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Abstract

Multicomponent systems are representative of the most common real situations as many
industrial discharges contain amixture of several pollutants. This study examines the concurrent
adsorption of phenol (PHE) and ciprofloxacin (CIP) onto three types of polyethylene tereph-
thalate microplastics (PET MPs): pristine, acid-modified, and thermal-oxidatively aged. Using
extended Langmuir (EL), extended Freundlich (EF) isotherms, and a new artificial neural
network (ANN) model, equilibrium adsorption capacities were predicted. The EL isotherm fit
for pristine and aged PET MPs, while EF fit for modified PET MPs. Monolayer adsorption
capacities ranged from 342.10–3715.73 mg/g for PHE and 2518.23–14498.79 mg/g for CIP,
exceeding single-component adsorption. The ANNmodel used one hidden layer with 3 neurons
for pristine and aged PET MPs, and 2 hidden layers with five neurons for modified PET MPs,
with a hyperbolic tangent activation function. Models showed excellent performance metrics,
including R2 values of 0.989–0.999, RMSE of 0.001–0.413, and AAE of 0.009–0.327. Synergistic
interactions were observed in the binary system, with PET MPs showing higher selectivity
toward CIP. The study demonstrates the effectiveness of PETMPs for binary adsorption of PHE
and CIP in aqueous solutions, highlighting their potential for multicomponent pollutant
removal.

Impact statement

This researchmakes a significant contribution to the field of environmental science and pollution
management by demonstrating an innovative approach to treating water contaminated with
complex mixtures of pollutants. By focusing on the concurrent adsorption of phenol (PHE) and
ciprofloxacin onto modified polyethylene terephthalate microplastics (PET MPs), the study
addresses a critical gap in existing pollution treatment methodologies, which often overlook
the multifaceted nature of industrial discharges. The impact of this study is manifold. First, it
provides a scalable solution for the removal of mixed pollutants from water bodies, thereby
contributing to safer drinking water and healthier aquatic ecosystems. The use of readily available
PETMPs, including waste materials subjected to simple modifications, aligns with sustainability
goals by repurposing plastic waste for environmental cleanup. The development and application
of advanced modeling techniques, including artificial neural networks, for predicting adsorption
capacities, present a leap forward in the design of efficient water treatment systems. Thesemodels
offer precise, customizable tools for predicting the behavior of pollutants in water thereby
enabling the optimization of treatment processes for a variety of contaminants. Finally, the
study’s findings have broad implications, extending beyond the immediate environmental
benefits. By improving the quality of water, the research supports public health initiatives and
contributes to the sustainability of agricultural practices that rely on clean water. The inter-
national relevance of this work is underscored by its potential application in diverse geographic
and industrial contexts,making it a vital contribution to global efforts to combat water and plastic
pollution.

Introduction

Designing water treatment adsorption systems requires comprehensive knowledge of adsorption
equilibrium data across a wide concentration range. These data define the limits of a sorbent’s
application and significantly impacts the overall costs of the treatment process.

Single-compound adsorption systems, although often oversimplified, are extensively studied.
Batch tests can easily provide adsorption isotherms for these systems, and several valid
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adsorption models exist (Isiuku and Enyoh, 2019). In contrast,
multicomponent systems, which reflect common real situations,
are more complex as they involve mixtures of pollutants in indus-
trial discharges (Enyoh and Isiuku, 2021). For example, ciproflox-
acin (CIP) have been found to occur in water with other chemicals
from pharmaceutical and personal care products (Lozano et al.,
2022). The modeling analysis of experimental data involving such
systems presents difficulties due to the great variety of experimental
conditions (mainly in terms of pollutant concentration) that can
determine the occurrence of unpredictable competitions for the
same adsorption sites of the solid surface, interactions between
adsorbed molecules, and consequently, a great variation in the
adsorption capacity of the involved analytes.

Multicomponent adsorption isotherm theory is important for
understanding and predicting the behavior of adsorption processes
in real-world situations. By accurately describing the adsorption of
multiple components, multicomponent adsorption isotherm the-
ory allows researchers and engineers to design more efficient and
effective adsorption systems. Several models can be used for the
accounting of competitive adsorption in multicomponent systems,
including thermodynamically inconsistent models such as
extended Langmuir (EL) and extended Freundlich (EF) isotherms
(Amrutha et al., 2023). These models have been applied in multiple
studies (Agarwal et al., 2013; Enyoh and Isiuku, 2021; Pauletto et al.,
2021; Peñafiel and Flores, 2023). In order to assess the simultaneous
adsorption of paracetamol and nimesulide using activated carbon,
Pauletto et al. (2021) utilized both the EL and EF isotherms. Peñafiel
and Flores (2023) assessed the multi-solute adsorption tests of
antibiotics and nonsteroidal anti-inflammatory medications on
sugarcane bagasse, namely CIP, sulfamethoxazole, ibuprofen and
diclofenac. The simultaneous adsorption of pentachlorophenols
and trichlorophenols in binary component solutions on Canna
indica L was investigated by Enyoh and Isiuku (2021) using EL
and EF isotherms. They discovered that neither model could well
describe the adsorption data in the binary system. The models’
insensitivity to the system’s interaction and competitive impacts
was given as the cause of this.

Empirical evidence now firmly establishes the efficacy of
machine learning (ML) models, particularly the artificial neural
network (ANN) model, as a nontraditional yet robust tool for
predicting multicomponent adsorption equilibrium data. This cap-
ability extends to both ideal and nonideal systems, as demonstrated
in studies by Kiraz et al. (2019) and Belhaj et al. (2021). The
versatility of ML models goes beyond conventional applications,
encompassing isotherm and kineticsmodeling, breakthrough curve
analysis and process optimization (Pauletto et al., 2021; Enyoh
et al., 2023a, 2023b). What sets ML models apart is their capacity
to learn directly from experimental data, eschewing the need for
predefined assumptions about the physicochemical nature influ-
encing the adsorption system, a limitation in many traditional
models (Pauletto et al., 2021). This unique characteristic allows
MLmodels to capture the intricate nonlinear relationships inherent
in the complex interplay between the input and output variables of
the system (Kiraz et al., 2019; El Hanandeh et al., 2020). This
adaptability and data-driven approach position ML models as
powerful tools for comprehensively modeling various facets of
adsorption processes.

A noticeable gap exists in the literature regarding the application
of ANN in adsorption studies involving MPs as adsorbents for
pollutants within multicomponent systems (Astray et al., 2023). A
singular study (Li et al., 2020) attempted to fill this void by employ-
ing three ML models – random forest, support vector machine and

ANN – to predict partition coefficients (log Kd) for polyethylene
(PE), polystyrene and polypropylene MPs in water. Utilizing quan-
titative structure–property relationship data, the study concluded
that these models, boasting correlation coefficients >0.92, could be
instrumental in rapidly estimating the absorption of organic con-
taminants onto MPs (Li et al., 2020).

To the best of our knowledge, no ML model has been presented
to predict the adsorption of organic pollutants such phenol (PHE)
and CIP by PE terephthalate (PET) MPs in multicomponent solu-
tions that takes into account the equilibrium and kinetics process
conditions. PHE, a prevalent pollutant in industrial effluents from
chemical and pharmaceutical industries (Mohd, 2020), holds envir-
onmental significance. Similarly, CIP, an emerging synthetic
fluoroquinolone antibacterial compound widely used in bacterial
infection treatment, is omnipresent in aquatic settings due to its
widespread use and discharge into the environment through waste-
water discharges (Enyoh and Wang, 2022). The purpose of this
work was to study the competitive interactions and simultaneous
adsorption behavior of PHE andCIP onto differently prepared PET
MPs such pristine PET MPs (Pr-PET MPs), modified PET MPs
(Mod-PET MPs) and aged PET MPs (Ag-PET MPs) in the binary
system. In the present study, various multicomponent thermo-
dynamically inconsistent adsorption models, and the ANN model
were used to represent the equilibrium adsorption behavior for the
binary system. The nonideality of the system was taken account
intoANNaswell as accounting for the kinetics and thermodynamic
operation conditions.

Methods

Data collection

PET MPs were prepared from PET plastic waste collected from a
waste bin. The waste was washed, ground into small particles
(500 μm), and then subjected to modification (Mod-PET MPs)
and aging (Ag-PET MPs) processes using sulfuric acid and hydro-
gen peroxide at 60°C (Enyoh and Wang, 2022). To obtain the
adsorption capacities of the adsorbents, batch experiments were
conducted in laboratory scale, the results were published in our
earlier works (Enyoh and Wang, 2022, 2023).

Multicomponent modeling

By expanding the single component isotherms, multicomponent
isotherm equations were created for the description of adsorption
in multi-solute systems. Our earlier publications provided the
information needed to compute the models (Enyoh and Wang,
2022, 2023). In this article, the following equations were utilized:

EL isotherm
The EL isotherm for multicomponent adsorption assumes uniform
and equally available active sites on the adsorbent, noninteracting
effects among adsorbates and identical adsorption on these uni-
form sites with consistent energy levels (Girish, 2017). The model
can be represented in the form presented in equations (1) and (2)
for PHE and CIP, respectively.

qe, PHEð Þ =
qmax ,PHEKL,PHECe,PHE

1þKL,PHECe,PHE þKL,CIPCe,CIP
(1)

qe, CIPð Þ =
qmax ,CIPKL,CIPCe,CIP

1þKL,CIPCe,CIP þKL,PHECe,PHE
(2)
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where qe(PHE) and qe(CIP) are the equilibrium adsorption capacity
for PHE and CIP solute (mg/g), respectively. Ce(PHE) and Ce(CIP)

represent the equilibrium concentration of single component of
PHE and CIP (mg/L), respectively. KL is the Langmuir constant for
component (L/mg), and qmax is the monolayer adsorption capacity
for PHE/CIP (mg/g). This analysis is performed for a series of
experimental values of qe versus Ce for both PHE and CIP using
the SOLVER function inMicrosoft Excel, as outlined by Enyoh and
Isiuku (2021).

EF isotherm
The application of the monocomponent Freundlich equation was
extended to binary systems, giving rise to the development of the EF
isotherm model. This model proves particularly useful in the con-
text of heterogeneous systems where interactions occur among the
adsorbed molecules (Girish, 2017). The mathematical representa-
tion of the EF isotherm formulticomponent systems is expressed as
follows:

qe, PHEð Þ =
KF,PHEC

1
nPHE

� �
þxPHE

e,PHE

CxPHE
e,PHE þ y2C

zPHE
e,CIP

(3)

qe, CIPð Þ =
KF,CIPC

1
nCIP

� �
þxCIP

e,CIP

CxCIP
e,CIP þ y2C

zCIP
e,PHE

(4)

The adsorption intensities (n) and Freundlich constants (KF) are
determined from individual Freundlich models in experimental
studies by Enyoh and Wang (2022) for PHE and in Enyoh and
Wang (2023) for CIP. For PHE, KF values of 2.58, 1.06 and 1.42
mg/g (L/mg)�1/n, and n values of 2.09, 1.14 and 1.23 were obtained
for Pr-PET MPs, Mod-PET MPs and Ag-PET MPs, respectively.
For CIP,KF values of 12.26, 12.92 and 12.32,mg/g (L/mg)�1/n and n
values of 0.91, 0.80 and 0.88 were obtained for the same materials.
The constants x, y and z are determined through the minimization
of errors in a nonlinear regression analysis. This analysis is per-
formed for a series of experimental values of qe versus Ce for both
PHE and CIP using the SOLVER function in Microsoft Excel, as
outlined by Enyoh and Isiuku (2021). This approach allows for the
accurate determination of these constants, contributing to a com-
prehensive understanding of the adsorption behavior of PHE and
CIP on Pr-PET MPs, Mod-PET MPs and Ag-PET MPs in binary
system.

Computational multicomponent modeling-ANNs

An ANN typically comprises an input layer, multiple hidden layers
and an output layer. Within the hidden layer, numerous neurons
are present, each governed by a unique activation function. The
activation function for each neuron involves specific weights and
biases. This is mathematically expressed using a general formula, as
outlined in equation (5) (Yettou et al., 2021; Ghaemi et al., 2023):

Y kþ1ð Þ
j = f

XN

i= 1ð ÞX
k
i w

k
ijþbki

� �
(5)

where f is the activation (transfer) function. In this study, the best
activation (transfer) functions for the model development was
hyperbolic tangent (Tanh) activation function. N number of inputs
of the neuron and k is the layer (hidden, output), w is the weighting
and b is the bias. The target of the model is the adsorption capacity

of the Pr-PETMPs, Mod-PETMPs and Ag PET-MPs (in mg/g) for
both PHE and CIP in binary system.

In our case, there are 12 inputs to the model, which included
data from individual batch studies for PHE and CIP. The input data
include; equilibrium concentration (Ce [PHE] and Ce [CIP] in
mg/L), initial concentration (in mg/L), pH of the solution, the
contact time (t(PHE) and t(CIP) in hours), pseudo-first and
second-order kinetic rate constants (PFO-K [PHE] and PFO-K
[CIP] in hr�1; PSO-K [PHE] and PSO-K [CIP] in g/mg/hr) and
intraparticle diffusion constants (Kid [PHE] and Kid [CIP] in
mg/g h1/2). Therefore, in equation (5), X = [Ce(PHE), Ce(CIP),
t(PHE), t (CIP), Initial conc., PFO-K (PHE), PFO-K (CIP), PSO-K
(PHE), PSO-K (CIP), Kid (PHE), Kid (CIP), pH] and Y = equilib-
rium adsorption capacities (qe(PHE), qe(CIP)).

In this investigation, the JMP Pro neural networks tool, offering
a diverse range of architectures for feedforward backpropagation
network implementation, was used. The Broyden–Fletcher–Gold-
farb–Shanno (BFGS) algorithm, integrated into JMP Pro (Gotwalt,
2010), was used for solving unconstrained nonlinear optimization
problems. Despite its slower nature, the BFGS algorithm proved to
be a more fitting choice for smaller datasets, exhibiting superior
predictive capabilities and enhanced resilience to outliers (Cuiping
et al., 2022). The number of neurons per layer and the number of
layers were adequately adjusted by experimentation to eliminate
model architectures that displayed overfitting. TheANNmodel was
built with the following layers: Pr-PET MPs and Ag-PET MPs, the
most effective configuration involved a single hidden layer with
three neurons each. In contrast, the model tailored for Mod-PET
MPs involved two hidden layers, with the first layer boasted five
neurons while the second layer, accommodated three neurons.
Several precautionarymeasures were implemented to prevent over-
fitting of the data. First, data underwent scaling to ensure a har-
monized scale, thereby enhancing model predictivity and
mitigating biases stemming from scale effects. Second, a monitor-
ing of training and validation losses/accuracy was undertaken,
leveraging k-fold cross-validation to detect and avoid overfitting
tendencies. These steps fortified the robustness of themodel against
overfitting, ensuring its reliability and generalizability (Enyoh et al.,
2023c;Enyoh et al., 2024).

Interaction effect modeling

In a solution containing multiple pollutants, different types of
interactions happen between the adsorbate molecules. The assess-
ment of these interactions can be effectively conducted through the
utilization of metrics such as the P-factor and selectivity ratio ( SR).

P-factor
McKay and Al Duri (1987) created the P-factor model, a correlative
approach used to compare the binary isotherm data with the
monocomponent isotherm data. The P-factor (??i) clarifies the
mechanism by which other components in a binary mixture pre-
vent a component from adhering. It is said as follows:

pfi =
QPHE=CIP,s

QPHE=CIP,b
(6)

where QPHE=CIP,s and QPHE=CIP,b represent the sorbent monolayer
adsorption capacity for the PHE or CIP in the single component
solution and the binary system.
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Selectivity ratio
The selectivity ratio (SR) serves as a quantitative measure reflecting
the affinity of an adsorbent for a specific component within a binary
system. Grounded in the analysis of the adsorbent’s morphology,
surface structure and pore distribution, the selectivity ratio delves
into the adsorbent’s inclination or preference for one solute in the
presence of another (Krishna and van Baten, 2020). The selectivity
ratio is defined as

SR =
QPHE ,b

QCIP,b
OR

QCIP,b

QPHE ,b
(7)

where QPHE ,borQCIP,b represent the adsorption capacity of either
PHE or CIP in the binary solution. The value of SR being less than
one implies that the adsorbent has more affinity toward the second
component (denominator in equation 7) than the first component
(numerator in equation 7).

Model evaluation metrics

In order to verify and assess how well the models predict the adsorp-
tion equilibrium capacities, statistical metrics like the R2 (coefficient of
determination), mean square error (MSE), root MSE (RMSE) and
average absolute error (AAE) given in equations were utilized to
analyze and compare the predictive capacities of the models.

R2 = 1�
P

yi� y∗i
� �2

P
yi� yi

∗� �2 (8)

MSE =
1
N

Xn
i= 1

yi� y∗i
�� ��2 (9)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i= 1

yi� y∗i
� �2

vuut (10)

AAE =
1
N

Xn
i= 1

∣yi� y∗i ∣ (11)

where yi is the predicted adsorption capacities qe (mg/g) of PHE
and CIP in binary pollution system value by the model, and n is the
number of data; y∗i is the actual/experimental adsorption capacities
qe (mg/g) value and yi

∗ is the average actual/experimental adsorp-
tion capacities qe (mg/g). To produce the best ML model, the
objective should be to attain the lowest error with RMSE, AAE
and the highest with R2 correlations.

Results and discussion

Multicomponent modeling

The plots comparing the experimental, EL and EF equilibrium
adsorption capacity of PHE and CIP in binary system is presented
in Figure 1. The results summary is presented in Table 1.

EL isotherm for PET MPs-driven PHE and CIP adsorption in binary
system
The EL model, designed as a predictive tool, assumes homogeneity
in surface energy and negligible interaction between PHE and CIP.
Moreover, it posits that all adsorption sites are equally accessible to

both pollutants. Figure 1 illustrates a comparison between EL
isotherm predictions and experimental equilibrium data. Critically,
the relative scatter diagrams reveal significant fits for Pr-PET and
Mod-PET MPs in the binary pollutant system, yielding R² values
ranging from 0.7998 to 0.9727. In contrast, Ag-PET MPs exhibit
moderate fitting with R² values of 0.5216 for CIP and 0.5508 for
PHE, respectively (see Table 1). Pr-PET and Mod-PET MPs show
robust fits, suggesting that the EL model is well-suited for predict-
ing the adsorption behavior of PHE and CIP on these surfaces. On
the other hand, the moderate fits for Ag-PETMPs indicate that the
assumptions of the ELmodel may not fully capture the interactions
at higher equilibrium concentrations occurring in this specific case.

Examining the monolayer adsorption capacities (qmax) for dif-
ferent PET MPs in the binary pollutant system, we find significant
values for all adsorbents. Pr-PET MPs demonstrated capacities of
342.10 mg/g for PHE and 2518.23 mg/g for CIP. Mod-PET MPs
exhibit even higher capacities with 2970.34 mg/g for PHE and
11927.54 mg/g for CIP. Remarkably, Ag-PET MPs display the
highest monolayer adsorption capacities with 3715.73 mg/g for
PHE and 14498.79 mg/g for CIP. The order of monolayer adsorp-
tion capacity followsAg-PETMPs >Mod-PETMPs >Pr-PETMPs.
The higher capacity recorded for Ag-PETMPs could be due to their
favorable surface properties such as its surface area and morph-
ology. However, comparing these results with single-component
capacities reported by Enyoh and Wang (2022, 2023), a significant
enhancement in adsorbent capacity in the binary system of PHE
and CIP is evident. These suggest that the interaction between PHE
and CIP in the binary system led to synergistic effects, where the
presence of one compound enhances the adsorption of the other
(Chen et al., 2022; Ke et al., 2023). This synergy is not evident in
single-component systems.

EF isotherm for PET MPs-driven PHE and CIP adsorption in binary
system
Within the binary pollutant system comprising PHE and CIP, the
distinct adsorption capacities for various adsorbents – Pr-PET,
Mod-PET and Ag-PET – were determined using the following
equations (12-14).

For Pr-PET MPs:

qe, PHEð Þ =
2:58C

1
2:09ð ÞþxPHE

e,PHE

CxPHE
e,PHE þ y1C

zPHE
e,CIP

(12)

qe, CIPð Þ =
12:26C

1
0:91ð ÞþxCIP

e,CIP

CxCIP
e,CIP þ y2C

zCIP
e,PHE

(13)

For Mod-PET MPs:

qe, PHEð Þ =
1:06C

1
1:14ð ÞþxPHE

e,PHE

CxPHE
e,PHE þ y1C

zPHE
e,CIP

(14)

qe, CIPð Þ =
12:92C

1
0:80ð ÞþxCIP

e,CIP

CxCIP
e,CIP þ y2C

zCIP
e,PHE

(15)

For Ag-PET MPs:

qe, PHEð Þ =
1:42C

1
1:23ð ÞþxPHE

e,PHE

CxPHE
e,PHE þ y1C

zPHE
e,CIP

(16)
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Figure 1. Comparison of experimental and multicomponent model (extended Langmuir and Freundlich) values for the individual compounds in the binary system (a, c, e) PHE in
binary systemwith CIP for Pr-PETMPs, Mod-PETMPs and Ag-PETMPs, respectively (b, d, f) CIP in binary systemwith PHE for Pr-PETMPs,Mod-PETMPs andAg-PETMPs, respectively.
Contact time, temperature, shaking speed and pH were set to 60 min, 25°C, 100 rpm and 6, respectively.
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qe, CIPð Þ =
12:32C

1
0:88ð ÞþxCIP

e,CIP

CxCIP
e,CIP þ y2C

zCIP
e,PHE

(17)

The application of the EF isotherm model proves valuable for
heterogeneous systems characterized by interactions among the
adsorbed molecules. In Figure 1, a comparison between experi-
mental sorption capacity and predicted values using the EF model
for a binary system is presented. The isotherm data indicates the
EF model’s suitability in describing the adsorption of PHE and
CIP onto Pr-PETMPs andMod-PETMPs, with R2 values ranging
from 0.8283 to 0.9704. The robust performance of the EF model
suggests its applicability in capturing the complex interactions
and heterogeneity present in the adsorption process on these
specific microplastic types. However, the Ag-PET MPs exhibit a
lower R2 for PHE (0.3488) and a moderate R2 for CIP (0.5216) in
the binary system, as summarized in Table 1. This discrepancy
may hint at unique characteristics or complexities in the adsorp-
tion process onto Ag-PET MPs that are not fully captured by the
EF model.

Computational multicomponent modeling for PET MPs-driven
PHE and CIP adsorption in binary system

All the input parameters in the model are considered independent
variables. This means that changes in one parameter are not
assumed to be directly caused by changes in any other parameter.
Each variable is treated as a distinct factor that can influence the
output separately. In Table 2, the correlation between different
input parameters and the output variable is examined. The strength
of correlation is measured using the correlation coefficient (r). The
correlation reveal that the strongest correlation exists between the
initial concentration (r = 1.00) and qe followed by contact time
(r = 0.99) then pH (r = 0.95-0.97). The pseudo-second-order rate
constant, although moderately correlated with qe, is the only par-
ameter that is negatively correlated with qe. The correlation ana-
lysis provides insights into the relationships between input

parameters and output variables. Strong positive correlations sug-
gest direct relationships, while negative correlations indicate an
inverse relationship. These findings are crucial for understanding
how changes in each parameter may impact the adsorption process
and the resulting equilibrium adsorption capacity.

To construct an ANN models with multiple components, an
experimental dataset was procured through batch experiments
focusing on the adsorption of PHE (Enyoh and Wang, 2022) and
CIP (Enyoh and Wang, 2023). This dataset encapsulated diverse
permutations of initial concentrations, contact times, equilibrium
concentrations, kinetic parameters and pH levels. The objective was
to capture the interactions within a binary system involving PHE
and CIP. Following dataset acquisition, a crucial preprocessing step
involved the division of the data into a training set and a validation/
test set. Initially, 10% of the data were randomly selected and set
aside. This reserved subset would later serve as a litmus test for the
model’s generalizability, enabling an assessment of its performance
on unseen data. The efficacy of the developed ANN models was
quantified using various metrics, including R-squared values,
RMSE and AAE. These metrics were employed to elucidate the
extent to which the models accurately represented the adsorption
capacities of PHE and CIP in the binary system across the Pr-PET
MPs, Mod-PETMPs and Ag-PETMPs adsorbents. This systematic
approach to constructing and evaluating multicomponent ANN
models facilitated a robust analysis of the adsorption behaviors of
PHE and CIP in a binary system, providing information on the
suitability and accuracy of the models across various types of PET
MPs adsorbent.

Optimal outcomes were achieved through the implementation
of the hyperbolic tangent activation function (TanH). Specifically,
for Pr-PET MPs and Ag-PET MPs, the most effective configur-
ation involved a single hidden layer (H1) housing three neurons
each (H1_1, H1_2 and H1_3). In contrast, the model tailored for
Mod-PET MPs demonstrated superior performance when
equipped with two hidden layers. The first layer boasted five
neurons (H1_1_1, H1_2_1… H1_5_1), while the second layer, a
pivotal component of the enhanced architecture, accommodated

Table 1. Parameters of extended Langmuir and Freundlich models for the Pr-PET MPs, Mod-PET MPs and Ag-PET MPs-driven binary adsorption of PHE and CIP

Parameter

Pr-PET MPs Mod-PET MPs Ag-PET MPs

PHE CIP PHE CIP PHE CIP

Extended Langmuir

qmax (mg/g) 342.10 2518.23 2970.34 11927.54 3715.73 14498.79

KL (L/mg) 0.0023 0.0002 0.0004 0.0001 0.0005 0.0001

R2 0.8246 0.7998 0.9727 0.9041 0.5508 0.5216

MSE 1.54 1.07 0.24 1.24 2.36 3.53

Extended Freundlich

xi 19.34 3.18 7.61 6.47 58.85 17.67

yi 2368.38 436.87 0.93 84235.20 1.20 10989269.89

zi 11.09 0.00 3.97 0.00 30.65 0.00

R2 0.9704 0.8387 0.8283 0.9041 0.3488 0.5216

MSE 0.72 0.69 0.37 0.58 2.58 2.99
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Table 2. Correlation coefficients between the different input parameters and the output for Pr-PET MPs, Mod-PET MPs and Ag-PET MPs

Ce(PHE) Ce(CIP) t(PHE) t (CIP) Initial conc. PFO-K (PHE) PFO-K (CIP) PSO-K (PHE) PSO-K (CIP) Kid (PHE) Kid (CIP) pH qe(PHE) qe(CIP)

Pr-PET MPs

Ce(PHE) 1

Ce(CIP) 1.00 1.00

t(PHE) 0.94 0.94 1.00

t (CIP) 0.88 0.88 0.99 1.00

Initial conc. 0.92 0.93 0.99 1.00 1.00

PFO-K (PHE) 0.59 0.59 0.34 0.19 0.27 1.00

PFO-K (CIP) 0.00 0.00 0.00 0.00 0.00 0.00 1

PSO-K (PHE) �0.95 �0.95 �0.81 �0.76 �0.81 �0.60 0.00 1.00

PSO-K (CIP) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Kid (PHE) 0.86 0.86 0.97 1.00 0.99 0.14 0.00 �0.72 0.00 1.00

Kid (CIP) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

pH 0.98 0.98 0.98 0.95 0.97 0.44 0.00 �0.92 0.00 0.93 0.00 1.00

qe(PHE) 0.91 0.91 0.99 1.00 1.00 0.24 0.00 �0.79 0.00 0.99 0.00 0.96 1.00

qe(CIP) 0.89 0.89 0.99 1.00 1.00 0.20 0.00 �0.77 0.00 1.00 0.00 0.95 1.00 1.00

Mod-PET MPs

Ce(PHE) 1.00

Ce(CIP) 0.96 1.00

t(PHE) 0.99 0.94 1.00

t (CIP) 0.97 0.89 0.99 1.00

Initial conc. 0.99 0.93 0.99 1.00 1.00

PFO-K (PHE) 0.11 0.14 0.23 0.11 0.12 1.00

PFO-K (CIP) 0.00 0.00 0.00 0.00 0.00 0.00 1.00

PSO-K (PHE) �0.81 �0.86 �0.72 �0.67 �0.72 0.12 0.00 1.00

PSO-K (CIP) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Kid (PHE) 0.92 0.79 0.94 0.98 0.96 0.04 0.00 �0.56 0.00 1.00

Kid (CIP) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

pH 0.99 0.99 0.98 0.95 0.97 0.14 0.00 �0.85 0.00 0.87 0.00 1.00

qe(PHE) 0.99 0.93 0.99 1.00 1.00 0.12 0.00 �0.71 0.00 0.96 0.00 0.97 1.00

qe(CIP) 0.98 0.91 0.99 1.00 1.00 0.12 0.00 �0.69 0.00 0.97 0.00 0.96 1.00 1.00

Ag-PET MPs

Ce(PHE) 1.00

Ce(CIP) 0.97 1.00

(Continued)
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three neurons (H2_1_1, H2_2_1 and H2_3_1) (refer to Figure 2).
Distinguishingly, each hidden layer carried distinct parameter
estimates instrumental in accurately predicting the desired out-
put. The estimates for the different hidden layers are presented in
equations (18-31). The numbers preceding each variable are
coefficients that determine the weight of each feature in themodel,
while the ‘n’ subscript indicates various values of each variable.
The entire expression is then passed through the TanH function to
obtain the final output. This approach allowed for a fine-tuned
adaptation to the specific characteristics of Pr-PET MPs, Ag-PET
MPs and Mod-PET MPs, showcasing the versatility of the hyper-
bolic tangent activation function in tailoring the ANN architec-
ture for optimum results.

For Pr-PET MPs:

H1_1 = TanH 2:85�0:19 ∗ Ce CIPð Þ½ �n
�

� 0:002 ∗ Ce PHEð Þ½ �n�0:02 ∗ ½Initial conc: �n
� 0:15 ∗ Kid CIPð Þ½ �nþ98:49 ∗ Kid PHEð Þ½ �n
� 0:12 ∗ PFO‐K CIPð Þ½ �n�549:94 ∗ PFO‐K PHEð Þ½ �n
þ 0:07 ∗ pH½ �nþ0:003 ∗ PSO‐K CIPð Þ½ �n
� 501:36 ∗ PSO‐K PHEð Þ½ �n
�0:01 ∗ t CIPð Þ½ �n� 1:02 ∗ t PHEð Þ½ �nÞ

(18)

H1_2 = TanH 4:69�0:27 ∗ Ce CIPð Þ½ �n�0:87 ∗ Ce PHEð Þ½ �n
�

þ 0:01 ∗ ½Initial conc: �nþ0:26 ∗ Kid CIPð Þ½ �n
þ 34:76 ∗ Kid PHEð Þ½ �n�0:004 ∗ PFO‐K CIPð Þ½ �n
þ 1055:78 ∗ PFO‐K PHEð Þ½ �n�0:17 ∗ pH½ �n
þ 0:36 ∗ PSO‐K CIPð Þ½ �n�699:64 ∗ PSO‐K PHEð Þ½ �n
� 0:01 ∗ t CIPð Þ½ �nþ0:07 ∗ t PHEð Þ½ �nÞ

(19)

H1_3 = TanH 0:12�0:04 ∗ Ce CIPð Þ½ �nþ0:20 ∗ Ce PHEð Þ½ �n
�

þ 0:025 ∗ ½Initial conc: �n�0:85 ∗ Kid CIPð Þ½ �n
� 158:64 ∗ Kid PHEð Þ½ �n�0:52 ∗ PFO‐K CIPð Þ½ �n
� 458:00 PFO‐K PHEð Þ½ �nþ0:07 ∗ pH½ �nþ0:59

∗ PSO½ ‐K CIPð Þ�n�698:33 ∗ PSO‐K PHEð Þ½ �n
� 0:03 ∗ t CIPð Þ½ �nþ1:30 t PHEð Þ½ �nÞ

(20)

For Mod-PET MPs:

H2_1_1 = TanH �1315306875291720�0:01 ∗ Ce CIPð Þ½ �n
�

� 0:08 ∗ Ce PHEð Þ½ �n�0:01∗½Initial conc: �n
� 0:004 ∗ Kid CIPð Þ½ �n�71:86 ∗ Kid PHEð Þ½ �n
þ 0:002 ∗ PFO‐K CIPð Þ½ �nþ266:13

∗ PFO½ ‐K PHEð Þ�n�0:03 ∗ pH½ �n
þ714840693093327 ∗ PSO‐K CIPð Þ½ �n
þ 43:09 ∗ PSO‐K PHEð Þ½ �n�0:02 ∗ t CIPð Þ½ �n
� 0:27 ∗ t PHEð Þ½ �nÞ

(21)
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H2_2_1 = TanH �1001299057845485þ0:02 ∗ Ce CIPð Þ½ �n
�

þ 0:05 ∗ Ce PHEð Þ½ �nþ0:006 ∗ ½Initial conc: �n
� 0:003 ∗ Kid CIPð Þ½ �nþ43:74 ∗ Kid PHEð Þ½ �n
þ 0:0002 ∗ PFO‐K CIPð Þ½ �n�227:34

∗ PFO½ ‐K PHEð Þ�nþ0:019 ∗ pH½ �n
þ544184270568198 ∗ PSO‐K CIPð Þ½ �n
þ 13:59 ∗ PSO‐K PHEð Þ½ �nþ0:014 ∗ t CIPð Þ½ �n
þ 0:17 ∗ t PHEð Þ½ �nÞ

(22)

H2_3_1 = TanH �186587478237282þ0:09 ∗ Ce CIPð Þ½ �n
�

� 0:05 ∗ Ce PHEð Þ½ �n�0:01 ∗ ½Initial conc: �n
þ 0:0004 ∗ Kid CIPð Þ½ �n�94:69 ∗ Kid PHEð Þ½ �n
� 0:001 ∗ PFO‐K CIPð Þ½ �n�182:65

∗ PFO½ ‐ K PHEð Þ�nþ0:006 ∗ pH½ �n
þ 101406238172436 ∗ PSO‐K CIPð Þ½ �n
� 61:10 ∗ PSO‐K PHEð Þ½ �n�0:02 ∗ t CIPð Þ½ �n
� 0:19 ∗ t PHEð Þ½ �nÞ

(23)

H1_1_1 = TanH �0:09�0:27 ∗ H2_1_1½ �ð
� 0:62 ∗ H2_2_1½ �þ0:34 ∗ H2_3_1½ �Þ

(24)

H1_2_1 = TanH �0:2�0:05 ∗ H2_1_1½ �þ0:18 ∗ H2_2_1½ �ð
þ 0:18 ∗ H2_3_1½ �Þ

(25)

H1_3_1 = TanH �0:07�0:42 ∗ H2_1_1½ �ð
þ 0:18 ∗ H2_2_1½ �þ0:01 ∗ H2_3_1½ �Þ

(26)

H1_4_1 = TanH 0:25þ0:22 ∗ H2_1_1½ ��0:31 ∗ H2_2_1½ �ð
þ 0:02 ∗ H2_3_1½ �Þ

(27)

H1_5_1 = TanH 0:10þ0:38 ∗ H2_1_1½ �þ0:02 ∗ H2_2_1½ �ð
þ 0:08 ∗ H2_3_1½ �Þ

(28)

Ag-PET MPs:

H1_1_1 = TanHð‐8:81þ0:56 ∗ Ce CIPð Þ½ �n
‐0:20 ∗ Ce PHEð Þ½ �n‐0:0001 ∗ Initial conc:½ �n
‐0:01 ∗ Kid CIPð Þ½ �n‐85:40 ∗ Kid PHEð Þ½ �n
þ0:33 ∗ PFO‐K CIPð Þ½ �n
þ8893:82 ∗ PFO‐K PHEð Þ½ �nþ0:19 ∗ pH½ �n
þ0:56 ∗ PSO‐K CIPð Þ½ �n
þ230:42 ∗ PSO‐K PHEð Þ½ �n
þ‐0:02 ∗ t CIPð Þ½ �n‐0:31 ∗ t PHEð Þ½ �

(29)

H1_2_1 = TanH 2:04�0:37 ∗ Ce CIPð Þ½ �n
�

� 0:66 ∗ Ce PHEð Þ½ �nþ0:03 ∗ ½Initial conc: �n
þ 0:24 ∗ Kid CIPð Þ½ �n�131:54 ∗ Kid PHEð Þ½ �
þ 0:78 ∗ PFO‐K CIPð Þ½ ��361:53 ∗ PFO‐K PHEð Þ½ �n
þ 0:05 ∗ pH½ ��0:39 ∗ PSO‐K CIPð Þ½ �n
þ 219:59 ∗ PSO‐K PHEð Þ½ �nþ0:02 ∗ t CIPð Þ½ �n
� 0:89 ∗ t PHEð Þ½ �nÞ

(30)

H1_3_1 = TanH 1:78�0:22 ∗ Ce CIPð Þ½ �n
�

þ 0:38 ∗ Ce PHEð Þ½ �n�0:06 ∗ ½Initial conc: �n
þ 0:56 ∗ Kid CIPð Þ½ �nþ18:01 ∗ Kid PHEð Þ½ �n
� 0:41 ∗ PFO‐K CIPð Þ½ �n�1828:756 ∗ PFO‐K PHEð Þ½ �n
þ 0:02 ∗ pH½ �n�0:14 ∗ PSO‐K CIPð Þ½ �n
� 249:27 ∗ PSO‐K PHEð Þ½ �nþ0:10 ∗ t CIPð Þ½ �n
� 0:28 ∗ t PHEð Þ½ �nÞ

(31)

After fine-tuning the ANN, refined models were established to
capture the adsorption capacities of PHE and CIP on PET MPs
adsorbents in binary pollutant system (equations 32–37). Subse-
quently, these updated models were deployed to forecast the
adsorption capacities of Pr-PET MPs, Mod-PET MPs and
Ag-PET MPs within a binary system for both PHE and CIP
(Figure 2). Impressively, these models exhibited commendable
performancemetrics, showcasing elevated R2 values which ranged
from 0.989 to 0.999, alongside low RMSE which ranged from
0.001 to 0.413 and AAE which ranged from 0.009 to 0.327. The
R-squared values offered insights into the proportion of variance
in the adsorption capacity explained by the models, providing a
measure of their goodness of fit (Enyoh et al., 2024). Simultan-
eously, RMSE gauged the overall accuracy of the models by
quantifying the average magnitude of the prediction errors. Add-
itionally, AAE values provided a metric for the average absolute
deviation between predicted and observed values, further contrib-
uting to the comprehensive evaluation of model performance
(Dobrzański et al., 2014). This robust evaluation underscores
the efficacy of the optimized ANNmodels in accurately predicting
the adsorption behaviors of PHE andCIP on various PETMPs in a
binary system.

Pr-PET MPs:

Predictedqe PHEð Þ = 2:898þ1:223∗ H1_1½ �
� 3:789∗ H1_2½ ��0:243∗ H1_3½ �;
R2 = 0:9998,RMSE = 0:0273,

AAE = 0:0122

(32)

Predictedqe CIPð Þ = 2:635þ1:310 ∗ H1_1½ �
� 3:633 ∗ H1_2½ ��0:278 ∗ H1_3½ �;
R2 = 0:9999,RMSE = 0:0207,

AAE = 0:0093

(33)
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Figure 2. The multicomponent ANN architecture and plot of ANN predicted qe against actual (experimental) qe for both phenol (PHE) and ciprofloxacin (CIP).
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Mod-PET MPs:

Predictedqe PHEð Þ = 3:973�3:093 ∗ H1_1_1½ �
þ 3:120 ∗ H1_2_1½ �þ3:408 ∗ H1_3_1½ �
þ 1:226 ∗ H1_4_1½ ��2:296 ∗ H1_5_1½ �;
R2 = 0:9638,RMSE = 0:4125,

AAE = 0:3267

(34)

Predictedqe CIPð Þ = 3:681�3:059 ∗ H1_1_1½ �
þ 1:400 ∗ H1_2_1½ �þ2:694 ∗ H1_3_1½ �
� 0:754 ∗ H1_4_1½ ��1:095 ∗ H1_5_1½ �;
R2 = 0:9746,RMSE = 0:3369,

AAE = 0:2732

(35)

Ag-PET MPs:

Predictedqe PHEð Þ = 2:027�3:112 ∗ H1_1_1½ �
� 4:370 ∗ H1_2_1½ ��2:895 ∗ H1_3_1½ �;
R2 = 0:9999,RMSE = 0:0001,

AAE = 0:0002

(36)

Predictedqe CIPð Þ = 1:736�3:232 ∗ H1_1_1½ �
� 4:448 ∗ H1_2_1½ ��3:088 ∗ H1_3_1½ �;
R2 = 0:9999,RMSE = 0:0071,

AAE = 0:0032

(37)

Interactive mechanism of PET MPs-driven competitive
adsorption of PHE and CIP in binary system

The mechanisms or interactions of pollutants are the most sig-
nificant phenomena in multicomponent adsorption equilibria.
Gaining a deeper understanding of these mechanisms is essential
in achieving better results and analyzing any adsorption system.
One of the primary considerations for sorbent design is the
particle surface charges, which determine the interactions.
According to Yang (2003), the dispersion interaction for a sorbate
molecule is improved by the surface atom’s polarizability, which
increases with the atomic weight of elements. Evaluation of inter-
active effects can be achieved via computing P-factor and SR
(Figure 3). The interaction of the PHE and CIP in the binary
adsorption system to the PET MP adsorbents is demonstrated in
Figure 4.

The P-factor is dimensionless metric, which serves as a concise
model describing molecular interactions, employing a ratio of
monolayer capacity (qmax) for correlation (McKay and Al-Duri,
1987; Chana et al., 2017; Wakkel et al., 2020). It systematically
contrasts equilibrium data involving multiple components. The Pf
value, a pivotal parameter in this model, defines the nature of
interactions – whether they entail inhibition, enhancement or
noninterference – between two components. A Pf value of 1 indi-
cates unimpeded interaction between PHE and CIP in the binary
adsorption system by the different PETMPs adsorbents, while Pf>1
signifies that the adsorption of a component (PHE or CIP) is
inhibited in the presence of other solutes (PHE or CIP). Conversely,

Pf<1 denotes enhanced or synergistic adsorption of PHE or CIP
when coexisting.

The Pf obtained for the different pollutants were <1 (Figure 3)
and, following the classification of Pf values (< 1), it reveals that
both PHE and CIP exhibit enhanced adsorption in the binary
system when present together with PETMPs. This finding suggests
a synergistic effect or mutual promotion in the adsorption behavior
of PHE and CIP when adsorbed by the PET MPs. This is in
agreement with the monolayer adsorption capacities predicted by
the EL isotherm model. This enhanced adsorption could be attrib-
uted to various factors, such as the potential cooperative inter-
actions between PHE and CIP molecules, as well as favorable
conditions created by the PET MPs that facilitate the adsorption
of both pollutants. However, the PET MPs showed greater affinity
toward CIP with lower Pf values compared PHE. This observation
may be corroborated by the study of Peñafiel and Flores (2023),
who reported that the presence of CIP did not interfere with the
adsorption of other solutes onto sugarcane bagasse in multicom-
ponent system.

Selectivity plays a pivotal role in elucidating the complexities
of the adsorption mechanism, offering insights into a compo-
nent’s ability to discriminate among multiple elements in the

Figure 3. Competition constants of PHE and CIP by the PET MPs in a binary system.
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same solution (Zhang et al., 2019). This crucial aspect is quanti-
fied by the selectivity ratio (SR), which delineates the adsorbent’s
preference for a specific component over others, contingent upon
its morphology, surface structure and pore distribution (Amrutha
et al., 2023). In the binary system, the computed SR values for both
PHE and CIP are visually represented in Figure 3. Results showed
that the SR values for PHE range from 0.136 for Pr-PET MPs to
0.256 for Ag-PET MPs, all falling below 1. Conversely, for CIP,
the SR values range from 3.902 for Ag-PET MPs to 7.361 for
Pr-PET MPs, all exceeding 1. This disparity suggests that the PET
MPs exhibit a higher selectivity toward CIP as compared to PHE.
The observed selectivity trend aligns with the corroborating Pf
results, reinforcing the notion that PETMPs possess a heightened
affinity for CIP over PHE within the binary system. This could be
due to molecular interaction, as the PETMPsmay possess specific
chemical or structural attributes that favor interactions with CIP
molecules over PHE. The molecular characteristics of CIP align
more favorably with the surface properties of PET MPs in com-
parison to PHE. In the adsorption process conducted at a pH
range of 5-6 (Enyoh and Wang, 2022, 2023), CIP exhibits a
positive charge distribution, existing as cations, while PET MPs
carry a negative charge (Enyoh and Wang, 2023). This electro-
static compatibility facilitates the easy adsorption of CIP onto
PET MPs, resulting in high selectivity. Contrastingly, at the same
pH conditions, PHE, which exists as a neutral molecule due to a
pH below its pKa of 9.89, lacks the dissociation seen in CIP.
Consequently, the hydrogen bonding efficiency of phenolate ions
diminishes owing to the electron-rich nature of the hydrogen
atom (Enyoh and Wang, 2022). As a result, PHE are adsorbed
successfully on the PET MPs surface as intact molecules rather
than phenolate ions, diminishing the selectivity of PHE by the
different PET MPs adsorbents. This difference in interaction
mechanisms contributes to the observed variations in selectivity
between CIP and PHE on the PET MPs surface. Furthermore, the
morphology and pore distribution of PET MPs might be more
conducive to accommodating CIP molecules, leading to a higher
selectivity. If CIP molecules fit more effectively within the pores

or surface features of PET MPs, it could result in enhanced
adsorption.

Conclusion

This study has provided information into the complex adsorption
dynamics of PHE and CIP onto various PET MPs. Through the
utilization of advanced models such as the EL, EF isotherms and a
novel ANN model, the research successfully characterized the
multicomponent adsorption equilibria, considering both equilib-
rium and kinetics process conditions. The models demonstrated
commendable performance metrics, particularly the ANN model,
with low errors and high prediction capacity of 98.9–99 %. The
interaction of PHE and CIP adsorption onto PETMPs in the binary
system is synergistic. However, the PETMPs adsorbents had higher
selectivity toward CIP compared to PHE, revealing distinct prefer-
ences in the multicomponent system. While the EL isotherm
showed better fitting for specific PET MP types, the EF model
proved effective for Pr-PET MPs and Mod-PET MPs but exhibited
limitations for Ag-PET MPs. This study contributes to our under-
standing of multicomponent adsorption onto PET MPs, highlight-
ing the significance of considering various PET MP types and the
necessity for tailored models to capture the interactions within
these systems. The findings have implications for environmental
remediation and underscore the need for further exploration into
the adsorption behavior of different MPs types in diverse pollutant
scenarios.

Open peer review. To view the open peer review materials for this article,
please visit http://doi.org/10.1017/plc.2024.23.
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Figure 4. The graphical representation of the interactive effect of PHE and CIP in binary adsorption system to PET MPs adsorbent. The single component adsorption driven by the
PET MPs had lower monolayer adsorption capacity (qmax) (a) while in binary solution the capacity increased (b). The interaction of the PHE and CIP in the binary solution was
synergistic with Pf < 1 (c); however, the PET MPs was more selective to CIP compared to PHE (d).
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