equations for
determining the equilibrium distribution functions fp,e. Using (4.25), (4.28) is simplified
to

Λ′
p( fp) = 1

2 mpv
2 + mpv · u, (4.36)

where we have used
u⊥ = ρ−1∇G × ẑ, (4.37)

which can be deduced from (4.24) and from the fact that [v · x,G] = (∇G × ẑ) · v. For
invertible functions Λp, we take solutions to (4.36) of the form

fp,e = fp,e(
1
2(|v + u|2 − |u|2)), (4.38)

as was the case in the paper by Morrison et al. (2014) for the planar kinetic-MHD PCS
model. Here, the subscript e denotes equilibrium distribution functions. With (4.36), the
Bernoulli equation becomes

ρh(ρ) = ρK(ϕ)− 1
2
ρu2 −

∑
p

mp

∫
d3vfpv · u. (4.39)

Assuming a special functional form for fp,e, we can, in principle, compute the velocity
space integrals appearing in (4.34), (4.35) and (4.39) to obtain a Hall-MHD GSB
system, modified by the presence of energetic particles. As a final remark, note
that the Hall-MHD GSB equations with anisotropic electron pressure are retrieved
from (4.34), (4.35), (4.39), in the limit fp → 0, as can be seen by comparison with
variants of this system obtained by Kaltsas et al. (2017, 2018) for isotropic electron
pressure.

5. Conclusions

We constructed two kinetic-Hall MHD models with fluid and kinetic ions and fluid
electrons, neglecting electron length scales. The coupling of the kinetic and the fluid
components is effected through the current density in the first case (current coupling
scheme) and through the pressure tensors of the particle species in the second (pressure
coupling scheme). Moreover, we consider a gyrotropic electron pressure tensor, which
is legitimate in the Hall MHD limit, i.e. when neglecting electron length scales.

https://doi.org/10.1017/S0022377821000994 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000994


Hamiltonian kinetic-Hall MHD with fluid–kinetic ions 23

This description, allowing for both fluid and kinetic ions, bridges ordinary Hall MHD,
which can be recovered in the limit of vanishing kinetic-ion population, and the most
common hybrid kinetic-ion/fluid-electron model often used in hybrid simulations. The
basic structure of the Hall MHD dynamics is retained while enriched by kinetic effects
which are consistently described by the Vlasov equation. The Hamiltonian structures
of the models are identified using a method introduced by Tronci (2010) and, in
addition, a translationally symmetric description of the PCS model is obtained along
with the corresponding Hamiltonian structure and the associated Casimir invariants.
These functionals are deployed in an energy-Casimir variational principle that leads
to a generalized Grad–Shafranov–Bernoulli system of equilibrium equations. We note
that alternative hybrid models with non-gyrotropic electron pressure could have been
obtained if we had considered alternative extended MHD descriptions, e.g. that
presented by Tronci (2013), where the electron mean flow inertia is neglected in the
Lagrangian of the parent kinetic theory. The use of extended MHD models with
finite electron inertia and non-gyrotropic electron pressure tensors for describing the
bulk plasma, and also, further investigations regarding the construction of specific
equilibria and the derivation of sufficient stability criteria, will be the subject of a
future work.
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Appendix A. PCS Poisson bracket in terms of u

To express the bracket (3.7) in terms of u = M/(mni), we should express the functional
derivatives with respect to the new set of dynamical variables. One can prove that only the
functional derivatives with respect to M and ni will change according to

FM = F̃u

mni
, Fni = F̃ni − n−1

i u · F̃u. (A1a,b)
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Substituting these relations into (3.7) and employing some vector identities, we find the
following bracket:

{F,G} =
∫

d3x
{
ρ−1(∇ × u) · (Fu × Gu)+ (Gu · ∇Fρ − Fu · ∇Gρ)

+ ne

ρ
(Gu · ∇Fne − Fu · ∇Gne)+ ρ−1B · [Fu × (∇ × GB)

− Gu × (∇ × FB)] − 1
ene

B · [(∇ × FB)× (∇ × GB)]

−
∑

p

ep

emp

∫
d3vfp(∇vFfp · ∇Gne − ∇vGfp · ∇Fne)

+ 1
ene

∑
p

ep

mp

∫
d3vfpB · [∇vFfp × (∇ × GB)− ∇vGfp × (∇ × FB)]

− 1
ene

B ·
∫ ∫

d3v d3v′ ∑
p,p′

epep′

mpmp′
fp(v)fp′(v′)∇vFfp × ∇v′Gfp′

+
∑

p

m−1
p

∫
d3v fp

[
[[Ffp,Gfp ]] + ep

mp
B · (∇vFfp × ∇vGfp)

+ mp([[Ffp, ρ
−1v · Gu]] − [[Gfp, ρ

−1v · Fu]])
]}
. (A2)

Note that in the limit fp, ne → 0, (A2) becomes the Hall MHD bracket of Lingam et al.
(2015).

Appendix B. Translationally symmetric Poisson bracket in the PCS

The translationally symmetric counterpart of the Hall MHD bracket has been derived
in detail by Kaltsas et al. (2017). For this reason, here we provide only some details on
the hybrid and purely kinetic terms under the assumption of translational symmetry in
physical space, i.e. all dynamical variables are independent of the coordinate z. The generic
hybrid/kinetic terms are listed below:

{F,G}h1 =
∑

p

ep

emp

∫
d3x

∫
d3vfp(∇vFfp · ∇Gne − ∇vGfp · ∇Fne), (B1)

{F,G}h2 = 1
ene

∑
p

ep

mp

∫
d3x

∫
d3vfpB · [∇vFfp × (∇ × GB)

− ∇vGfp × (∇ × FB)], (B2)

{F,G}h3 = − 1
ene

∑
p,p′

epep′

mpmp′

∫
d3x

∫ ∫
d3v d3v′fpfp′B · (∇vFfp × ∇v′Gfp′ ), (B3)
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{F,G}h4 =
∑

p

m−1
p

∫
d3x

∫
d3v fp

{
[[Ffp,Gfp ]] + ep

mp
B · (∇vFfp × ∇vGfp)

+ mp([[Ffp, v · GM ]] − [[Gfp, v · FM ]])
}
. (B4)

The {F,G}h1 term remains essentially the same in the translationally symmetric case,
except that the gradient in the velocity space is now a gradient with respect to v⊥, i.e.
perpendicular to the ẑ component of the microscopic velocity, because of the dot product
with the gradient in physical space which has no z-component owing to the translational
symmetry. For {F,G}h2 , we need the curl of FB, which is given by

∇ × FB = Fψ ẑ + ∇FBz × ẑ. (B5)

Using simple vector algebra identities, we carry out the following calculation:

B · [∇vFfp × (∇ × GB)]

= (Bzẑ + ∇ψ × ẑ) · [(∂vz Ffp ẑ + ∇v⊥Ffp)× (Gψ ẑ + ∇GBz × ẑ)]

= ∂vz Ffp [GBz, ψ] + Gψ∇ψ · ∇v⊥Ffp − Bz∇GBz · ∇v⊥Ffp, (B6)

where [a, b] := (∂xa)(∂yb)− (∂xb)(∂ya). Substituting into (B2) and performing integrations
by parts, we find

{F,G}h2 = −1
e

∑
p

ep

mp

∫
d3x

∫
d3v[ψ([n−1

e Ffp∂vz fp,GBz ]

− [n−1
e Gfp∂vz fp,FBz ] + ∇ · (n−1

e FψGfp∇v⊥ fp)

− ∇ · (n−1
e GψFfp∇v⊥ fp))+ Bz

ne
∇v⊥ fp(Gfp∇FBz − Ffp∇GBz)]. (B7)

For the third term, we need to compute the triple product B · (∇vFfp × ∇v′Gfp′ ),

B · (∇vFfp × ∇v′Gfp′ )

= Bz〈Ffp,Gfp′ 〉 + ∇ψ · (∂v′
z
Gfp′ ∇v⊥Ffp − ∂vz Ffp∇v′

⊥Gfp′ ). (B8)

Therefore,

{F,G}h3 = − 1
ene

∑
p,p′

epep′

mpmp′

∫∫
d3v d3v′ fpfp′ {Bz〈Ffp,Gfp′ 〉

+ ∇ψ · (∂v′
z
Gfp′ ∇v⊥Ffp − ∂vz Ffp∇v′

⊥Gfp′ )}. (B9)

Finally, for the bracket {F,G, }h4 , we use again (B8) in conjunction with the following
relation:

FM = ρ−1(Fuz ẑ + ∇FΩ × ẑ − ∇Fw), (B10)
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to arrive at

{F,G}h4 =
∫

d3x
∑

p

1
mp

∫
d3vfp

{
[[Ffp,Gfp ]]⊥

+ ep

mp
[〈Ffp,Gfp〉 + ∇ψ · (∂vz Gfp∇v⊥Ffp − ∂vz Ffp∇v⊥Gfp)]

+ mp([[Ffp, ρ
−1(vzGuz + v⊥ · ∇GΩ × ẑ − v⊥ · ∇Gw)]]⊥

− [[Gfp, ρ
−1(vzFuz + v⊥ · ∇FΩ × ẑ − v⊥ · ∇Fw)]]⊥)

}
, (B11)

with the understanding that [[ f , g]]⊥ = ∇⊥f · ∇v⊥g − ∇⊥g · ∇v⊥ f .
Adding these sub-brackets to the bracket for the translationally symmetric Hall MHD

(Kaltsas et al. 2017), we form the complete translationally symmetric hybrid bracket for
the pressure coupling scheme (4.5).
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