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The intersection theory of the moduli stack
of vector bundles on P1

Hannah K. Larson

Abstract. We determine the integral Chow and cohomology rings of the moduli stack Br ,d of rank r,
degree d vector bundles onP1-bundles. We work over a field k of arbitrary characteristic. We first show
that the rational Chow ring A∗

Q
(Br ,d) is a free Q-algebra on 2r + 1 generators. The isomorphism class

of this ring happens to be independent of d. Then, we prove that the integral Chow ring A∗(Br ,d) is
torsion-free and provide multiplicative generators for A∗(Br ,d) as a subring of A∗

Q
(Br ,d). From this

description, we see that A∗(Br ,d) is not finitely generated as a Z-algebra. Finally, when k = C, the
cohomology ring of Br ,d is isomorphic to its Chow ring.

1 Introduction

In this paper, we fully describe the intersection theory of the moduli stack Br ,d of
vector bundles on P1-bundles. We work over an arbitrary field k of any characteristic.
Precisely, an object of Br ,d over a scheme T is the data of a rank 2 vector bundle W
on T and a rank r, relative degree d vector bundle E on PW . To describe generators of
the Chow or cohomology ring, let π ∶ PW→ Br ,d be the universal P1-bundle and let
w1 = c1(W) and w2 = c2(W) be Chern classes of the universal rank 2 bundle W. Let
E be the universal rank r bundle on PW. If z = c1(OPW(1)), then the Chern classes
of E are uniquely expressible as c i(E) = π∗(a i) + π∗(a′i)z for a i ∈ Ai(Br ,d) and a′i ∈
Ai−1(Br ,d). We show that the rational Chow ring of Br ,d is freely generated by these
classes. Then, we show that the integral Chow ring is torsion-free, and describe it as a
subring of the rational Chow ring. This also determines the cohomology ring of Br ,d ,
as it agrees with the Chow ring.

Theorem 1.1 We have A∗Q(Br ,d) = Q[w1 , w2 , a1 , . . . , ar , a′2 , . . . , a′r]. The integral
Chow ring A∗(Br ,d) ⊂ A∗Q(Br ,d) is the subring generated by w1 , w2 and the Chern
classes of π∗E(i) for i = 0, 1, 2, . . .. If k = C, then the cycle class map to Betti cohomology
A∗(Br ,d) → H2∗(Br ,d) is an isomorphism. Over an arbitrary field k, given a prime
� not equal to the characteristic, the cycle class map to �-adic étale cohomology
A∗(Br ,d) ⊗Z� → H2∗

ét (Br ,d ,Z�) is an isomorphism.
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360 H. Larson

In the special case when the P1-bundle is trivial (W is trivial), the integral Chow
ring has a somewhat simpler description. This describes the Chow ring of the moduli
stack B†

r ,d of vector bundles on a fixed P1, often denoted Bunr ,d(P1). (Precisely, an
object of B†

r ,d over a scheme T is a rank r, relative degree d vector bundle E on the
trivial P1-bundle P1 × T .) The map B†

r ,d → Br ,d is the GL2-bundle associated with W

onBr ,d . By [17, Theorem 2] of Vistoli, the pullback A∗(Br ,d) → A∗(B†
r ,d) is surjective

with kernel generated by w1 , w2.

Theorem 1.2 We have A∗Q(B†
r ,d) = Q[a1 , . . . , ar , a′2 , . . . , a′r]. Integrally, A∗(B†

r ,d) ⊂
A∗Q(B†

r ,d) is the subring generated by a1 , . . . , ar and the coefficients e i of the power
series

∞

∑
i=0

e i t i = exp(∫
d ⋅ (a1 + a2 t +⋯+ ar tr−1) − (a2 + a′3 t +⋯+ a′r tr−2)

1 + a1 t +⋯+ ar tr dt).

If k = C, then the cycle class map to Betti cohomology A∗(B†
r ,d) → H2∗(B†

r ,d) is an
isomorphism. Over an arbitrary field k, given a prime � not equal to the characteristic,
the cycle class map to �-adic étale cohomology A∗(Br ,d) ⊗Z� → H2∗

ét (Br ,d ,Z�) is an
isomorphism.

Remark 1.3 (1) In the case k = C, the cohomology of B†
r ,d was first found by

Atiyah and Bott [1, Proposition 2.20] using gauge theory. Our approach here is
completely algebraic, first determining the integral Chow ring (over any field k) and
finally showing that it must agree with cohomology (when k = C). When k = C, our
classes a i , a′i , e i correspond to the cohomology classes a i , f i , e i , respectively, in [1,
Proposition 2.20]. In particular, the class e i is the ith Chern class of the derived
push-forward π!E(−1). The power series in our Theorem 1.2 thus makes explicit the
“infinite sequence of integrality relations” mentioned in [1, p. 544] which are needed
to determine which polynomials in a i , a′i are integral.

(2) In [6], Bifet, Ghione, and Leticia take an algebreo-geometric approach to
computing the �-adic cohomology of B†

r ,d , via studying a homotopic ind-variety
Divr ,d = ⋃D≥0 Divr ,d(D). If π ∶ P1 ×B†

r ,d → B†
r ,d denotes the projection map and

O(D) the Dth power of the relative O(1), then each Divr ,d(D) may be identified
with an open subset of the total space of the vector bundle π∗Hom(E, O(D)⊕r) over
B†

r ,d . (The compliment of this open subset is maps that are not generically injective,
and its codimension goes to infinity as D goes to infinity.) Bifet, Ghione, and Leticia
find the cohomology of each Divr ,d(D)—which in turn determines the cohomology
of Divr ,d and so B†

r ,d —by producing a stratification into affine spaces. The fact that
A∗(B†

r ,d) ⊗Z� → H2∗
ét (B†

r ,d ,Z�) is an isomorphism is thus implied by their work.

We point out several interesting features of our results:
(1) Although A∗Q(Br ,d) is obviously finitely generated as a Q-algebra, A∗(Br ,d) is

not finitely generated as a Z-algebra (see Corollary 5.7).
(2) The rational Chow ring A∗Q(Br ,d) is independent of d. This may lead one to

wonder if the isomorphism class of Br ,d could be independent of d. However,
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considering integral Chow rings, one can show that B2,1 and B2,0 (resp. B†
2,1

and B†
2,0) are not isomorphic (see Corollaries 5.8 and 5.9).

(3) To show A∗(Br ,d) is torsion-free, we stratify by splitting loci, which in turn
are modeled by spaces admitting affine stratifications. This stratification is also
what allows us to see that the Chow and cohomology rings of Br ,d agree (see
Lemma 5.3).

(4) Using the theory of higher Chow groups, we show that push-forward maps
for including strata are all injective on Chow. This relies on a vanishing result
for higher Chow groups of a point with torsion coefficients. Although this
vanishing result only holds for an algebraically closed field of characteristic zero,
we deduce from it a rank equality which allows us to establish our theorem in
all characteristics.

Remark 1.4 Here, we are considering P1-bundles equipped with a relative degree
1 line bundle (i.e., our universal P1-bundle over Br ,d = [B†

r ,d/GL2] is pulled back
from BGL2). However, not all families of genus 0 curves admit a relative degree
1 line bundle. The moduli stack of vector bundles on families of genus 0 curves
would be [B†

r ,d/PGL2] (whose family of genus 0 curves is pulled back from BPGL2,
which is the moduli stack of genus 0 curves). Although the integral Chow ring of
the PGL2-quotient is more subtle, our work does determine the rational Chow ring
A∗Q([B†

r ,d/PGL2]), because it is equal to A∗Q([B†
r ,d/SL2]) (the SL2 quotient is a μ2-

gerbe over the PGL2-quotient). To find the latter, note that [B†
r ,d/SL2] → Br ,d is the

Gm-bundle associated with detW, so applying Vistoli’s theorem [17, Theorem 2], we
have

A∗Q([B†
r ,d/SL2]) = A∗Q(Br ,d)/⟨w1⟩ = Q[w2 , a1 , . . . , ar , a′2 , . . . , a′r].

This result will be used to determine the intersection theory of low-degree Hurwitz
spaces by Canning and the authors in [10, 11].

1.1 Relationship with the affine Grassmannian

Though not used in our proofs, we explain here a relationship of our results with a
closely related moduli space. The affine Grassmannian for GLr may be interpreted as
the moduli space of rank r vector bundles on P1 with a trivialization away from a
point. The affine Grassmannian has components indexed by degree, each homotopic
to the moduli stack Xr ,d of rank r, degree d vector bundles on P1 with a trivialization
at a point. The natural map Xr ,d → B†

r ,d is the principal GLr-bundle associated with
E∣B†

r ,d×0. Thus, using Vistoli’s theorem, we find A∗(Xr ,d) = A∗(B†
r ,d)/⟨a1 , . . . , ar⟩. In

Remark 5.6, we explain why the Chow and cohomology rings of Xr ,d agree. Thus,
we recover the cohomology of the affine Grassmannian, which was first computed
by Bott [9]. We note that the motive of the affine Grassmannian was determined by
Bachmann in [2, Corollary 20], which also determines its Chow groups.

From this perspective, Theorem 1.2 should be interpreted as determining the
GLr equivariant Chow/cohomology of the components of the affine Grassmannian.
(The fact that the rings A∗(B†

r ,d) = A∗([Xr ,d/GLr]) are not isomorphic for different
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degrees d shows that the GLr-actions really are different on the components Xr ,d
for different degrees d!) Let us also mention related work of Lam–Shimozono. Let
T ⊂ GLr be a maximal torus. Then, the T-equivariant cohomology of the degree 0
component of the affine Grassmannian was found with rational coefficients in [14].

1.2 Overview

This paper is organized as follows. In Section 2, we briefly state necessary results
concerning equivariant Chow rings and higher Chow groups. In Section 3, we
describe a sequence of opens Um that exhaust Br ,d . Following a construction of
Bolognesi–Vistoli, each Um can be realized as a global quotient stack. In Section 4,
we use this description to calculate the rational Chow ring of Br ,d . Finally, in Section
5, we prove that the integral Chow ring is torsion-free and provide a description of
the generators.

2 Preliminaries on equivariant Chow and higher Chow

Many of the stacks we encounter in this paper are quotients of open subsets X of
affine spaces by linear algebraic groups G. The Chow ring of a quotient stack [X/G]
is defined as the G-equivariant Chow ring of X, which in turn is defined in [12] using
models based on Borel’s mixing construction. More precisely, given a representation
V of G and an open subset U ⊂ V on which G acts freely, if codim U c > i, we define
Ai([X/G]) = Ai(X ×G U), where X ×G U is the quotient of X × U by the diagonal G
action. This is well defined because A∗(V) ≅ A∗(X) whenever V is a vector bundle
over X (“homotopy”) and Ai(X − Z) = Ai(X) whenever codim Z > i (“excision”).

For stacks that are locally of finite type, we define the Chow ring as in [3,
Appendix A]. In the next section, we shall describe a good filtration of Br ,d by finite-
type substacks U1 ⊂ U2 ⊂ U3 ⊂ ⋯, where Um is a finite-type quotient stack. Thus, as
explained in [3, Appendix A], for any fixed i, we shall have Ai(Br ,d) = Ai(Um) for m
suitably large.

Example 2.1 Let VN = Matr×N(k) = k⊕rN with GLr acting on VN by left multiplica-
tion. The group GLr acts freely on the open subset UN ⊂ VN of full rank matrices.
This determines a model pt ×GLr UN = UN/GLr = G(r, N). Since codim U c

N = N −
r + 1, we have Ai(BGLr) = Ai(G(r, N)) for i < N − r + 1. It is a classical result that
A∗(G(r, N)) is generated by the Chern classes c1 , . . . , cr of the tautological rank r
bundle with no relations in degrees less than N − r + 1. Taking larger and larger N, it
follows that A∗(BGLr) = Z[c1 , . . . , cr]. ∎

Variants of the above construction allow one to approximate all quotient stacks in
this paper with concrete models which are fiber bundles over Grassmannians.

The higher Chow groups of these quotient stacks will also be an important
tool. In [7], Bloch defines the higher Chow groups of a quasi-projective variety X
as the homology of a complex z∗(X ,−) of free abelian groups, i.e., CH∗(X , n) =
Hn(z∗(X ,−)). Higher Chow groups with coefficients in a ring R = Z/m or Z are
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defined similarly by CH∗(X , n, R) = Hn(z∗(X ,−) ⊗ R). Some properties of higher
Chow groups are the following [7, pp. 268–269].
(1) Weight zero: we have CH∗(X , 0, R) = A∗(X) ⊗ R.
(2) Functoriality: there are proper push forwards and flat pullbacks.
(3) Localization long exact sequence: if Y ⊂ X is a closed subscheme of pure

codimension d, then there is a long exact sequence

. . . → CH∗−d(Y , 1, R) → CH∗(X , 1, R) → CH∗(X − Y , 1, R)
→ CH∗−d(Y , 0, R) → CH∗(X , 0, R) → CH∗(X − Y , 0, R).

(4) Homotopy: CH∗(X ×Am , n, R) ≅ CH∗(X , n, R). By (2) and (3), it follows that
if X̃ → X is any affine bundle, then CH∗(X , n, R) ≅ CH∗(X̃ , n, R).

Edidin and Graham [12, Section 2.7] extend the notion of higher Chow groups
to quotients [X/G] by defining them to be higher Chow groups of suitable models:
CH∗([X/G], n, R) ∶= CH∗(X ×G U , n, R), where U is an open subset of a represen-
tation of G whose complement has sufficiently high codimension and G acts freely
on U. This is well defined by the homotopy property, and Edidin and Graham obtain
a localization long exact sequence for the corresponding quotients in (3) when Y is
G-equivariant [12, Proposition 5].

Over an algebraically closed field of characteristic zero, the higher Chow groups of
a point with torsion coefficients are known:

CHi(pt, n,Z/�) =
⎧⎪⎪⎨⎪⎪⎩

Z/�, if n = 2i ,
0, otherwise.

(2.1)

This follows from [16, Corollary 4.3], which relates higher Chow groups to certain
étale cohomology groups, although this special case was likely known earlier.1 Using
the long exact sequence and the homotopy property, it follows that over such a field,
CH∗(X , 1;Z/�) = 0 for any X admitting an affine stratification. In particular, since
BGLr is modeled by Grassmannians G(r, N) (see Example 2.1), we have

CH∗(BGLr1 ×⋯× BGLrs , 1;Z/�) = 0(2.2)

over an algebraically closed field of characteristic zero.

3 Construction of the moduli stack

Given some rank r ≥ 0 and degree d ∈ Z, we define the moduli stack Br ,d of vector
bundles of rank r and degree d on P1-bundles by

Br ,d(T) = {(W , E) ∶ W a rank 2 vector bundle on T
E a rank r, relative degree d vector bundle on PW} .

An arrow (W , E) → (W ′ , E′) is the data of an isomorphism ϕ ∶ W → W ′—which
induces an isomorphism Pϕ ∶ PW → PW ′—and an isomorphism ψ ∶ E → (Pϕ)∗E′.

1Although we shall not need it, we mention that Kelly has extended Suslin’s results to characteristic
p with Z[ 1

p ] coefficients. In positive characteristic, our proof of the main theorem uses a calculation in
characteristic zero, combined with a dimension counting trick.
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Given a vector bundle E on a P1-bundle PW → T , we write E(m) ∶= E ⊗OPW(1)⊗m .
There are equivalencesBr ,d ≅ Br ,d+mr sending (W , E) ↦ (W , E(m)). Thus, it would
suffice to study Br ,� for 0 ≤ � < r. Throughout, d = � + mr will be an arbitrary degree
in the residue class of � modulo r.

The stack Br ,� is a union of open substacks

Br ,� =
∞

⋃
m=0

Um with U0 ⊂ U1 ⊂ U2 ⊂ ⋯,

where Um ∶= Um ,r ,� is defined by

Um ,r ,�(T) = {(W , E) ∈ Br ,�(T) ∶ E(m) is globally generated on each fiber over T}
= {(W , E) ∈ Br ,�(T) ∶ R1π∗E(m − 1) = 0 for π ∶ PW → T projection}.

The stack U0,r ,� is equal to the stack of globally generated rank r, degree � vector
bundles on P1-bundles, which we shall denote Vr ,�. Via the twist by OPW(m), there
are isomorphisms Um ,r ,� ≅ Vr ,�+mr for each m.

3.1 Splitting loci

Every vector bundle on P1 splits as a direct sum of line bundles, say E = O(e1) ⊕⋯⊕
O(er) for e1 ≤ ⋯ ≤ er . We call e⃗ = (e1 , . . . , er) the splitting type of E, and abbreviate
the corresponding sum of line bundles by

O(e⃗) ∶= O(e1) ⊕⋯⊕O(er).

Given a vector bundle E on a P1-bundle π ∶ PW → T , we define splitting loci

Σ e⃗(E) ∶= {b ∈ B ∶ E∣π−1(b) ≅ O(e⃗)}.

Each splitting locus is a locally closed subvariety of T (see, e.g., [13, Theorem 14.7]). In
turn, the moduli stack Br ,� admits a stratification by the splitting loci of the universal
vector bundle. Let us denote the universal splitting locus for splitting type e⃗ by Σ e⃗ ⊂
Br ,�. Equivalently, Σ e⃗ is the moduli stack of vector bundles that have splitting type
e⃗ on each fiber of a P1-bundle. There is a partial order on splitting types defined by
e⃗′ ≤ e⃗ if e′1 +⋯+ e′j ≤ e1 +⋯+ e j for all j and equality holds when j = r. The splitting
locus Σ e⃗′ is contained in the closure of Σ e⃗ if and only if e⃗′ ≤ e⃗.

Suppose that O(e⃗) = ⊕s
i=1 O(d i)⊕r i with d1 < ⋯ < ds (so the d i are the distinct

degrees in e⃗ and the r i their multiplicities). Let us identify Aut(O(e⃗)) with block
upper triangular matrices whose entries in the i , j block are homogeneous polynomi-
als on P1 of degree d j − d i . The block diagonal matrices correspond to the subgroup
∏s

i=1 GLr i ↪ Aut(O(e⃗)). The group GL2 acts on the off-diagonal blocks via change
of coordinates on P1. The data of a vector bundle E on a P1-bundle PW → T whose
restriction to each fiber has splitting type e⃗ are the same as a principal bundle for
the semidirect product H e⃗ ∶= Aut(O(e⃗)) ⋉ GL2. (To see this, consider transition data
between local trivializations of such a family.) In other words, Σ e⃗ is equivalent to the
classifying stack BH e⃗ . From this, we see that
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codim Σ e⃗ = dimBr ,d − dim Σ e⃗ = −r2 + dim H e⃗ = −r2 + h0(P1 , End(O(e⃗)))
= h1(P1 , End(O(e⃗)) = ∑

i , j
max{0, e i − e j − 1} =∶ u(e⃗).(3.1)

Remark 3.1 In [5, Section 7], Behrend and Dhillon use the splitting-type stratifica-
tion on B†

r ,d = BunG(P1) to compute its class in the Grothendieck ring of stacks.

The complement of Um ,r ,� ⊂ Br ,� is the union of splitting loci Σ e⃗ with e1 < −m.
In particular, using (3.1), one sees that this union of splitting loci has codimension
� + mr + 1 (see also [15, Section 5]). In particular, as m increases, the codimension
of the complement of Um goes to infinity. The key to understanding the intersection
theory of Br ,� is therefore to understand each Um ,r ,�, which is equivalent to the stack
of globally generated vector bundles Vr ,d for d = � + mr.

3.2 Globally generated vector bundles

The stack Vr ,d of rank r, degree d globally generated vector bundles on P1 was
constructed by Bolognesi and Vistoli in [8]. We briefly motivate and review their
construction. If E is a globally generated vector bundle onP1, then there is a surjection
H0(E) ⊗OP1 → E. Since h0(E) = r + d, the kernel of this map is rank d, degree −d.
Furthermore, the kernel has no global sections, so it must be OP1(−1)⊕d . That is, given
a globally generated E, it sits naturally in a sequence

0 OP1(−1)⊕d O
⊕(r+d)
P1 E 0.

ψ (3.2)

Let Mr ,d ∶= Hom(OP1(−1)⊕d , O⊕(r+d)
P1 ) be the space of d × (r + d) matrices of

linear forms on P1. The sequence (3.2) determines an element ψ ∈ Mr ,d which is
well defined up to the choice of framings of the source and target. Moreover, ψ lies
in the open subvariety Ωr ,d ⊂ Mr ,d of matrices of linear forms having full rank d
at each point on P1. Let GLd act on Mr ,d by left multiplication and GLr+d act by
right multiplication. In addition, let GL2 act on Mr ,d by change of coordinates on
the entries, which live in the two-dimensional vector space H0(P1 , OP1(1)). These
three actions commute, so we obtain an action of GLd × GLd+r × GL2 on Mr ,d .
The locus Ωr ,d ⊂ Mr ,d is preserved by this action and thus inherits an action of
GLd × GLd+r × GL2.

Theorem 3.2 (Bolognesi and Vistoli [8, Theorem 4.4]) There is an isomorphism of
fibered categories Vr ,d ≅ [Ωr ,d/GLd × GLr+d × GL2].

In other words, Theorem 3.2 says Vr ,d is an open substack of a vector bundle over
BGLd × BGLr+d × BGL2. In particular, by the homotopy and excision properties, we
have a surjection

A∗(BGLd × BGLr+d × BGL2) ↠ A∗(Vr ,d).(3.3)

Let W denote the universal rank 2 vector bundle on Vr ,d (pulled back from the BGL2
factor), and let Eg g ∶= E

g g
r ,d be the universal globally generated rank r, degree d vector
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bundle on π ∶ PW→ Vr ,d . Let Td and Tr+d denote the universal vector bundles on
BGLd and BGLr+d . We wish to identify their pullbacks to Vr ,d in terms of Eg g .

Lemma 3.3 Let γ ∶ Vr ,d → BGLd × BGLr+d be the natural map. We have

γ∗Td = (π∗Eg g(−1)) ⊗ detW∨ and γ∗Tr+d = π∗Eg g .(3.4)

In particular, A∗(Vr ,d) is generated by the Chern classes of the three vector bundles W,
π∗Eg g(−1), and π∗Eg g .

Proof By the construction of Vr ,d as a quotient of Ωr ,d ⊂ Mr ,d , the universal
P1-bundle π ∶ PW→ Vr ,d is equipped with an exact sequence of vector bundles
globalizing (3.2)

0 → (π∗γ∗Td)(−1) → π∗γ∗Tr+d → Eg g → 0.(3.5)

By the theorem on cohomology and base change and the fact that h i(P1 , O(−1)) = 0,
we have R i π∗(π∗γ∗Td)(−1) = 0 for i = 0, 1. Therefore, pushing forward (3.5) by π
induces an isomorphism

γ∗Tr+d ≅ π∗π∗γ∗Tr+d
∼&→ π∗Eg g .

On the other hand, tensoring (3.5) with OPW(−1) and pushing forward by π induces
an isomorphism

π∗Eg g(−1) ∼&→ R1π∗((π∗γ∗Td)(−2)) ≅ γ∗Td ⊗ R1π∗OPW(−2).(3.6)

Noting that the relative dualizing sheaf of π is ωπ = OPW(−2) ⊗ detW∨, Serre duality
provides an isomorphism of the right-hand term in (3.6) with γ∗Td ⊗ detW. Having
identified the tautological vector bundles, (3.3) now establishes the claim about
generators of A∗(Vr ,d). ∎

Remark 3.4 Lemma 3.3 provides a quick proof of the existence half of [15, Theorem
1.2]: Pulling back the classes of closures of the universal splitting loci Σ e⃗ on Br ,d , it
follows that when the splitting loci of a vector bundle E on a P1-bundle PW → B have
the expected codimension, their classes in the Chow ring of B are given by a universal
formula in terms of the Chern classes of the rank 2 bundle π∗OPW(1) and the bundles
π∗E(i) for suitable i. This observation does not, however, give an indication of how
to find these formulas, as done in [15, Section 6].

Now, let E ∶= Er ,� denote the universal rank r, degree � vector bundle on PW→
Br ,�. The restriction of E to U0,r ,� ⊂ Br ,� is just E∣U0,r ,� = E

g g
r ,�. More generally, we have

eachUm ,r ,� ≅ Vr ,�+mr , and via this identification,E∣Um ,r ,� = E
g g
r ,�+mr(−m), equivalently

E(m)∣Um ,r ,� = E
g g
r ,�+mr . This establishes the following.

Lemma 3.5 The Chow ring A∗(Um) is generated over Z by the Chern classes of W
and the vector bundles π∗E(m − 1) and π∗E(m) on Um . Thus, A∗(Br ,�) is generated
by the Chern classes of W and π∗E(i) for i = 0, 1, 2, . . ..
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We shall later describe the Chow ring as a subring of a finitely generatedQ-algebra,
which gives rise to an implicit description of the relations among these generators.

4 The rational Chow ring

The rational Chow ring of Br ,� can be described with fewer generators than the
integral generators of Lemma 3.5. Let w1 = c1(W), w2 = c2(W), and z = c1(OPW(1)).
The Chern classes of E can be written as c i(E) = π∗(a i) + π∗(a′i)z for unique a i ∈
Ai(Br ,�) and a′i ∈ Ai−1(Br ,�). (Note that a′1 = �.) By Grothendieck–Riemann–Roch,
the Chern classes of the vector bundle π∗E(m) on Um are expressible in terms of
the a i and a′i for any m, so these classes are generators for the rational Chow ring of
each Um and therefore of Br ,�. The main result of this section will be that there are
no relations among these generators on Br ,�. We first consider relations on an open
Um ≅ Vr ,d , where d = mr + �.

Theorem 4.1 The ring A∗Q(Vr ,d) is a quotient of Q[w1 , w2 , a1 , . . . , ar , a′2 , . . . , a′r]
with all relations in degrees d + 1 and higher.

Proof Set G ∶= GLd × GLr+d × GL2. We let Td , Tr+d andW denote the correspond-
ing tautological bundles on B ∶= BG. Let t i = c i(Td), u i = c i(Tr+d), and w i = c i(W)
be their Chern classes, which freely generate A∗(B). Next, define M ∶= [Mr ,d/G],
which is the total space of the vector bundle Hom(Td , Tr+d) ⊗W∨ over B. Theorem
3.2 says that Vr ,d is an open substack of M. Let us write X ∶= [Ωc

r ,d/G] for its closed
complement. Here, Ωc

r ,d ⊂ Mr ,d is the space of matrices of linear forms that drop rank
along some point on P1. By excision, we have a right exact sequence

A∗−codimX(X) → A∗(M) → A∗(Vr ,d) → 0.(4.1)

We shall see soon that X is irreducible of codimension r, which immediately implies
that there are no relations among generators of A∗(M) restricted to Vr ,d in degrees
less than r. In what follows, we describe relations among the restrictions of these
Chern classes in degrees r up to d.

First, we construct a space X̃ whose total space maps properly to M with image
X. Let P(Td) be the projectivization of the tautological rank d bundle, and let σ ∶
PW ×B P(Td) → B be the map to the base. On PW ×B P(Td), we have a surjection of
vector bundles

σ∗M = σ∗(Hom(Td , Tr+d) ⊗W∨) → OP(Td)(1) ⊗ σ∗Tr+d ⊗OPW(1),(4.2)

corresponding to the evaluation of the map along a one-dimensional subspace of the
fiber of Td . Let X̃ ⊂ σ∗M denote the total space of the kernel vector bundle. Informally,

X̃ = {(p, Λ, ψ) ∶ p ∈ PW, Λ ⊂ (Td)π(p) , ψ ∈ Mπ(p) , Λ ⊂ ker ψ(p) ⊂ (Td)π(p)}.
(4.3)
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We have a commutative diagram:

X̃ σ∗M M

PW ×B P(Td) B,
ρ′′

ι

ρ′

σ ′

ρ

σ

where ρ, ρ′ , and ρ′′ are all vector bundle maps. Since X consists of maps that drop rank
along some point onP1, we have σ ′(ι(X̃)) = X by construction. Considering (4.3), we
see that the fiber of X̃ → X over a point corresponding to ψ is {(p, Λ) ∶ p ∈ P1 , Λ ⊂
ker ψ(p)} (in words, the projectivization of kernels over points on P1 where ψ drops
rank). Alternatively, we can think of ψ as defining a degree 1 map P1 → PMatd×d+r (so
long as ψ(p) is not the zero matrix at some p, which is a high codimension condition).
Let Z̃ → Z ⊂ PMatd×d+r be the usual resolution of the locus of matrices that are not
full rank by marking a one-dimensional subspace of the kernel. Then, the fiber of
X̃ → X over ψ is the fiber product

(σ ′ ○ ι)−1(ψ) Z̃

P1 PMatd×d+r .

The loci of matrices inPMatd×d+r that are not full rank have codimension r + 1 ≥ 2, so
a general line P1 → PMatd×d+r that meets Z meets it in a single general point of Z. In
particular, X̃ → X is generically one-to-one and has projective fibers. This establishes
that

dim X = dim X̃ = dim M + dim(PW ×B P(Td)) − rank Tk+r = dim M − r.

Since σ ′ ○ ι ∶ X̃ → X is surjective and projective, the push forward of rational Chow
groups A∗Q(X̃) → A∗Q(X) is surjective. (Take the preimage of any cycle. Since the
map is surjective, the fibers are nonempty. If the fibers are generically finite, the push
forward is some nonzero multiple of the original cycle. Otherwise, slice with enough
copies of the hyperplane class to get a cycle mapping with generically finite, nonempty
fibers to the same image.) It follows that the image of A∗−r

Q (X) → A∗Q(M) via push
forward of cycles is the same as the image of (σ ′ ○ ι)∗ ∶ A∗−r

Q (X̃) → A∗Q(M).
The pullback maps (ρ′′)∗, (ρ′)∗, and ρ∗ all induce isomorphisms on Chow rings.

Recall that X̃ is the kernel of (4.2), so it is defined inside the total space σ∗M by
the vanishing of a section of a vector bundle (ρ′)∗OP(Td)(1) ⊗ σ∗Tr+d ⊗OPW(1).
Therefore, the fundamental class of X̃ in the Chow ring of σ∗M is equal to (ρ′)∗β
where

β ∶= cr+d(OP(Td)(1) ⊗ σ∗Tr+d ⊗OPW(1)).
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We can write every class in A∗−r(X̃) as (ρ′′)∗α for a unique class α ∈ A∗−r(PW ×B
P(Td)). Then, the effect of (σ ′ ○ ι)∗ is

σ ′∗ι∗(ρ′′)∗α = σ ′∗ι∗ι∗(ρ′)∗α = σ ′∗([X̃] ⋅ (ρ′)∗α) = σ ′∗(ρ′)∗(β ⋅ α) = ρ∗σ∗(β ⋅ α).
(4.4)

Now, let z = c1(OPW(1)) and ζ = c1(OP(Td)(1)). By the projective bundle theorem,

A∗(PW ×B P(Td)) = A∗(B)[z, ζ]/(z2 + w1z + w2 , ζd + ζd−1 t1 +⋯+ ζtd−1 + td).
(4.5)

Thus, each class α ∈ A∗(PW ×B P(Td)) is uniquely expressible as

α =
d−1
∑
i=0

(σ∗γ i)ζ i +
d
∑
i=1
(σ∗γ′i)zζ i−1 ,(4.6)

where γ i ∈ A∗(B) with deg γ i = deg γ′i = deg α − i.
By (4.4) and (4.6), the image of (σ ′ ○ ι)∗ ∶ A∗−r

Q (X̃) → A∗Q(X) ≅ A∗Q(B) is the ideal
generated by the classes

f i , j ∶= σ∗(β ⋅ z i ζ j) for 0 ≤ i ≤ 1, 0 ≤ j ≤ d − 1.

As ρ∗ is an isomorphism on Chow, we omit it above and in what follows for ease of
notation. By the excision sequence (4.1), we have

A∗Q(Vr ,d) =
A∗Q(B)

⟨ f i , j ∶ 0 ≤ i ≤ 1, 0 ≤ j ≤ d − 1⟩ ≅ Q[w1 , w2 , t1 , . . . , td , u1 , . . . , ur+d]
⟨ f i , j ∶ 0 ≤ i ≤ 1, 0 ≤ j ≤ d − 1⟩ .

Since σ has relative dimension d, the codimension of f i , j is (r + d) + i + j − d =
r + i + j. Recall that there are no relations among the generators of A∗(M) ≅ A∗(B),
so f i , j is a unique polynomial of codimension i + j + r in the t’s, u’s, and w’s. Next, we
shall determine the coefficients of t i+ j+r and u i+ j+r in this expression for f i , j . We shall
then use this to obtain expressions for each of t j+r and u j+r in terms of f0, j , f1, j−1, and
the tn , um with m, n < j + r. This will inductively allow us to write each t j+r and u j+r
in terms of the tn , um with n < r and m ≤ r.

Using the splitting principle as in [13, Proposition 5.17], we have

β = cr+d(OP(Td)(1) ⊗ σ∗Tr+d ⊗OPW(1)) =
r+d
∑
i=0

(ζ + z)r+d−i σ∗u i ,

and applying (4.5), this becomes

= (ζ r+d + (r + d)zζ r+d−1) + (ζ r+d−1 + (r + d − 1)zζ r+d−2)σ∗u1

+⋯+ (ζd + dzζd−1)σ∗ur +⋯+ σ∗ur+d + ⟨σ∗w1 , σ∗w2⟩.

The push forward of any term involving σ∗w1 or σ∗w2 cannot contribute to the
coefficient of t i+ j+r or u i+ j+r . Since z2 ∈ ⟨σ∗w1 , σ∗w2⟩, after we multiply z i ζ j with
β, we only care about the resulting terms where the power of z is 1 (if the power of z
is zero, then the push forward vanishes).

To compute the push forward of such terms, first note that σ∗(zζn) = 0 for n <
d − 1 and σ∗(zζd−1) = 1 (see, e.g., [13, Lemma 9.7]). Therefore, σ∗(zζd−1+i) is equal to
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the coefficient of ζd−1 in the expression for ζd−1+i in terms of ζn with n ≤ d − 1. We find
such an expression by using (4.5) repeatedly. Each contribution to the coefficient of
ζd−1 in ζd−1+i comes from an ordered partition i = λ1 + λ2 +⋯+ λs with λn ≤ d; the
term for such a partition contributes the degree i class ∏s

n=1(−tλn) to the coefficient
of ζd−1. We therefore conclude

σ∗(zζd−1+i) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if i < 0,
1, if i = 0,
∑m1 ⋅1+⋯+md ⋅d=i(−1)m1+⋯+md ⋅ (m1+⋯+md)!

m1 !⋯md ! ⋅ tm1
1 ⋯tmd

d , if i ≥ 1.

Above, the coefficient in front of a monomial for (m1 , . . . , md) is the number of
ordered partitions of i so that j appears with multiplicity m j . In particular, we compute

f1, j−1 = σ∗(βzζ j−1) = −t j+r + u j+r + (terms with subscript < j + r),(4.7)

f0, j = σ∗(βζ j) = −(r + d)t j+r + (d − j)u j+r + (terms with subscript < j + r).
(4.8)

When j = 0, we can write

tr =
d

r + d
ur + (terms with subscript < r).(4.9)

When 0 < j ≤ d − r, taking appropriate linear combinations of (4.7) and (4.8), we have

u j+r =
1

j + r
((r + d) f1, j−1 − f0, j) + (terms with subscript < j + r),(4.10)

t j+r =
1

r + j
((d − j) f1, j−1 − f0, j) + (terms with subscript < j + r).(4.11)

In A∗Q(Vr ,d), the classes f i , j are zero. Thus, using (4.9)–(4.11) inductively, the classes
t j+r for 0 ≤ j ≤ d − r and u j+r for 0 < j ≤ d − r are expressible as polynomials in
w1 , w2 , t1 , . . . , tr−1 , u1 , . . . , ur . The remaining f0, j and f1, j−1 with j > d − r give rise to
relations in degrees greater than d. Hence, the map

Q[w1 , w2 , t1 , t2 , . . . , tr−1 , u1 , . . . , ur] → A∗Q(Vr ,d)(4.12)

is an isomorphism in degrees ∗ ≤ d. For dimension reasons, there can be no relations
among the generators w1 , w2 , a1 , . . . , ar , a′2 , . . . , a′r in degrees less than d because they
are a list of the same number of generators in the same degrees as (4.12). ∎

Corollary 4.2 We have A∗Q(Br ,�) = Q[w1 , w2 , a1 , . . . , ar , a′2 , . . . , a′r].

Proof Recall that the codimension of the complement ofUm ,r ,� is � + mr + 1. Thus,
choosing m such that � + mr + 1 > i, we see
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dim Ai
Q(Br ,�) = dim Ai

Q(Um ,r ,�) = dim Ai
Q(Vr ,mr+�)

= dimQ[w1 , w2 , a1 , . . . , ar , a′2 , . . . , a′r]i .

We already know Q[w1 , w2 , a1 , . . . , ar , a′2 , . . . , a′r] ↠ A∗(Br ,�), so we conclude that
it has no kernel for dimension reasons. ∎

5 The integral Chow ring

Our plan is to describe the integral Chow ring of Br ,� by building it up as a union of
the splitting loci Σ e⃗ using excision. The reader may be interested to compare the ideas
and use of higher Chow groups here with the work of Bae and Schmitt in their study
of the moduli stack of pointed genus 0 curves [4].

The Chow rings of our strata Σ e⃗ are particularly nice. Fix some e⃗ and write O(e⃗) =
⊕s

i=1 O(d i)⊕r i as in Section 3.1. There is an inclusion of groups ∏GLr i × GL2 ↪ H e⃗ ,
which induces a map on classifying stacks

∏BGLr i × BGL2 → BH e⃗ .(5.1)

The following lemma is a special case of a standard result about Chow rings of
classifying spaces of parabolic groups, using higher homotopy invariance.

Lemma 5.1 The map (5.1) factors as a sequence of affine bundles. In particular
A∗(Σ e⃗) = A∗(∏BGLr i × BGL2), which is a free Z-algebra. Furthermore, over C, the
first higher Chow groups satisfy

CH∗(Σ e⃗ , 1,Z/pZ) = CH∗ (∏BGLr i × BGL2 , 1,Z/pZ) = 0

for all primes p. ∎

Proof We induct on s. The s = 1 case is immediate. Let G′ = Aut(⊕s−1
i=1O(d i)⊕r i )

and H = G′ × GLrs ⊂ Aut(O(e⃗)). There is a quotient map Aut(O(e⃗)) → H defined
by forgetting blocks not in H, which expresses Aut(O(e⃗)) as a semidirect prod-
uct N ⋊ H where N ≅ H0(OP1(ds − d1))⊕(r1 rs) ⊕⋯⊕ H0(OP1(ds − ds−1))⊕(rs−1 rs) is
affine. Moreover,

H e⃗ = (N ⋊ H) ⋊ GL2 = N ⋊ ((G′ ⋊ GL2) × GLrs).

Now, let H e⃗ act on N where elements of N act by left multiplication and elements
of (G′ ⋊ GL2) × GLrs act by conjugation. This action is affine linear, so the quo-
tient, which is B((G′ ⋊ GL2) × GLrs), is an affine bundle over BH e⃗ . By the homo-
topy property, the Chow ring and higher Chow groups of BH e⃗ agree with that of
B(G′ ⋊ GL2) × BGLrs , which, by induction, are isomorphic to those of (BGLr1 ×⋯×
BGLrs−1 × BGL2) × BGLrs . The vanishing of the first higher Chow group over C is
equation (2.2). ∎

Using the above lemma, we find that inclusion of cycle classes from strata is
injective and deduce that the Chow ring of Br ,� is torsion-free.

Lemma 5.2 The Chow group Ai(Br ,�) is a finitely generated free Z-module for all i.
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Proof Suppose that U is a finite union of strata and Σ e⃗ is a disjoint stratum which
is closed in X = U ∪ Σ e⃗ . By Lemma 5.1, we know Ai(Σ e⃗) is a finitely generated free
Z-module for all i. By induction, we may also assume that Ai(U) is a finitely
generated freeZ-module. It suffices to show that Ai(X) is also a finitely generated free
Z-module.

Let us first deduce the result over C. We have a localization long exact sequence

⋯→ CH∗−u(e⃗)(Σ e⃗ , 1,Z/p) → CH∗(X , 1,Z/p) → CH∗(U , 1,Z/p)
→ A∗−u(e⃗)(Σ e⃗) ⊗Z/pZ→ A∗(X) ⊗Z/pZ→ A∗(U) ⊗Z/pZ→ 0.

By Lemma 5.1, we have CH∗−u(e⃗)(Σ e⃗ , 1,Z/p) = 0, so if CH∗(U , 1,Z/pZ) = 0, then we
have CH∗(X , 1,Z/p) = 0 too. It follows by induction that CH∗(U , 1,Z/p) = 0 for any
finite union of strata. Hence, we have an exact sequence

0 → A∗−u(e⃗)(Σ e⃗) ⊗Z/pZ→ A∗(X) ⊗Z/pZ→ A∗(U) ⊗Z/pZ→ 0(5.2)

for each prime p. Because theZ-modules involved are finitely generated, the exactness
of (5.2) for all p implies that

0 → Ai−u(e⃗)(Σ e⃗) → Ai(X) → Ai(U) → 0(5.3)

is exact. Since Ai−u(e⃗)(Σ e⃗) and Ai(U) are finitely generated free Z-modules, so is
Ai(X). This concludes the proof over C.

The exactness of (5.3) over C also tells us that

rank Ai(Br ,�) = ∑
e⃗

rank Ai−u(e⃗)(Σ e⃗).(5.4)

We claim that (5.4) in fact holds over any ground field. Indeed, Corollary 4.2 holds
over any field, so the left-hand side is independent of the ground field. Similarly, using
Lemma 5.1, we have A∗(Σ e⃗) = A∗(∏BGLr i × BGL2) and the latter is independent of
the ground field, so the right-hand side of (5.4) is independent of the ground field.

Now, working over any ground field, we claim that the map Ai−u(e⃗)(Σ e⃗) → Ai(X)
for attaching each stratum is injective. If not, then the image of Ai−u(e⃗)(Σ e⃗) → Ai(X)
would have rank strictly less than rank Ai−u(e⃗)(Σ e⃗). Then, rank Ai(Br ,�) would be
less than the sum ∑e⃗ rank Ai−u(e⃗)(Σ e⃗), violating (5.4). Hence, we must have an exact
sequence as in (5.3) for each e⃗. Arguing as before, we know Ai−u(e⃗)(Σ e⃗) and Ai(U)
are finitely generated free Z-modules, so because (5.3) is exact, Ai(X) is also a finitely
generated free Z-module. ∎

An analogous argument in cohomology can be used to show that Chow and
cohomology rings of Br ,d agree.

Lemma 5.3 If k = C, then the cycle class map A∗(Br ,d) → H2∗(Br ,d) is an isomor-
phism. If k is arbitrary and � is a prime not equal to the characteristic of k, then the cycle
class map A∗(Br ,d) ⊗Z� → H2∗

ét (Br ,d ,Z�) is an isomorphism.

Proof First, consider the case k = C. As before, suppose that U is a finite union of
strata and Σ e⃗ is a disjoint stratum which is closed in X = U ∪ Σ e⃗ . Because Σ e⃗ and
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X are smooth, the cohomology of the pair H∗(X , U) is the reduced cohomology
of the Thom space of the normal bundle of Σ e⃗ ⊂ X. By the Thom isomorphism, the
cohomology of this pair is then H∗(X , U) ≅ H∗−2u(e⃗)(Σ e⃗). By Lemma 5.1, we have
H∗(Σ e⃗) = H∗(∏BGLr i × BGL2), which vanishes in odd degrees. By induction, we
may assume that the odd cohomology of U vanishes. Thus, the long exact sequence
for the pair (X , U) gives an exact sequence

0 → H2(i−u(e⃗))(Σ e⃗) → H2i(X) → H2i(U) → 0(5.5)

for each i. The cycle class map sends the short exact sequence (5.3) to (5.5).
Because A∗(BGLr i ) → H2i(BGLr i ) is an isomorphism, using Lemma 5.1, we see
that Ai−u(e⃗)(Σ e⃗) → H2(i−u(e⃗))(Σ e⃗) is an isomorphism. By induction, we may
assume that Ai(U) → H2i(U) is an isomorphism. By the five lemma, we see that
Ai(X) → H2i(X) is also an isomorphism.

In étale cohomology, there is a Gysin long exact sequence for Σ e⃗ ⊂ X and the
open compliment U = X ∖ Σ e⃗ . Moreover, we have H∗ét(Σ e⃗ ,Z�) = H∗ét(∏BGLr i ×
BGL2 ,Z�), which vanishes in odd degrees. Thus, upon tensoring Chow with Z� the
same proof establishes that A∗(Br ,d) ⊗Z� → H2∗

ét (Br ,d ,Z�) is an isomorphism. ∎

Proof Corollary 4.2 determines A∗Q(Br ,�). Lemma 5.2 shows that A∗(Br ,�) is a
subring of A∗Q(Br ,�), and Lemma 3.5 identifies it as the subring generated by the
Chern classes of the sheaves π∗E(m). Lemma 5.3 shows that the cycle class map is
an isomorphism. ∎

To make this subring more explicit, we provide formulas for the Chern classes of
π∗E(m) in terms of the rational generators (working modulo ⟨w1 , w2⟩). Recall that
a′1 = � is the relative degree of E.

Lemma 5.4 Let

F(t) =
∞

∑
i=0

e i t i = exp(∫
a′1(a1 + a2 t +⋯+ ar tr−1) − (a′2 + a′3 t +⋯+ a′r tr−2)

1 + a1 t +⋯+ ar tr dt) .

(5.6)

Then,

∞

∑
i=0

c i(π∗E(m))t i = F(t)(1 + a1 t +⋯+ ar tr)m+1 mod ⟨w1 , w2 , tmr+�+1⟩.

(5.7)

Proof We will use Grothendieck–Riemann–Roch to compute the Chern characters
and make use of formal manipulations that turn power sums (Chern characters)
into elementary symmetric functions (Chern classes). It is convenient to package this
information in generating functions.

Given some α1 , . . . , αr , let σ j ∶= σ j(α1 , . . . , ar) = ∑i1<i2<⋯<i j α i1 α i2⋯a i j denote the
jth elementary symmetric function in the α i . For each j ≥ 0, there is a polynomial
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p j(x1 , . . . , xr) such that p j(σ1 , . . . , σr) = α j
1 +⋯+ α j

r . These polynomials satisfy

log(1 + x1 t +⋯+ xr tr) =
∞

∑
j=1

(−1) j+1

j
p j(x1 , . . . , xr)t j .(5.8)

For any vector bundle E, the jth Chern character is related to the Chern classes by

ch j(E) = 1
j!

p j(c1(E), . . . , cr(E)).

In what follows, we work modulo the ideal ⟨w1 , w2⟩, so that z2 = 0. Recall that, for
any polynomial f (x1 , . . . , xr), we have

f (x1 , . . . , x i + ε, . . . , xr) = f (x1 , . . . , xr) + ε ∂ f
∂x i

(x1 , . . . , xr) + ⟨ε2⟩.

Applying this repeatedly, one sees more generally that

f (x1 + h1ε, x2 + h2ε, . . . , xr + hr ε) = f (x1 , . . . , xr) + ε ⋅
r
∑
i=1

h i
∂ f
∂x i

(x1 , . . . , xr) + ⟨ε2⟩.

In particular,

ch j(E) =
1
j!

p j(π∗a1 + π∗a′1z, . . . , π∗ar + π∗a′rz)

= 1
j!

p j(π∗a1 , . . . , π∗ar) + z ⋅ 1
j!
(

r
∑
i=1

π∗a′i
∂p j

∂x i
(π∗a1 , . . . , π∗ar)) .

Now, let

c j =
1
j!

p j(a1 , . . . , ar) and c′j =
1
j!

r
∑
i=1

a′i
∂p j

∂x i
(a1 , . . . , ar),(5.9)

so that ch j(E) = π∗(c j) + π∗(c′j)z, with c j ∈ A j
Q
(Br ,�) and c′j ∈ A j−1

Q
(Br ,�). In addi-

tion, let us write c = c0 + c1 + c2 +⋯ and c′ = c′1 + c′2 +⋯, so that ch(E) = π∗(c) +
π∗(c′)z.

The relative tangent bundle of π ∶ PW→ Br ,� has Todd class td(Tπ) = 1 +
1
2 c1(Tπ) = 1 + z. Moreover, ch(E(m)) = ch(E)ch(OPW(m)) = ch(E)(1 + mz). On
Um , we have R1π∗E(m) = 0, so Grothendieck–Riemann–Roch tells us

ch(π∗E(m)) = π∗(ch(E(m))td(Tπ))
= π∗((π∗(c) + π∗(c′)z)(1 + (m + 1)z)) = c′ + (m + 1)c.
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To recover the Chern classes, by (5.8), we have to evaluate

exp
⎛
⎝
∞

∑
j=1
( j − 1)!(−1) j+1ch j(π∗E(m))t j⎞

⎠

= exp
⎛
⎝
∞

∑
j=1
( j − 1)!(−1) j+1(c′j+1 + (m + 1)c j)t j⎞

⎠

= exp
⎛
⎝
∞

∑
j=1

(( j − 1)!(−1) j+1 ⋅ 1
j!

r
∑
i=1

a′i
∂p j

∂x i
(a1 , . . . , ar)) t j⎞

⎠

× exp
⎛
⎝
∞

∑
j=1

(−1) j+1

j!
p j(a1 , . . . , ar)t j⎞

⎠

m+1

= exp
⎛
⎝

r
∑
i=1

a′i
∞

∑
j=1

(−1) j+1

j( j + 1)
∂p j+1

∂x i
(a1 , . . . , ar)t j⎞

⎠
(1 + a1 t +⋯+ ar tr)m+1 .

(5.10)

To evaluate the infinite sums inside (5.10), we consider

d
dt

⎛
⎝
∞

∑
j=1

(−1) j+1

j( j + 1)
∂p j+1

∂x i
(a1 , . . . , ar)t j⎞

⎠
=
∞

∑
j=1

(−1) j+1

j + 1
∂p j+1

∂x i
(a1 , . . . , ar)t j−1

(5.11)

=
∞

∑
j=2

(−1) j

j
∂p j

∂x i
(a1 , . . . , ar)t j−2 .(5.12)

Note that ∂p j/∂x i = 0 if j < i. Therefore taking the partial derivative of (5.8) with
respect to x i , we see that (5.12) is equal to

= −1
t2 ( ∂

∂x i
log(1 + a1 t +⋯+ ar tr) − δ i1 t)

=
⎧⎪⎪⎨⎪⎪⎩

(a1 + a2 t +⋯+ ar tr−1)/(1 + a1 t +⋯+ ar tr), if i = 1,
−t i−2/(1 + a1 t +⋯+ ar tr), if i ≥ 2.

(5.13)

Taking the formal integral of the left-hand side of (5.11), which equals (5.13), we have
r
∑
i=1

a′i
∞

∑
j=1

(−1) j+1

j( j + 1)
∂p j+1

∂x i
(a1 , . . . , ar)t j = ∫ a′1 ⋅

a1 + a2 t +⋯+ ar tr−1

1 + a1 t +⋯+ ar tr

− a′2 + a′3 t +⋯+ a′r tr−2

1 + a1 t +⋯+ ar tr .

Exponentiating this quantity and multiplying by (1 + a1 t +⋯+ ar tr)m+1 shows that
(5.10) is equal to the claimed formula (5.7). ∎

Remark 5.5 The Chern classes of π∗E(m) (not just modulo ⟨w1 , w2⟩) are also
expressible in terms of exponentials of formal integrals of rational functions in the
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a i and a′i and the Chern classes of W. Equation (5.9) is made up of terms with
higher partial derivatives of the polynomials p j multiplied by the Chern classes of W.
The sums of these higher partial derivatives that appear in expanding (5.10) can
again be collected into rational functions and formal integrals of rational functions
in the a i . However, we no longer have the sequence 0 → π∗E(m − 1) → π∗E(m) →
E∣B×{0} → 0 that holds for vector bundles on trivial families B × P1, so the relationship
between twists is not as nice.

Proof By Vistoli’s theorem, we have A∗(B†
r ,�) = A∗(Br ,�)/⟨w1 , w2⟩. By Lemma

5.4, after setting w1 = w2 = 0, the Chern classes of π∗E(m) for all m are expressible
in terms of the e i in (5.6) and a1 , . . . , ar . To see that the cycle class map is an
isomorphism, one may argue as in Lemmas 5.1 and 5.3, but using the splitting loci Σ†

e⃗
onB†

r ,�. One has Σ†
e⃗ ≅ B Aut(O(e⃗)), so the proof is essentially the same after dropping

the BGL2 factor from Lemma 5.1. ∎

Remark 5.6 Let Xr ,d be the moduli stack of vector bundles on P1 with a trivial-
ization at a point, so Xr ,d → B†

r ,d is a principal GLr-bundle. We can stratify Xr ,d

by splitting loci Σ̃ e⃗ . Similar to Lemma 5.1, there is a natural map GLr/GLr1 ×⋯×
GLrs → Σ̃ e⃗ which is an affine bundle. Meanwhile, GLr/GLr1 ×⋯× GLrs is an affine
bundle over the partial flag variety Fl ∶= Fl(r1 , r1 + r2 , . . . , r1 +⋯+ rs−1; r). Since Fl
admits a stratification into affines, its higher Chow groups vanish and it has no
odd cohomology. Thus, arguing as in Lemma 5.3, we conclude that the Chow and
cohomology rings of Xr ,d also agree.

Corollary 5.7 The integral Chow rings A∗(Br ,�) and A∗(B†
r ,�) are not finitely

generated as Z-algebras.

Proof Since A∗(Br ,�) surjects onto A∗(B†
r ,�), it suffices to prove the claim forB†

r ,�.
Suppose to the contrary that A∗(B†

r ,�) were finitely generated as a Z-algebra. Then,
there would exist a finite set of primes {p1 , . . . , pn} such that for all η ∈ A∗(B†

r ,�),
there exist m1 , . . . , mn ∈ Z such that pm1

1 ⋯pmn
n ⋅ η ∈ Z[a1 , . . . , ar , a′2 , . . . , a′r]. Let q

be a prime not in {p1 , . . . , pn}. Let us consider the coefficient fq in (5.6). Per-
forming the formal integral, we see that F(t) = exp(−a′2 t +⋯), so (a′2)q appears
in fq with coefficient 1

q! . Hence, pm1
1 ⋯pmn

n ⋅ fq ∉ Z[a1 , . . . , ar , a′2 , . . . , a′r] for any
m1 , . . . , mn . ∎

As an example of the utility of the formulas in Lemma 5.6, we show that the integral
Chow ring A∗(B†

r ,�) depends on �.

Corollary 5.8 The integral Chow rings A∗(B†
r ,0) and A∗(B†

r ,�) are not isomorphic
when � ≠ 0 mod r. Hence, B†

r ,0 is not isomorphic to B†
r ,�.

Proof Let ∑ e i t i = F(t) as in (5.6). Then, A∗(B†
r ,�) ⊂ Q[a1 , . . . , ar , a′2 , . . . , a′r] is

the subring generated by the classes e i together with a1 , . . . , ar , a′2 , . . . , a′r . Let

S = A1(B†
r ,�) ⋅ Ar−1(B†

r ,�) + A2(B†
r ,�) ⋅ Ar−1(B†

r ,�) +⋯ + A⌊r/2⌋(B†
r ,�)

⋅ A⌈r/2⌉(B†
r ,�) ⊂ Ar(B†

r ,�),
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so S is the subspace of Ar(B†
r ,�) generated by products of integral elements from lower

codimension. Taking d
d t of (5.6), we have

(1 + a1 t +⋯+ ar tr)
∞

∑
i=1

ie i t i−1 = (�(a1 +⋯+ ar tr−1) − (a′2 +⋯+ a′r tr−2))
∞

∑
j=0

e j t j .

Equating the coefficient of t i−1 on both sides for i ≤ r, we find

ie i + (i − 1)e i−1a1 +⋯+ e1a i−1 = �(e i−1a1 +⋯+ e1a i−1 + a i)
− (e i−1a′2 +⋯+ e1a′i + a′i+1).(5.14)

(Above, a′i+1 = 0 if i = r.) In particular, setting i = r, we find

rer − �ar ∈ S .

This establishes that Ar(B†
r ,�)/S is a quotient of Z⊕Z/mZ where m = gcd(r, �).

If � ≠ 0 mod r, then m < r, so Ar(B†
r ,�)/S has no element of order r. On the other

hand, if � = 0, then m = r, and we claim that er is an element of order r in Ar(B†
r ,0)/S.

If � = 0, we have e1 = −a′2, and, more generally, no copy of ar−1 appears in er−1. In
particular, using (5.14), we find that er = − 1

r a′2ar−1 +⋯. Meanwhile, since ar−1 does
not appear in er−1, elements of Ar−1(B†

r ,0) necessarily have integer coefficient of ar−1.
Hence, elements of S always have integer coefficient of a′2ar−1. It follows that ner ∉ S
for any n < r. ∎

To get results like Corollary 5.8 for A∗(Br ,�) is more challenging because we
cannot ignore the w1 and w2 terms and work with the nice generating function (5.6).
However, in specific cases, one can write down integral generators using Macaulay2
and, using ad hoc arguments, prove results such as the following.

Corollary 5.9 The integral Chow rings A∗(B2,1) and A∗(B2,0) are not isomorphic.
Hence, B2,0 is not isomorphic to B2,1.

Proof The codimension of the complement of U3,2,� ⊂ B2,� is 6 + �. In par-
ticular, for � = 0, 1, we have A4(B2,�) = A4(U3,2,�). By Lemma 3.3, we have that
A4(B2,�)/(A1(B2,�) ⋅ A3(B2,�) + A2(B2,�)2) is generated by t4 ∶= c4(π∗E(2)) and
u4 ∶= c4(π∗E(3)). These classes are determined by the splitting principle and
Grothendieck–Riemann–Roch, and one can calculate them quickly using the
Schubert2 package in Macaulay2. When � = 0, we have

t4 = −
1
4

a3
1 a′2 +

11
24

a2
1 a′22 −

1
4

a1 a′32 +
1

24
a′42 + 3a3

1 w1 − 4a2
1 a′2 w1 + a1 a′22 w1 +

1
12

a′31 w1 + 15a2
1 w2

1

−

25
4

a1 a′2 w2
1 +

13
24

a′22 w2
1 + 18a1 w3

1 −
3
2

a′2 w3
1 + 4w4

1 + 3a2
1 a2 − 4a1 a2 a′2 +

7
6

a2 a′22 + 18a1 a2 w1

− 5a2 a′2 w1 + 18a2 w2
1 + 12a2

1 w2 + a1 a′2 w2 −
19
6

a′22 w2 + 48a1 w1 w2 + 2a′2 w1 w2 + 40w2
1 w2 + 3a2

2 + 16w2
2 ,

u4 = a4
1 −

25
12

a3
1 a′2 +

35
24

a2
1 a′22 −

5
12

a1 a′32 +
1

24
a′42 + 30a3

1 aw1 −
53
2

a2
1 a′2 w1 +

20
3

a1 a′22 w1 −
5
12

a′32 w1 + 185a2
2 w2

1

−

845
12

a2 a′2 w2
1 +

133
24

a′22 w2
1 + 360a1 w3

1 − 45a′2 w3
1 + 193w4

1 + 12a2
1 a2 −

55
6

a1 a2 a′2 +
5
3

a2 a′22 + 90a1 a2 w1 −
43
2

a2 a′2 w1

+ 130a2 w2
1 + 70a2

1 w2 −
65
6

a1 a′2 w2 −
11
3

a′22 w2 + 450a1 w1 w2 −
45
2

a′2 w1 w2 + 616w2
1 w2 + 6a2

2 + 20a2 w2 + 118w2
2 .
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From this, we observe that t4 and u4 are expressible as the sum of a class in

Z[a1 , a′2 , a2 , w1 , w2]4 ⊂ A1(B2,�) ⋅ A3(B2,�) + A2(B2,�)2 ,

plus a class divisible by a′2. That is, when � = 0, we can choose generators of

A4(B2,�)/(A1(B2,�) ⋅ A3(B2,�) + A2(B2,�)2),

so that a multiple lies in A1(B2,�) ⋅ A3(B2,�). On the other hand, if � = 1, then

t4 =
35
8

a2
2 +⋯ and u4 =

63
8

a2
2 +⋯.

However, all codimension 2 classes have denominators at most 2. Thus, there is no
adjustment of t4 or u4 by integral classes from lower codimension so that the result is
divisible by a codimension 1 class. ∎
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