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Abstract. We give a classification of all the C*-algebras of Morse-Smale flows on
closed two-manifolds, and determine the relation between the invariants of dynami-
cal systems and the topological invariants of the C*-algebras.

0. Introduction
The C*-algebras of smooth foliations, introduced by A. Connes [Cl], [C2], have
become one of the favourite objects studied in noncommutative differential geometry.
Because of the inherited smooth structures, they are naturally noncommutative
'smooth manifolds'. Just as the classification of low-dimensional manifolds is a
fundamental problem in topology, it is natural to wish to study and classify their
'noncommutative' counterparts. Such an investigation provides a new source of
examples and as we shall see, adds new aspects to the well-known topological
invariants of C*-algebras by illuminating their close connection with some of the
fundamental classical invariants which originate in the commutative world.

In [W2] we studied C*-algebras of foliations of the plane and we showed that
they naturally arise as noncommutative CW-complexes and can be characterized
in terms of R-trees. A foliation of the plane can be regarded as a singular foliation
of S2 induced by a flow with a singularity of arbitrary complexity. In this paper we
study the C*-algebras of flows on arbitrary closed two-manifolds. It is of course
impossible to 'calculate' explicitly the C*-algebras of all such flows. We shall
concentrate on the most important class - the Morse-Smale flows. (On two-manifolds
they are exactly the structurally stable flows, see the work of M. Peixoto and
S. Smale.) Nevertheless, our method can be applied directly to more general types
of flows on surfaces, for instance, the flows with wandering sets consisting of discrete
critical elements for which the singularities are of finite type (e.g. saddles with
n-prongs [Levl]).

Our goal is to understand the relation of the topological and combinatorial
invariants of the dynamical systems with those of the foliation C*-algebras,
especially their associated K -theoretical invariants. The main result is a complete
classification of the C*-algebras of all the Morse-Smale flows on closed two-
manifolds in terms of dual graphs (Theorems 4.13-4.15). As a by-product of our
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investigation, it is shown that the coloured dual graphs (Definitions 4.5, 4.12) are
exactly the complete combinatorial invariant of the topological conjugacy classes
of the Morse-Smale flows on closed two-manifolds (Theorem 4.13). This
classification is intrinsic and, therefore, much more effective and simpler than the
classical result (again due to M. Peixoto [P2], see § 1). Peixoto's classification is in
terms of the 'distinguished graphs', which are actually given by the flow diagram
and the list exhausting all the 'distinguished sets' (i.e. the canonical regions)
presented in the specific flow.

Perhaps the most interesting phenomenon is the analogue we observe in § 5 of
the classification results of our 'noncommutative smooth manifolds' with that of
the 'commutative' closed two-manifolds and simply connected four-manifolds. The
homeomorphism classes of such smooth manifolds are classified by the equivalence
classes of the intersection forms over the middle homology groups, with Z2-
coefficients for surfaces and with Z-coefficients of four-manifolds.

Recall that a graph G (a simplicial 1-complex) is determined by the {symmetric)
adjacency matrix, whose y-entry is the number of edges connecting the ;th and jth
vertices. A dual graph G is determined by a nonsymmetric adjacency matrix, whose
(/-entry is 0 or ±1 depending on whether or not the _/th edge is incident to the ith
vertex, and the grading of the edge. For the dual graphs classifying the C*-algebras,
the adjacency matrix A (or rather, the equivalence class) also determines a symmetric
bilinear form over the /C'-group of a canonical ideal of the C*-algebra, and we
may view such bilinear forms as the intersection forms determined by the 'noncommu-
tative manifolds'. A feature of 'noncommutativity' appears to be 'nonsymmetry'.
These noncommutative manifolds are classified by the nonsymmetric intersection
matrices, which are the nonsymmetric adjacency matrices of the dual graphs. It
turns out that for each Morse flow (M, 2F), there is a canonical decomposition of
C*(M, $*) defining a KK' -element which can be identified with such a nonsymmetric
intersection matrix. Here the KK '-groups are viewed as the Ext-theory of Brown-
Douglas-Fillmore and Kasparov. The generalized intersection form A is determined
by the corresponding KK '-element A# through a simple formula (Theorem 5.12);
the off-diagonal entries of A coincide with those of A'3A.?.

For a Morse flow on a surface, the linking matrix of the stable manifolds of all
the saddles gives the intersection form of the surface, and thus determines the
surface. However, even for polar Morse flows, the symmetric adjacency matrix does
not determine the C*-algebra up to isomorphism for surfaces with genus g>8
(Example 5.15). Thus in general no information contained in the nonsymmetric
intersection matrices (equivalently, the dual graphs) is redundant for C*-algebras.

For Morse flows with only index 2 saddles in a simply connected four-manifold,
the nonsymmetric intersection form determined by the KK '-element represented
by the C*-algebra plays a similar role. However, the situation is much more
complicated because the complement of the stable and unstable manifolds (they
are knotted S2's, cf. [H-W2]) is connected. We plan to discuss this in a separate work.

Let (M, &) be a Morse flow. Let (X, fF) be the foliated open two-manifold obtained
by removing all the singularities from M. Then there is a canonical embedding of

https://doi.org/10.1017/S0143385700005757 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005757


C* -Algebras of Morse-Smale flows on two-manifolds 567

the Z2-graded dual graph G(&) into £ inducing an isomorphism ir\{G(3F)) — 7r,(2)
(Theorem 2.9). An upshot of the embedding is a generalization of the results of
[Lev2] and [Mar] (Remark 4.9). As the universal covering of 2, the hyperbolic
upper half plane H admits a unique covering foliation &. The C*-algebra C*(H, &)
is isomorphic to C*(T(#)) for some distinguished tree T(#) (Theorem 20, [VV3]).
As one would expect, T(&) is, up to similarity, actually the universal covering of
the (embedded) dual graph G(#) and the C*-algebra C*{G{2F)) is isomorphic to
the crossed product C*(T(#)xF(n), where F{n) = nx(G{&)) (Theorem 3, [W4]).

M. Culler and K. Vogtmann showed that the moduli space Xn of (marked) graphs
with fundamental group Fn has an Out (FJ-equivariant deformation retraction to
a simplicial 'spine' Kn, which is contractible and has dimension 2 n - 3 . From this
triangulation, they showed that the virtual cohomological dimension of Out (Fn) is
2M —3. Here we point out that each dual graph is a minimal marked graph without
metric in the sense of [C-V], and the parameter space of metrics on a dual graph
(with fundamental group Fn) of total length 1 making it into an R-graph (cf.
Definition 2.5.1 [W2]) is an open simplex with dimension exactly equal to 2 n - 3 .
It is an interesting problem to determine the contribution given by all the dual
graphs, including those coming from structurally stable flows on unorientable
surfaces. Roughly, a moduli space of graphs can be viewed sitting in the boundaries
of the Teichmuller spaces for surfaces with appropriate numbers of punctures. The
actions of Out (Fn) are the 'limits' of actions of the mapping class group.

For simplicity, in this paper we consider only orientable manifolds unless other-
wise stated, although our method applies to unorientable manifolds.

The author is indebted to Professor M. Rieffel for suggesting the problem studied
in this work, and for his support and encouragement during its progress. For helpful
conversations, he wishes to thank S. Campbell, J. Mess, K. Orr, especially J. Christy
and C. Pugh, who are responsible for his education in dynamical systems. He
thanks M. Szededy for valuable discussions in combinatorics concerning Example
5.16. The referee made many valuable suggestions which helped improve the
exposition.

1. Morse-Smale flows, Peixoto's work
Let M be a closed, connected smooth two-manifold and let <%(M) be all the
C^-vector fields on M. A vector field X e f ( M ) is called Morse-Smale if: (1) it
has finitely many critical elements (singularities and closed orbits), all hyperbolic
(they consist of sources, sinks, saddles, attracting and repelling closed orbits); (2)
the a-limit and co-limit sets of any orbit are critical elements; (3) there is no saddle
connection (p. 122 [P-M]). The importance of Morse-Smale flows on surfaces can
be seen from the following two remarkable theorems established by M. Peixoto
[PI], [P2] and Smale [S]: Morse-Smale vector fields form a dense open subset of
$£{M) and Morse-Smale flows are exactly the structurally stable flows on two-
manifolds. The subset of Morse-Smale flows in St{M) is denoted by 3£0(M) or just
<%a. We say two flows ( M , , f | ) and (M2, 92) are conjugate if there is a homeomorph-
ism from M, to M2 taking the orbits of 3>x onto the orbits of ^2, preserving the
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flow orientation. A flow is gradient-like if it is conjugate to a gradient flow. A
gradient-like flow is polar if it has only one source and one sink. For simplicity we
shall call a gradient-like Morse-Smale flow a Morse flow.

Given a graph G = (V, E) (cf. p. 13, [Ser]), a direction on G is defined by a fixed
choice between each edge e and its inverse e. A digraph is a directed graph. A pair
e — {e, e} corresponds to a 1-simplex in the geometrical realization of a graph G,
and will be called a geometric edge of G. Sometimes we may identify G with its
realization, and simply call a geometric edge an 'edge' if no confusion will arise.

Given a gradient-like flow X with finitely many singularities, one defines the
phase diagram F of X to be the digraph constructed as follows: the vertices are the
critical elements and there is a directed edge from cr, to cr2 if the intersection
Wia^n Ws(a-2) of the unstable manifold of o", and the stable manifold of <r2 is
nonempty (p. 123, [M-P], cf. also p. 7, [S]), one edge for each component in the
intersection. Sources, sinks and saddles will be denoted by a, co and cr, respectively.

Using the phase diagrams with some other structures (the distinguished sets, as
he called them), M. Peixoto gave a classification of all Morse-Smale flows on closed
two-manifolds in [P2]. For flows on orientable surfaces without closed orbits, there
are three types of distinguished sets (figure 1.1) which are denoted by [i,j; k, I],
[i; j , k] and [/, m; n] and called the sets of type 1, type 2 and type 3, respectively.
A pair of edges of a distinguished set, such that one edge enters a saddle point and
the other leaves it, is said to be associated.

Definition 1.1 (Definition 4.2, 4.5 [P2].) A Peixoto graph G* is a digraph A, which
is either the one-edged graph aa>, corresponding to the polar flow on S2, or else a
digraph with vertices in three levels, a, a and w. All edges must be oriented from
a to a- and from cr to w, in such a way that to each cr there are associated two
incoming and two outgoing edges. Besides, one assigns a certain number of subsets
of A as distinguished sets, three types of them defined as above (figure 1.1) satisfying
the following axioms:

(1.1) every edge of G belongs to exactly two distinguished sets except the ones
which are the first edge of a distinguished set of type 2 or the third edge of a
distinguished set of type 3, and these belong to only one distinguished set;

(1.2) when the first edge of a distinguished set of type 2 is incident on a then
no other edge of G is incident on a, and similarly for the third edge of a distinguished
set of type 3;
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(1.3) if two distinguished sets have in common a pair of associated edges, then
these distinguished sets coincide;

(1.4) when more than one distinguished set is incident at a given vertex then they
can be written in cyclic order, i.e. in the form D,, D 2 , . . . , Dp, where Dk has one
edge in common with D^_, and another with Dk+l, k = 1 , . . . , p, Dp+] = Dx, these
two edges being incident at the vertex and adjacent to each other as edges of Dk;

(1.5) the distinguished sets can be coherently oriented, i.e. an orientation can be
assigned to each one such that at every vertex, as in (1.4), the orientation of Dk

induces on its pair of adjacent edges incident at the vertex a sense of rotation which
is the same for all k = 1 , . . . , p.

Let p, q, r be the number of a, a and o> in G*. Then p-q + r = x(G*) is called
the Euler characteristic of G*.

Let 2 be the open two-manifold obtained by removing all the singularities of the
flow X from M. For a Morse-Smale flow X (or the gradient flow of a Morse
function), the separatrices (cf. [H-Wl]) of X are the closed orbits along with the
stable and the unstable manifolds of saddles, and the canonical regions of X are
the connected components of 2\{separatrices}.

Clearly the distinguished sets correspond to the canonical regions. Therefore, if
X, Ye3£0(M) then X, Y are topologically equivalent if and only if the Peixoto
graphs G*(X) and G*( Y) are equivalent in the obvious sense. The following is the
main theorem in [P2].

THEOREM 1.2 [P2]. An abstract distinguished graph A = G*(X) for some X e %0{M)
if and only if A and M have the same Euler characteristic.

For a general Morse-Smale flow 3* on an orientable surface M with closed orbits,
the nonwandering set has form

fl = { a , , . . . , ap, a\,..., a]n; cr,,. . . , <rr; w , , . . . , wq; w\,..., w\}

where the a ' and a>' are the one-dimensional attractors and repellers (closed orbits).
Peixoto defines the digraph G(^) as before (p. 416, [PI]), with il as vertices: the
a and a1 on the first line, the a- on the second, and the w and w' on the third. The
directed edges are assigned as before. Now in figure 1.1 the a can be replaced by
a1 and the w can be replaced by « ' , they may also reduce to a single edge, and we
have a total of 16 types of different canonical regions.

The axioms (1.1)—(1.5) need to be modified. There are ten axioms to regulate how
the 16 types of distinguished sets can fit together. We omit the list of these axioms
as we shall not need them later one. Thus a distinguished graph consists of a flow
diagram, and a full list enumerating all the distinguished sets (of up to 16 types).

In § 4 we shall prove a much simpler classification theorem (Theorems 4.12,4.13),
for general Morse-Smale flows, in terms of a single Z2-graded digraph.

2. C*-algebras and dual graphs of Morse flows
A flow 9 on a closed manifold M is a one-parameter transformation group.
Associated with it, there is the C*-algebra C(M)xU [E-H]. The flow 9 induces
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a foliation on the open manifold M\{singularities}. By a slight abuse of notation,
we simply write C*(M, 3F) for the C*-algebra of this foliation [C2] and refer to it
as the C*-algebra of the flow (M, 2F). For a Morse-Smale flow & on a closed
surface, every closed orbit has holonomy cover the real line. So the holonomy
groupoid of the foliation can be identified with the transformation groupoid (the
singularities deleted) and the C*-algebra C*(M, 8F) is canonically isomorphic to
the C*-algebra C0(M\{singularities})xilR (Proposition 1.11, [Wl]). Let n be the
number of all singularities of (M, 3F). We have an exact sequence (Proposition 1.12,
[Wl])

0^ C*(M, &)->C(M)x\U^ Co(R)"-*0.

Since each singularity gives rise to a one-parameter family of one-dimensional
representations of the transformation group C*-algebra, and all one-dimensional
representations arise this way, the ideal C*(M, 2F) is exactly the commutator ideal
of C(M)xR. The local structure of C(M)>iU around singularities is explicitly
described in [Wl]. In this paper we only treat C*(M, 9). However, our method
applies to the full algebra C(M)*R using [Wl]. In many situations C*-algebras
of foliations can be profitably thought of as noncommutative simplicial complexes,
which are in turn the global fibered products of graphs of C*-algebras (Definition
2.1). A procedure dealing with the more general noncommutative CW complexes
is described in § 4, [W2], and [W3]. To every vertex x and every geometrical edge
e, we associate C*-algebras Ax with a surjective homomorphism ne,v from Ax onto
Ae if e is incident on x. The C*-algebras Ax and Ae are the 'cells' and the irex are
the gluing maps.

Definition 2.1. Let (G, A) be a finite graph of C*-algebras. Then the associated
global fibered product is

\ x ) e \\ Ax
« V

where x, x' are the two ends of e.
For flows with wandering sets consisting of infinitely many critical elements, we

need U-graphs (Definition 2.5.3, [W2]). In this case, we also need to introduce the
condition of vanishing at infinity and the global gluing condition for the global
fibered product. (See Definitions 4.2.7, 4.2.9, 4.2.11 of [W2].) In the rest of this
section we consider only gradient-like flows with finitely many singularities, for
which it is enough to consider finite graphs.

Let Qi(M, S') be the holonomy groupoid of a foliation (M, &). For a closed
saturated submanifold N of the foliated manifold (M, ^ ) , we define &(N, &) =
{ye Q6(M, 9)\ ?e N}. Note that in general <S(N, &)/®(N, 9\ N). Let C*(&(N, 9))
be the C*-algebra of the groupoid 6J(N, 9).

The proof of the following lemma is straightforward and we omit it.

LEMMA 2.2. Let (M, 3>) be a foliation of a connected manifold M which can be either
closed or open, maybe with boundary. Let M = U"_i Mi be a decomposition of(M, 3F)
into finitely many saturated closed submanifolds with boundaries. Let G = (V, E) be
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the associated graph of the partition with vertices V = {M,} and edges E = {M,y}, where
M;j = M, n Mj. Let Ax = C*{®{Mt, 9)) if x = M,, and Me = C*(®(M,j, &)) ife =
Mjj. Let nex be the restriction maps. Then the global fibered product C*(G, A) is
isomorphic toC*(M,9).

It turns out that quite often these cells take very simple forms. For gradient-like
flows, the C*-algebra Ae is isomorphic to 3V, the compact operators in a Hilbert
space, for all the edges e, while the C*-algebras Av associated with all the vertices
v are given by-the following

THEOREM 2.3. Let M = ([0, l]xR\{(0,0), (1,0)}. Let (M,&) be the foliation with
vertical constant leaves. Then the C*-algebra C*(M, 9) is canonically isomorphic to
the C*-algebra

where X is the algebra of compact operators on a separable Hilbert space.

Proof. It follows from Theorem 4.1.2, [W2]. •

In order to 'calculate' the C*-algebras for a given flow by Lemma 2.2, we need
only specify two more data: (1) the graph G(3F) associated with the flow, and (2)
the gluing maps irxe for xe V, and ee E. If (M, &) is the north-south polar flow
on S2, then we define the dual graph G{3F) to be just 1 point. In the rest of the
paper, we rule out this trivial case unless otherwise specified.

Definition 2.4. Let (M, 2F) be a Morse flow on a closed orientable manifold M. The
dual graph G(&) = (V,E) of the flow & is a graph defined by the following (2.4.1)
and (2.4.2), with a partition on E satisfying (2.4.3) below.
(2.4.1) The vertices are in 1-1 correspondence with the canonical regions;
(2.4.2) The geometric edges connecting two vertices are in 1-1 correspondence with

the separatrices in the common boundary of the closures of two canonical
regions.

Clearly we have

PROPOSITION 2.5. A vertex corresponds to a distinguished set of Peixoto (figure 1.1).
The incidence number Inc (x) = 4 for each xe V.

(2.4.3) For each xe V, the four edges in Ex are divided evenly into two pairs, and
each pair corresponds to a pair of stable and unstable trajectories of a saddle.

At each vertex we use two small arcs to identify the two pairs of edges, as in the
illustration (figure 2.1(b)).

Sometimes we shall represent the partition of edges £ by a Z2-grading on E, so
for each xe V one pair of edges in Ex has degree 0 and the other has degree 1. Of
course, switching the degrees of the two pairs gives an equivalent representation.
For a geometric edge e = (e, e), it may well happen that deg e 9* deg e.

.A

For a gradient flow & of a Morse function, we define its dual graph G(^) as
before by (2.4.1), (2.4.2) but (2.4.3) is replaced by
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FIGURE 2.1

(2.4.3)' For each xeV, the edges in Ex are Z2-graded so that any two edges e and
e' in Ex have the same grading if and only if the corresponding separatrices
L and L' sit in the closure of a Cauchy sequence {L,, L2,.. .} of leaves
contained in the same canonical region in the coarse leaf topology.

For separatrices and coarse leaf topology, see the paragraph preceding Theorem
1.2 and the beginning of § 3. Dual graphs can be defined for more general flows on
surfaces.

Example 2.6. In general G(S') is not a combinatorial graph, namely, it may have
multiple geometric edges and loops. In figure 2.1 (a) a Morse-Smale flow on S2

(there is only one sink on its back) is shown; its dual graph is (b).
Let G(^) = ( V, E) be the dual graph of a Morse flow (M, &). Recall that Av is

given in Theorem 2.3 and Ae = X for any ve V and ee E. We fix a labelling
Ev = {e'i(v)}iJ=0j for each veV, such that {e\ ,e'2} is an associated pair, i = 0,1.
Then the gluing maps v,.^ © TT-̂ ,; :A.,^Ae<s®Ae>2 are given by />-»/( i), for a l l / s Av,
i = 0, 1. If the labellings of the two pairs of edges in Ev are switched, then the /(0)
and/(I) are all switched for /e Av and one gets an isomorphic C*-algebra. So the
ambiguity in the labelling is harmless. Let C {G{3F)) be the corresponding fibered
product (Definition 2.1). We say two dual graphs are isomorphic if there is an
abstract graph isomorphism from one to the other preserving the partition of the
edges. Now the structure of C*(M, !f) follows from Lemma 2.2 and Theorem 2.3.

THEOREM 2.7. Let (M, 2F) be a Morse flow on a closed orientable two-manifold. Let
G(&) be the dual graph (2.4). Then the C*-algebra C*(M, 9) of the flow is isomorphic
to the C*-algebra C*(G(ZF)) of the graph. Moreover, C*-algebras of two such Morse
flows are isomorphic if and only if the two dual graphs of the flows are isomorphic.

Example 2.8. Theorem 2.7 and (2.4.3) tell us that the C*-algebra of a gradient-like
stable flow is always constructed with '1-cells' with exactly two 'branches' at each
'end'. Therefore, stability of flows can be detected by the structure of C*-algebras.
Figure 2.2 illustrates the gradient flow of a Morse function (the upright height
function) on a torus, and the dual graph. The flow is not stable (there is a saddle
connection) and the C*-algebra is built with 1-cells with three 'branches' on each
'end'. A small perturbation changes the flow to a stable one which is illustrated in
figure 2.3.
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a

FIGURE 2.2

a

<

FIGURE 2.3

THEOREM 2.9. Let {M, 3F) be a Morse flow on a closed orientable two-manifold. There
.A

is an embedding t of the geometrical realization of G(^) into 2 which induces a
natural isomorphism IT,(G(9'), *) — 77-,(S, i (*)) .
Proof. Encircle every source and sink by a small transversal on 2. The union C of
all these disjoint circles forms a faithful transversal of (M, &) (i.e. every leaf intersects
C), because (M, &) has no saddle connections. Deform isotopically the two trans-
verse arcs in each canonical region until they become tangent at a single point vx

in the interior of the canonical region, while remaining transversal (as shown in
figure 2.4).

Now we check that if we identify a vertex x in G(&) with the 'tangential point' vx

in the canonical region represented by x, and identify every geometric edge with
an appropriate transversal arc, then we obtain a desired embedding i. By an isotopy,
we may choose the basepoint * to be a vertex in G. The induced map 1%: TT\(G, *) -»
7T,(S, i(*)) is clearly injective: no loop in G can bound a disc in 2), because otherwise
the transversality of the flow along the loop would lead to a contradiction to the
Poincare-Hopf theorem.

Next we show that i^ is also surjective. Let p be the quotient map from Z to the
leaf space 2 / ^ . Let f:(S', *)-»(2, *) be a loop in 2. Then y(f) = p °f defines a
loop in (2 /^ ,*) . Although the R-action is non-proper and consequently 2 / ^ is
not Hausdorff, the R-action is free, so y induces a canonical isomorphism y% from
77,(2, *) onto 77,(2/^, *). It is enough to show that [/] is in the image of 1* if p °f
has no backtracking.
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FIGURE 2.4

(a) \m(p°f) contains no separatrices. In this case Im (/) is contained in the
canonical region with *. Thus [/] = id is in Im (o"*).

(b) Im (p of) has separatrices. The loop p ° f defines a cyclic order among all
the separatrices in Im (p °f): Lt, L2,..., Ln and then L, again. There are no
separatrices between L, and Li+l, for i = l , 2 , , n, in Im (p°f). Thus L, and
Li+I are connected by all the leaves in a single canonical region. In other words,
the two directed edges e,, ei+1 in G(^) corresponding to two separatrices Ly, L,+,
with the orientation given by p°f incident to the same vertex. Therefore,
{e,, e2,..., en} define an oriented loop / i n G(8F). (When n = 1, the loop/encircles
either a source or a sink, and the l oop / has both ends incident to the same vertex.)
Clearly t^f/] = [ / ] . Thus i% is an isomorphism. •

Denote the numbers of sources, sinks and saddles by #a, #&>, and #o\ Let g be
the genus of M. Clearly TT, (2) is a free group on(2g + #a + #w + #o--\) generators.
The graph G has 4#a geometric edges and 2#cr vertices. So a maximal spanning
tree of G has 2#cr— 1 geometric edges and G is homotopy equivalent to a bouquet
of (4#o-- (2#o-- l ) ) = 2#o-+l circles. Thus TT,(G) is a free group with (2#cr+l)
generators. Theorem 2.9 shows that

Thus we have reproved the celebrated Euler-Poincare formula that #a + #(o-#cr =
2(1-g) .

The proof of Theorem 2.9 has other consequences (Remark 4.9).
It is well known that for any free discrete subgroup F of SL (2, IR) with finitely

many generators, the quotient space 1 = H/T is an open two-manifold with finitely
many ends. Moreover, every open two-manifold of finite homology type arises in
this way. A natural question is, can one relate the number of ends of 2 to rank T?

We list the following simple facts from the proof above.
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PROPOSITION 2.10. Let F be a free discrete subgroup of SL (2, U) with n generators.
Let m be the number of ends of the open two manifold 2 = H/Y. Then m < n +1.
Conversely for each g = 0,1, 2 , . . . , [n/2], there is an embedding ig: Fn -» SL (2, R)
SMC/I f/iaf H/ig(Fn) îas exactly (n + l-2g) ends. If the (n + l-2g) ends are exactly
the singularities of a Morse-Smale flow on Mg, then n is odd and g-r + k-l must
be one of 0,1,..., [(« —1)/4], where r is the number of closed orbits and k is the
number of the connected components when the closed orbits are removed from Mg.

Proof. One observes that n = m + 2g -1, so m = n +1 - 2g. If the m ends are exactly
the singularities of a Morse flow on Mg, then n =2#o-+ 1 and

hence g < [ ( n - l ) / 4 ] .
Assume one has a Morse-Smale flow (M, &) with r closed orbits. Remove all

the r closed orbits. Replace a repeller (attractor) by a pair of sources (sinks). This
surgery will produce Morse flows (M,, &•),..., (Mk, &), where M, are connected
surfaces. Assume that (M,, &) has genus g,, fundamental group of rank n,, a total
of mt ends and /, saddles. Then we have

I g, = g-r+k-l, I n, = n + k-l
i - i i = i

(since n, are odd, so n is also odd), X/=1 m,- = n + 1-2(g-r ) , and Z*L,/, =
unchanged.

Applying the result for Morse flows, we get

COROLLARY 2.11. Let SF be a Morse flow. Let # V be the number of vertices in
and n = rank TT,(S), then n = #V+\ and #V = 2#o-.
Proof. It follows from the proof of Theorem 2.9 and the discussion following it.

COROLLARY 2.12. Let (M, &) and (Mf, 5F') be two Morse flows. Then the correspond-
ing punctured surfaces 2 and 2' are homotopy equivalent if and only if # V = # V,
equivalently if and only if # a = # a'.

Proof. It is a standard fact in topology that the two open two-manifolds £ and 2'
are homotopy equivalent if and only if 77,(2) — TT,(2'), as both of the groups are
free and with finitely many generators. So the conclusion follows from Corollary 2.11.

•
COROLLARY 2.13. IfC*(M, ^ ) = C*(M', 9') then 2 and 2' are homotopy equivalent.

Example 2.14. It may very well happen that C*{Mg, &) = C*(Mg., &'), but (Mg, 9)
and (Mg•, &') are not conjugate, in fact neither Mg and Mg- nor 2K and 2g are
homeomorphic. Consider the 'Monkey seat' shown in figure 2.5(a). The gradient
flow (b) of its height function has the same flow graph (c) as that of the stable flow
of the torus shown in figure 2.3. If the rank of the fundamental group n = 5, the
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(b)

(c)

FIGURE 2.5

only possible numbers of ends are 6 (on S2) and 4 (on a torus) by Proposition 2.10.
In other words, these are the only two Morse flows with two saddles. By Proposition
2.10, one can check that a Morse flow with three saddles also can only occur on
the sphere and the torus. It is a fun exercise to conceive their shapes with such
Morse flows.

3. Crossed products of C*-algebras by free groups
Let (M, 9) be a Morse-Smale flow on a closed orientable surface and (1, 2F) be
the foliated open manifold obtained by removing all the singularities of & from M.
Let (U2, 2F) be the universal covering foliation of (£, 9). For the definitions of
separatrices and the coarse leaf topology of the plane, see 1.5.1 [W2] or [H-W].
One observes first

LEMMA 3.1. The separatrices of the foliation (R2, &) are precisely the pre-images of
all the closed orbits and the stable and unstable manifolds of the saddles of (M, SP).

COROLLARY 3.2. The foliation (U2, §>) has T2-separatrices (Definition 1.5.12, [W2]).

Proof. The stable and unstable manifolds of saddles form a finite subset in 2/^F. So
its preimage in U2/' SF is discrete, in particular Hausdorff. A limit separatrix (1.5.1,
[W2]) is precisely a leaf in the preimage of a limit cycle of a stable or unstable
trajectory of a saddle. Again there are only finitely many closed orbits, so the limit
separatrices are discrete. As a general fact for any foliation of the plane, the limit
of a convergent sequence of non-limit separatrices is a unique leaf. So the separatrices
of (U2, &) are Hausdorff in the quotient topology. •

We recall briefly some results about C*-algebras of foliations of the plane (see
[W2] and [W3] for details). An U-tree is a separable metric space such that any
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pair of points are joined by a unique path which is the isometric image of an interval
[M-S]. A regular U-tree (Definition 2.3.3, [W2]) is an R-tree with vertices and edges.
The C*-algebras of foliations with 7Vseparatrices are classified by distinguished
trees (§3, [W2]), which are a special class of regular IR-trees characterized in
Definition 3.3.1 of [W2]. There is a canonical tree of C*-algebras associated with
a distinguished tree such that the globalfibered product (Definition 4.2.11, [W2]) is
isomorphic to the C*-algebra of the foliation defining the distinguished tree
(Theorem 4.3.1, [W2]). It follows from Corollary 3.2. that there is a distinguished
tree T(3F) associated to (U2, &) and we have

COROLLARY 3.3. C*(T(#))= C*(U2, #) .

The following proposition follows from Theorem 4 of [W4].

PROPOSITION 3.4. Let M be a manifold without boundary. Let G be a connected Lie
group acting locally freely on M such that the isotropy group bundle can be identified
to the holonomy group bundle of the induced foliation [Wl]. Let M be a regular
covering of M with covering group F. Suppose that G also acts on M and induces the
covering foliation (M, 3F). Then C*(M, ^ ) = C*(M, #) »„ F, where the T-action a
is determined by the deck transformations of F on the holonomy groupoid G(M, 3F)
{^MxG).

Note that the situation treated in Proposition 3.4 is similar to the situation 10 in
[Rl]. However Green and Rieffel's theorem does not apply here, because the action
of G may be neither free nor wandering. Now we consider the particular situation
where M is the open two-manifold 2, the group G=R, the foliation (M, 3*) is a
Morse-Smale flow, and F = TT-,(S) is a Fuchsian group. We have

COROLLARY 3.5. C*(M, 9) = C*(U2, &) xc; F.

When (M,&) is a Morse flow, the C*-algebra C*(S, 9) is isomorphic to
C*(G{&)) (Theorem 2.7) and C*(±, #) = C*(T(#)) (Corollary 3.3). By Theorem
2.9, there is an embedding i of the graph G(&) into the surface S inducing an
isomorphism L^ : TT,(G(9'))-> 7r,(S). The distinguished tree T= T(S') is a simplicial
tree and can be regarded as the universal covering of G(&). The lift a of a is an
embedding of T into S, and the deck transformations a of F on S naturally induce
an action on T, which induces naturally a F-action, again denoted by a, on the
global product C*(T) of C*-algebras. There follows

COROLLARY 3.6. When (M, &) is a Morse flow

When (M, &) is a general Morse-Smale flow, the closed orbits cut M into a finite
union of surfaces U M,, and each M, has a Morse flow S', from the restriction of
&. The dual graph G ( ^ ) has a universal covering T(#,). If we identify G( Jv) with
an embedded image (Theorem 2.9) in M, then T(&,) can be identified with a
component of the preimage of G(^,) in T(#) under the universal covering map
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R2 -» S. The union of all the preimages of G(^,)'s is a simplicial 'forest' with infinitely
many trees.

Although any Morse-Smale flow (M, 3F) has only finitely many critical points,
the tree associated to the universal covering foliation (R2, #) is in general an R-tree.
In fact, (R2, &) has limit separatrices if and only if (M, &) has some saddle a,
whose a-limit (or a>-limit) is a repeller (or an attractor). This is illustrated by a
simple example.

Example 3.7. We 'blow up' a source and get a repeller (figure 3.1). The universal
covering of this region (not of the whole punctured surface) is shown in figure 3.2(a).

We may associate an R-tree (figure 3.2(b)) with the foliated region. To each vertex
in (b) we attach a C*-algebra

i4,={/eC([0,l],M2(3n)|/(0)} =

FIGURE 3.1

(b)
FIGURE 3.2
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Then the global fibered product C*(T) of the tree of C*-algebras is the C*-algebra
of the foliated region (a), which consists of all ( / J E O I r A,, satisfying

(i) the local gluing condition

(ii) the global gluing condition

sup \\fn(t) — a<x,®e2-,\\->0, asn-»oo
(£[0,1]

for some axeX (depending on (/„)).
(iii) the vanishing-at-oo condition

sup ||/n(0||->0 as n^-oo.

Then by Theorem 3.6 the C*-algebra of the foliated region (figure 3.1) is isomor-
phic to C*(T)xZ with the Z-action translating along the tree by two steps each
time. Ignoring the limit point of the tree, we have the quotient graph given by figure
3.3, which is just the portion associated with (b) (or (a)), figure 3.1 of the dual
graph. Note the tree (b) of figure 3.2 is a component of the preimage of the portion
of dual graph in the tree associated with the universal cover foliation (R2, &).

Example 3.8. It is not hard to visualize a slightly more complicated region involving
simultaneously repellers and attractors (figure 3.4(a)), and get more complicated
examples of R-trees. In fact, the numbers of limit cycles can be arbitrary (figure 3.5).

Again the C*-algebra of such a foliated region is the crossed product of the global
product of certain trees of C*-algebras with Fn's. These R-trees are universal
coverings of the corresponding portions of dual graphs and the Fn are free groups
on n generators, n being the number of closed orbits, acting on these R-trees freely

FIGURE 3.3

On ( 7 2 - 2 discs)

(a) (b)

FIGURE 3.4
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(b)

FIGURE 3.5

and properly discontinuously everywhere except on the limit sets of the vertices. If
we remove these limit sets, then the quotient graphs are exactly the portions of dual
graphs as shown in (b) of both figures 3.4 and 3.5.

4. The characterization of dual graphs of Morse-Smale flows
By a simple n-cycle, or just an n-cycle, in a graph G, we mean a sequence of distinct
edges of the form {(e,, e,), (e2, e2), • • •, (en, en)} such that r(e,) = s(e,-+1) for i =
1,...,/? and en+x = e,. An orientation on an n-cycle is an assignment of one of the
two subsequences {e , , . . . , en) or {e,,+,,..., e,}.

The verification of the following lemma is straightforward:

LEMMA 4.1. Let G = (V, E) be a graph, with Inc (EL,) = 4 and a partition of Ev into
two associated pairs for every ve V. Then this decomposes E into a disjoint union of
cycles of the form {(el, et),..., (en, en)} where the inverse e, of e, is in an associated
pair with e, + ,, for i = 1,..., n, and en + l = ex.

The dual graphs of Morse flows are characterized by

THEOREM 4.2. Let G = (V, E) be a graph, with Inc (Ev) = 4 and a partition of Er into
two pairs for each ve V. Then G is the dual graph of a Morse flow on a closed surface
of genus g if and only if the following conditions (1), (2) and (3) hold:
(1) The partition of E decomposes (Lemma 4.1) £ into a disjoint union of 4-cycles.

Before stating condition (2), we note that if we colour each 4-cycle by '«' and
V such that the opposite edges have the same colour, then there is a new partition
of EL, by the two colours, and again by Lemma 4.1, £ is the disjoint union of s-cycles
and M-cycles.
(2) There is such a colouring and a direction on G which induces an orientation

on each 4-cycle, each u-cycle, and each s-cycle.
(3) Let p, q, r be the numbers of the u-cycles, the s-cycles, and the 4-cycles. Then

p + q - r = 2-2g.
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Proof. Suppose that G = (V, E) is the dual graph of a Morse flow 3F on an orientable
closed surface of genus g. We fix an embedding i of G into £ by Theorem 2.9. The
four trajectories connecting each saddle a of SF correspond to a 4-cycle Q(o-) in
G. Since there are no saddle connections, this gives a canonical decomposition of
E. The embedded 4-cycle iQ(o-) bounds a disc containing a. An orientation on M
determines an orientation at each saddle, thus an orientation on the 4-cycle Q(cr).
Mark each geometric edge of G(&>) by s or u according to whether the corresponding
trajectory is a stable or unstable manifold of <r. We need to show that the directions
on the 4-cycles induce a consistent orientation on each u-cycle and s-cycle. All the
edges corresponding to the trajectories connecting to a given source a form a u-cycle
Q(a), and iQ(a) also bounds a disc containing a (cf. the proof of Theorem 2.9).
Similarly there is also a 1-1 correspondence between the sinks and the s-cycles.
The orientation on M induces an orientation on each a and w, which assigns a
direction on each w-edge and s-edge. It is easy to see that for each s-edge a (u-edge
b) this direction always conflicts with the direction assigned by the 4-cycle containing
a (respectively b) (figure 4.1).

FIGURE 4.1

Thus the orientations on all the 4-cycles always specify a coherent orientation on
each .s-cycle and u-cycle. Note that there is a unique s-trajectory connecting the a
and a, intersecting t,(a). Condition (3) now follows from the Euler-Poincare
theorem.

Conversely, let G be such a dual graph satisfying (1), (2) and (3). Let G be G
with such a fixed colouring and an orientation. We show that G = G(ZF) for a Morse
flow 9 on a closed surface M of genus g. Reversing our construction of G(!F) from
(M, &) yields a direct proof. The idea is that to each 4-cycle, .s-cycle and u-cycle,
we associate a 2-cell with the cycle as its boundary. Then we glue these 2-cells
together 'along' G, namely, we construct a cellular 2-complex CM with G as its
1-skeleton. It is easy to verify that the space M of CM is an orientable closed
surface. There is an obvious way to 'assign' a Morse flow 9 on M, i.e. put an
a(io, a) in each 2-cell bounded by an s-cycle (u-cycle, 4-cycle) and connecting them
by s-trajectories (u-trajectories) crossing the s-edges (u-edges) of G. Finally we
check the axioms of Morse-Smale flows (§ 1).

However, here we give another detailed proof in order to exhibit the connection
of this classification with Peixoto's work. We shall show how to construct a Peixoto
graph from a dual graph and see how the rather artificial-sounding axioms (§1)
are easily satisfied.
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A flow diagram G is constructed from G as above, i.e. for every s-cycle, 4-cycle,
or w-cycle, we associate respectively an a, a or <o. There is a directed edge e from
a (resp. <x) to cr (resp. <o) for each geometric edge e in the intersection of the
corresponding s-cycle (u-cycle) with the 4-cycle. For convenience we shall denote
by e the corresponding edge in the coloured dual graph G* for each (geometric)
edge e in the Peixoto graph G*.

We associate a distinguished set with each vertex v in G. Let a = s-\n, b = s-out,
c = w-out, and d = u-in be the four edges incident to V (figure 4.2). There are three
cases, (a) There are four vertices connected to v. The distinguished set is [a, b; c, d]
(in the bracket we identify an edge with its inverse), (b) There is an s-loop at v.
Then a = b, and the distinguished set is [a; c, d]. (c) There is a w-loop at v. Then
c-d and the distinguished set is [a, b; c]. We note that two edges e,, e2 in G* are
associated if and only if e{ and e2 are consecutive edges in G* with distinct colours.

(b)

FIOURE 4.2

(c)

Now we see that the axioms (1.1)—(1.5) of a Peixoto graph in § 1 translate to the
natural properties of the dual graph G*, and the verification of these axioms is
straightforward:
(1.1). An edge e in G* belongs to exactly two distinguished sets if and only if e

connects distinct vertices.
(1.2) e is the first (or third) edge of type 2 (or type 3) distinguished set if and only

if e is an s-loop (or u-loop).
(1.3) With a moment of reflection one checks that

cannot be included in a 4-cycle in G*.
(1.4) A vertex in G* corresponds to either an s-cycle, a u-cycle or a 4-cycle.
(1.5) For each pair of edges e, e' in the same distinguished set, the fixed orientation

in G* specifies a rotation from e to e' or e' to e, depending on whether
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—£—>——* or e > e > in G*. Now if e, e' have the same colour (w or s), we
define the rotation in G* by reversing the rotation, but if e, e' have different
colours, then we take the sense of rotation defined as above. One checks easily
that for every type of distinguished set (see figure 4.2), such a rotation defines
a coherent orientation of the distinguished set, independent of which pair of
edges e, e' was chosen. Therefore, the axiom (1.5) follows from the condition (2).

•
The following definition is motivated by the proof of Theorem 4.2.

Definition 4.3. Let {M,3>) be a Morse flow. The coloured dual graph G*(^) of
(M, SF) is the dual graph G(^) (Definition 2.4) with a colouring (on the edges)
and an orientation. Here an edge is V ('u') if and only if the corresponding orbit
in 3> is contained in the stable (unstable) manifold of the saddle. The orientation
on G(3F) is given by the orientations assigned to all the 4-cycles given by an
orientation on M.

Since there are exactly two possible orientations on M, there are also two on
G(^). Two coloured dual graphs are isomorphic if there is a graph isomorphism
from one to the other preserving the colouring and either preserving or reversing
all the orientations on the edges. It follows from the proof of Theorem 4.2 that we
have

THEOREM 4.4. Two Morse flows (M, 9) and (M, &') are topologically conjugate if
and only if their coloured dual graphs are isomorphic.

Definition 4.5. A {connected) coloured dual graph is either a single vertex, or a
(connected) digraph G* = (E, V), Inc(x) = 4 for all xeV, with two colours u and
5 on the edges E such that
(1) £ is a disjoint union of 4-cycles. In each 4-cycle the opposite edges have the

same colour.
(2) The direction on G* induces an orientation on each 4-cycle, w-cycle and s-cycle.

The colouring and orientation induce a partition of Ex into two pairs, for x e V,
such that each pair of edges have the opposite colours but coherent orientation. A
(connected) dual graph is a (connected) coloured dual graph stripped of the
colouring and orientation, but retaining the induced partition of the edges.

Let p, q, r be the numbers of the u-cycles, the s-cycles, and the 4-cycles, respec-
tively. Then ^-(G*)= p + q-r is called the Euler number of G*. Recall that the dual
graph of the north-south flow on S2 consists of a single vertex. We define ^(point) = 2.

THEOREM 4.6. A coloured dual graph G* has form G*(^) for a Morse flow (M, 3?)
if and only if x(G*) = x(M).

Theorems 4.4 and 4.6 provide a simple classification of the conjugacy classes of
Morse flows. Let x be a vertex in a dual graph. Let a, b, c, d be the four edges in
Ex where a, c and b, d are the two associated pairs (figure 4.3(a), figure 4.2). Then
around x there are exactly eight possibilities for colouring and orientations. Figure
4.3(b) shows four of them. The other four have the same colouring but the opposite
orientation.
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(a) (b)

FIGURE 4.3

Example 4.7. The two Morse flows illustrated in figures 2.4 and 2.6 are not conjugate
so their coloured dual graphs (figure 4.4) are not isomorphic. But their dual graphs
are the same.

It is easy to construct two nonisomorphic dual graphs, both having one w-cycle,
one s-cycle and 4g vertices, for g>2. Thus for a surface with genus g>2, there
are polar flows with nonisomorphic C*-algebras. Of course, then the polar flows
are nonconjugate.

It is not so easy to find nonconjugate polar flows on the same surface but with
isomorphic C*-algebras. In fact one can show that for two coloured dual graphs
with one w-cycle, one s-cycle and fewer than 12 vertices, they are isomorphic as
dual graphs if and only if they are isomorphic as coloured dual graphs. A 'minimal'
counterexample is given below.

Example 4.8. Figures 4.5 and 4.6 show two non-isomorphic coloured dual graphs
which are isomorphic as dual graphs. In (a) of both figures, circles are the s-cycles,
while in (b) the circles are the u-cycles. By Proposition 2.10 and Corollary 2.11, for
a polar Morse flow, we have

g = l ( n _ l ) = i#V.

So the flows are on a closed surface with genus 4.
(1) The C*-algebras of two flows are isomorphic. One checks that a cyclic bijection

of vertices as shown from figure 4.5(a) to figure 4.6(a) induces an isomorphism of
the dual graphs. A graph isomorphism preserves the partition on the edges, if and
only if the isomorphism takes any 4-cycle in the first partition to a 4-cycle in the
second. These 4-cycles in both dual graphs (a) are marked by c,, i = 1 , . . . , 8, under
the one-to-one correspondence induced by the graph isomorphism.

FlGURL 4.4
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c,

(a) (b)

FIGURE 4.5

2 2̂

(a)
(b)

FIGURE 4.6

(2) The two foliations induced by the two Morse flows are not conjugate. Take
the s-cycle of figure 4.6, i.e., the circle of (a), which cannot be mapped to either
the s-cycle (the circle in (a)) or the u-cycle (the circle in (b)) of figure 4.5, under
any graph isomorphism.

When we draw each 4-cycle C, with a distinct colour, then in figures 4.5 and 4.6,
both parts (a) (both parts (b)) give the Heegard diagram at the source (the sink)
(see § 5). Thus the decomposition into 4-cycles of a dual graph generalizes the
Heegard splitting of two-manifolds (cf, [F]) from polar flows (i.e., with exactly one
source and one sink) to arbitrary Morse flows.

Remark 4.9. By the argument in the proof of Theorem 2.9 and the basic facts of
coloured dual graphs, one can generalize the result in [Lev2] and [Mar], about
'pairs of pants decompositions', to the more general situation, where sources (sinks)
are present. Thus one gets 'caps and pants decompositions'. We do not elaborate,
but indicate the procedure:
(1) Cut the surface along the small circles around all sources and sinks, and take

out the 'caps'.
(2) In the embedded coloured dual graph constructed in the proof of Theorem 2.9,

delete the edges alternately in both colour and orientation.
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(3) Then the remainder of the graph is a collection of circles. Together with the
small circles in (1), they form the transversal which provides the 'caps and pants
decompositions'.

We illustrate it, again by the simplest example (figures 2.3 and 4.7).
Now we define and characterize the dual graphs for general Morse-Smale flows

(Af, 3F) with closed orbits. Following the notation of Peixoto, we denote an attracting
(repelling) periodic orbit of & by a) (to,1), which is a one-dimensional source (sink)
of &. Removing all the closed orbits from (M, 3F), we get a disjoint union U, (Mf, SFj)
of Morse flows. Let G*(^,) be the coloured dual graph of (M,-, ̂ ) defined as in
§2. Every attractor a) (repeller u>)) corresponds to a pair of sources (sinks) in
U (Aff, &j). Let their coloured dual graphs be £*(&,), defined as in § 2. Recall that
a source (sink) in (M,, ^,) corresponds to an s-cycle (w-cycle) in G*(^). So the
closed orbits in (M, 5F) establish a pairing P between some s- cycles, and between
some w-cycles of U G*(^,).

Definition 4.10. The coloured dual graph G*(&) of a Morse-Smale flow (M, &) is
the pair (U, G*(^F|), P), namely, the disjoint union of the G*(^), and the pairing
P. Similarly the dual graph G(@) is flj G(^,), P), the disjoint union of the dual
graphs of (M,, ^ ) with the same pairing P among some cycles in G(^,).

Here we recall that the dual graph G(^) of a Morse flow (M, &) can be obtained
from the coloured dual graph G*{!F) by ignoring the colouring and orientation,
but retaining the partition on Ex (determined by the colouring and orientation) for
each vertex x, namely, the partition of Ex into two pairs of edges (figure 4.3). In
the illustration of G*(^), we use a two-way arrow connecting a pair of two s-cycles
(w-cycles) to represent a pair in P.

Example 4.11. We denote the (coloured) dual graph of the north-south polar flow
on S2 by a point. Then the Morse-Smale flow on a torus with two w, two a-, one
a1 (figure 4.5(a)) has the coloured dual graph figure 4.8(b).

Definition 4.12. A {general) coloured dual graph G* consists of a collection LJ"=i G*
of connected coloured dual graphs and some pairings 9 between some of the
u-cycles, the s-cycles, and the one-point graphs (no pairing between a M-cycle and
an s-cycle), such that there are some pairings P, e 2P involving cycles in G* and
G*+>, for each i = 1,...,«. The Euler numberX{G*) is £"=1 *(G?)-2|0>| where \&\
is the cardinality of SP.

. r

r

FIGURE 4.7
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(b)

FIGURE 4.8

A. .A

A (general) dual graph (G,3P) is a (general) coloured dual graph (G , 9)
stripped of the colouring and orientation, but retaining the partition of edges and the
pairing 0*.
THEOREM 4.13. A general coloured dual graph G* has form G*(&) for a Morse-Smale
flow (M, &) if and only ifX{G*)=X{M).

We say two general coloured dual graphs Gf = (U"i i G*,, ^j),j =1,2, are isomor-
phic if and only if nx = n2 and after renumbering, there is a family (</>,);=!,...,« of
isomorphisms of G*, with Gf, identifying the pairing SP, with SP2.

THEOREM 4.14. Two general coloured dual graphs are isomorphic if and only if the
two corresponding Morse-Smale flows are topologically conjugate.

If we forget about hte 'colour', we obtain the complete invariants for the C*-
algebras.

THEOREM 4.15. Two general dual graphs are isomorphic if and only if the two
corresponding C*-algebras of Morse-Smale flows are isomorphic.

Proof. Suppose the two C*-algebras A, = C*(Mh ^ , ) , i = 1, 2 are isomorphic. Then
the two spectra A, are homeomorphic. We claim that every closed orbit in ^,
corresponds to a closed subset in At homeomorphic to a circle, which is contained
in the closure of any single point in two other 'nearby' circles. To see this, notice
that the union of the unstable manifold of a repeller (or the stable manifold of an
attractor) with the closed orbit is always a foliated open annulus as shown in figure
4.9 (cf. figure 3.1). Its C*-algebra Aa is isomorphic to C0(-l, 1) xa Z, where the
Z-action is given by a homeomorphism of (—1,1) having 0 as the unique fixed point
(of either expansion or contraction). Clearly any such homeomorphism gives rise
to a C*-algebra unique up to isomorphism. The spectrum Aa is described as earlier
(figure 4.10).

FIGURE 4.9
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limit cycle
FIGURE 4.10

Eliminating these limit cycles from the spectrum A,, then one gets a T,-space. Thus
a homeomorphism between At and A2 establishes a bijection between 0*, and SP2.
After removing all the closed orbits in 2P, and 92, we get foliated open submanifolds
(£1,,^,) and (C12,3F2). Their C*-algebras are two ideals /, and I2 of A, and A2

and the restriction to I\ of an isomorphism </> from A, to A2 must have image I2,
due to the consideration of the spectra as above. Therefore <j>\I, induces a family
of isomorphisms from the dual graphs of the Morse flows which are the components
of &t to those of &2.

Since the general dual graph G = (U Gj, &) provides all the information needed
to construct the C*-algebra of a Morse-Smale flow (which has G as its dual graph),
the 'only if part is clear. •

The above theorem is interesting because the underlying manifolds of the flows
are ignored as a whole. In fact, we know that the dual graph G{3F) of flow (M, 2F)
does not even determine the homeomorphism type of M (Example 4.8).

The C*-algebra of a Morse-Smale flow is always GCR. In general the length of
a composition series with continuous trace factors is 3.

COROLLARY 4.16. A Morse-Smale flow (M, &) has no closed orbits if and only if the
C*-algebra C*(M, &) is CCR.

Proof From the proof of Theorem 4.14, the spectrum of C*(M, 3F) is T, if and only
if & has no closed orbits. The C*-algebra C*(M, 2F) is isomorphic to the C*-algebra
of 1-parameter transformation group (Proposition 1.11 [Wl]). By [Wil] or [Gt], the
corollary follows. •

5. Intersection forms given by the KK-intersection product
We have obtained a complete classification of the C*-algebras of all the structurally
stable Morse-Smale flows on closed two-manifolds in terms of dual graphs
(Theorems 4.2, 4.13, 4.15). Recall that the homeomorphism types of closed two-
manifolds and simply-connected four-manifolds are classified by symmetric intersec-
tion forms over homology. In this section we interpret the combinatorial invariants
in our classification results in terms of the familiar KK -invariant, developed by
Brown-Douglas-Fillmore and Kasparov. Then we point out an analogy between
the classification result for C*-algebras and that for low-dimensional manifolds:
the C*-algebra of a Morse flow naturally defines a symmetric intersection form over
/C-homology (Theorem 5.14). Moreover, the isometry equivalence class of the
nonsymmetric intersection matrices (Definition 5.8) classify the isomorphism class
of the C*-algebra (Theorem 5.11).

It is however an intriguing question how far the concept of dimension of manifolds
can be carried over to C*-algebras. The topological stable rank introduced by M.
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Rieffel can be regarded as such a generalization [R2]. For a compact orientable
differentiable manifold, its dimension equals its cohomological dimension. For
general C*-algebras, such a satisfactory concept of dimension cannot be found if
it is to be invariant under strong Morita equivalence, because it has been known
for quite a while that there is no nontrivial Z-graded Morita-invariant cohomology
theory on all separable C*-algebras which is not related to K -theory. In fact, such
a functor which is half exact, stable and homotopy-invariant, has to satisfy Bott
periodicity [§ 4, Cun]. Therefore, it seems not just a sheer coincidence that any
stable C*-algebra has topological stable rank either 1 or 2 (Theorem 6.4 of [R2]).

Hopefully, however, for sufficiently general noncommutative smooth manifolds,
the concept of 'dimensions' may be (and should be) eventually defined and tied up
with the associated 'total' smooth structures. It seems that again C*-algebras of
smooth foliations serve as good candidates for such study.

The intersection form of a surface is given by the linking matrix associated to a
polar flow. A polar flow is the gradient flow of a 'perfect' Morse function. Let M
be a closed two-manifold with genus g. Then a polar flow on M has 2g saddles.
For each saddle a, there is a stable cycle (unstable cycle) consisting of the union
of the stable (unstable) manifold of a, the source a (the sink w), and a. The 2g
stable (unstable) cycles generate TT-,(M). Let CS(CJ be a small circle around the
source (the sink) transversal to the flow. The intersection of Cs with the 2g stable
(unstable) cycles consists of 2g pairs of points. The circle CS(CU) along with the 2g
pairs of coloured points will be called the (dual) Heegard diagram of the flow 2F
(Fleitas [F], p. 172, whose analogue for four-dimensional manifolds is known as a
Heegard splitting), again denoted by CS(CU). Two polar Morse-Smale flows are
isomorphic if and only if the two Heegard diagrams are isomorphic in the obvious
sense.

Let e,,... ,e2g be the stable cycles. For i^j the linking number (et, e,)eZ2, is
defined as follows.

Let <e,, e,)= 1 if the corresponding S° (two pairs of points) are linked and let
(ej, ej) = 0 if the two S° are unlinked (figures 5.1). For simplicity, we also denote by
et both the S° and the element in H](M,Z2) represented by the cycle e, for all i.

Let (et, e<) = 0, for all /'. The 2g x 2g (skew) symmetric matrix Ls = ((e,, et)) is the
linking matrix of (e(). Because of Poincare duality, Ls is nondegenerate. Note that
(e,, e,) is the same as the intersection number of the two closed curves e, and e; (see
p. 1, [L]), and the linking matrix represents the intersection form on H,(M, Z2).

Example 5.1. The 'stable' and 'unstable' Heegard diagrams of the polar flow (a) are
shown in (b), (c) of figure 5.2.

Notice that both of the Heegard diagrams have the same linking matrix

"0 0 0 1"
0 0 1 0
0 1 0 0

. 1 0 0 0.
However, this is only a coincidence. First an elementary observation.
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o a
<ej,e,->=l <e,,e,> = 0

FIGURE 5.1

M

G •
2n 1

.70 2

(c)

(d)

(a)

FIGURE 5.2

L E M M A 5.2. Let M be a vector space over a field R. Let ( , ) be a nondegenerate

symmetric bilinear form defined on M. Let {et,..., en} be a basis of M, with matrix

Le = ((^i, «•/))• Suppose {/,,... ,/„} is another basis of M given by e, = 2(e,, e,-)/. Then
the associated matrix Lr = ((/,^J)) is the inverse of Le.

Proof. Exercise.

COROLLARY 5.3. Let M be a closed orientable 2n-manifold, admitting a polar flow 2F
on M with only saddles of Morse index n. Let e,,..., em (respectively, / , , . . . , / „ , ) be
the basis of Hn(M, Z) represented by the stable {respectively, unstable) cocycles. Then
the linking matrix Lu = {{f,,fy) is the inverse of the linking matrix Li = ((e,, e,».

Example 5.4. Figure 5.3 illustrates another polar Morse flow (a) with the Heegard
diagrams at the source and the sink (b), and their linking matrices (c).

For closed surfaces, the symmetric bilinear forms are all even and the diagonals
of Ls and Lu are zero. Corollary 5.3 will be used on four-manifolds [H-W], where
the links in S3 have self-linking numbers, which are the entries on the diagonals of
linking matrices Lu and Ls. They are usually nonzero.
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(a)

M 8
1 -̂ -H—-̂  P/v

N4 \Q

2 V 1 «
3MT^ 5

N v y
M j

(b) 8OrM

M
0
1
1
0

M
/o

0
1

\ l
\

3L2

JV
1
0
1
1

N
0
0
0
1

(c)

P
1
1
0
0

p
1
0
0
1

Q
0
1
0
0

Q
l
I
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FIGURE 5.3

Example 5.5. The linking matrix Ls does not determine the Morse-Smale flow up
to conjugacy for two-manifolds with genus g>2.

Figure 5.4 is a Heegard diagram of a Morse-Smale flow. Its linking matrix is

0 1
1 0

0 1
1 0

0 1
1 0

1
0 J

By switching one point of e4 (as the arrow indicates), we can get a nonisomorphic
Heegard diagram with the same linking matrix.
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The equivalence classes of linking matrices, that is, the equivalence classes of
intersection forms over H,(M, Z2), classify the two-manifolds. Before discussing the
analogy for C*-algebras, we record some facts about the dual graphs.

LEMMA 5.6. If two edges e,, e2 in a dual graph have the same origin x = o(ex) = o(e2)
and the same terminus t(e{) = t(e2), then the two edges have opposite grading in Ex.
(In particular, if x = o(e) = t(e), then e and e have opposite grading.)

Proof. Assume that o(e,) and t(e}) are distinct vertices. Suppose e, and e2 have the
same grading. Then the two geometric edges |e,| and \e2\ have distinct colours (figure
4.3). However, we already know that such a loop with two distinct coloured directed
edges cannot be included in a 4-cycle in a dual graph (cf. (1.3) in the proof of
Theorem 4.2).

Assume that o(e) = t(e). Then with the same colour, the two edges e and e have
different grading. •

Recall that given a graph G, a symmetric adjacency matrix is the matrix whose ij
entry is the number of geometric edges connecting the ith and jth vertices, for a
fixed labelling of vertices. Let Pn be the group of matrices generated by elementary
n x n matrices £,,, which are obtained by permuting the ith row and the jth row of
the identity matrix. Let P = U n f V Further, we set Pn to be the group of n x n
matrices generated by the elementary matrices £,-,-, and £, = diag (1 , . . . , - 1 , . . . , 1 )
and P = U n Pfi- The groups Pn and Pn are isomorphic to the Weyl groups /4n_, and
Bn ( = Cn) respectively, for n =2 ,3 ,4 , . . . . The group Pn is isomorphic to O(n, Z)
( = O(n)nGL(N,Z)).

For a graph G with n vertices and m edges, a nonsymmetric adjacency matrix
N(G) is the n x2m integer matrix whose ijth entry «,-,- is the number of ends of the
jth geometric edge incident to the ith vertex. For a dual graph G, a (signed)
nonsymmetric adjacency matrix N(G) is the nx2n integer matrix whose ij entry n,j
is 0 if n,, =0 or 2, otherwise the entry /?,-,• is (-l)deg<>', where deg e, is the degree of
the end of the jth geometric edge incident to the ith vertex.

Two symmetric adjacency matrices M, and M2 are equivalent if there is some
PeP such that M, = PM2P'"'. Two nonsymmetric adjacency matrices N, and N2

are equivalent if there is some P, eP and P2eP such that N, = PtN2P2.
Let (G, A) be a graph of C*-algebras (Definition 2.1). We set

and Q(G) = Y\fCE A-, where E is the set of geometric edges of G. Then we have a
short exact sequence

defining canonically an element aa e Ext (Q(G), I(G)), which is isomorphic to
KK](Q(G), I(G)), since the algebras are separable and nuclear. When G is a dual
graph, then G= G(S') for some Morse flow (M, 3>) and we write a.f = aa. It is
easy to see that / (G)= Co(0,1)03T and <?(G) = 5if2", where n = #V. By the
universal coefficient theorem [R-S] we have

KK '(Q(G), I(G)) - Horn (K(>(Q(G)), K,(I(G)))
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where the isomorphism is given by the KK -intersection product. Thus we can
represent a? by a matrix A? in Horn (Z2", Z") for a chosen canonical basis of
K,(Co(0,1)®3T) = Z" and K0(X

2")^Z2".

LEMMA 5.7. For each nonsymmetric adjacency matrix A,? of a dual graph G(S'), there
is a canonical basis of K0(Q(G)) and K,(/(G)), such that the matrix A# in
Horn (Z2", Z") represents the KK'-element associated with C*(M, &).

Proof. The point is to show that it is possible to choose an orientation of the basis
so that the matrix comes out with the given signs. It is most convenient to consider
the C*-algebra C*(G(&)) of the graph as C*(M, &). Since we are considering
only Morse flows, there is only one 'cell' Av given by Theorem 2.3. Fix some
'compatible' basis for K,(Co(0, l)®3if) and K0(3C4) so that the exponential map
takes both 'positive' generators at K0(X) at the end T on (0,1) to the positive
generator of K,(Co(0,1)®^) while doing the opposite at the end '0'. Thus the
extension associated to Av yields the matrix (-1,-1,1,1) for the KK '-element, by
the argument in Example 4.6 of [Wl].

Fix a nonsymmetric adjacency matrix A = (a0). Choose the basis of KX(Q(G))
and K{(I(G)) as follows. Their orders are consistent with the labeling of A.?. Their
positive generators are the images of (T,)*, xe V, of the positive generators of the
K-theory associated with A,, given above. Here TX is the embedding of Av into
C*(G(9)) such that the '0' end is mapped to deg 0 edges while the '1 ' end to deg 1
edges.

Now assume a,?[(Vj]) = aj/[u,-], where ut, Vj correspond to the ;th vertex x, and
thejth geometric edge e~r So if x, is not incident on eh then aj, = 0 = «„. Let ey = (eh e,).
If only e, = Ex., then aj, = (-l)deBe» = a,,. Similarly a(> = a>, if only e, e Ex.. Finally if
both eh e~j e Ex., then by Lemma 5.6, deg e, deg Sj = -1 thus

a,;; = (-l)dege; + (-l)degii- = 0.

So a,, = a], for all i, j and the map a? is represented by the matrix Af. •

There is some subtlety in both the statement and the proof of Lemma 5.7. In
general a matrix A.^e Horn (Z2", Z") representing the KK '-element a:? is not a
nonsymmetric adjacency matrix of the dual graph. In the proof, the possibility of
orienting the bases to attain the given signs in A.? is not automatic. One cannot
change the signs of arbitrary specific entries only by multiplying by matrices in
O(n,Z) in general!

Fix a canonical basis of Kl(I(G)) as above. The canonical inner product ( , )
on the lattice Z" given by ((n,), (m,)) = Sn,7Mj defines an inner product on K'(I(G)),
denoted again by ( , ).

Definition 5.8. For elements u, ve K[(I{G)), the nonnegative symmetric bilinear
form/(w, v) = (u, AsA[fV) is called a (symmetric) intersection form associated with
C*(M, &>). A nonsymmetric adjacency matrix As will be called the (nonsymmetric)
intersection matrix associated with C*(M, &).

By Lemma 5.7, A.f is given by the KK -intersection product with the KK' element
associated with C*(M, 2F).

https://doi.org/10.1017/S0143385700005757 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005757


594 Xiaolu Wang

Definition 5.9. Let fh i = 1,2, be two symmetric bilinear forms over Z". Assume
/ = (u, B,v) with respect to a canonical basis of Z". We say the two forms / , , f2 are
isometrically equivalent if the two matrices B, and B2 are isometrically congruent,
that is, B{ = OB2O~X for some orthogonal matrix O in O(n, Z).

Let At, A2 be any (nonsymmetric) integer matrices. We say A, and A2 are
(nonsymmetrically) isometrically equivalent, if A\ = OA2P, for some OeP and PeP .
(Clearly then the two positive bilinear forms (u, AxA'v) and (u,A2A'v) are iso-
metrically equivalent.)

From Lemma 5.7, Theorem 4.14 can be restated as

THEOREM 5.10. Two C*-algebras of Morse flows are isomorphic if and only if their
KKl -elements are the same, that is, their intersection matrices (Definition 5.8) are
nonsymmetrically isometrically equivalent (Definition 5.9).

There exist nonisomrophic C*-algebras of Morse flows 9, and 92, with intersec-
tion matrices A$t and Ay2 such that A#t = A#,O, for some O e ^ (Example 5.16).

LEMMA 5.11. The nonnegative symmetric bilinear form fj over Z" is up to isometric
equivalence uniquely determined by the C*-algebra C*(M,2F) of the foliation with
respect to a canonical basis of KX(I(G)).

Proof. A relabelling or reorientation of the basis of K,(/(G)) and K0(Q(G))
produces another nonsymmetric intersection matrix A' = P,AP2, where P,, P2eP.
The associated bilinear form

f'(u,v) = (u,PlA.wA'/?Plv)

is isometrically equivalent t o / ? with respect to the canonical basis of Ki(I(G)).

•
The converse question is how a bilinear form ( , ), or rather its isometric class,

determines the C*-algebra C*(M,&). Recall that C*(M, 9)=- C*(G(&)), where
G(9) is the dual graph of the flow. We denote by G(3F) the underlying graph of
G(8F), forgetting the grading. Then G(9>) is determined by the isometric equivalence
class of its adjacency matrices. Thus Proposition 5.12 asserts that the form /?
determines G(&), therefore 'almost' determines the C*-algebra C*(M, 9).

THEOREM 5.12. Let A? e End (Z2", Z") represent the KK*-element as above. Then

M := \A.fA[f - 5 diag (A.fA\f) + 2/|
is an adjacency matrix of G(9). Here for an arbitrary matrix B = (bij), the matrix
diag B is diag (bu,..., bnn) and \B\ is the matrix whose i, j entries are the |b,,|.

Proof. Let A.? = (aif) be as in the proof of Proposition 5.6 and M = (mij) be the
adjacency matrix corresponding to the basis of /C,(/(G)). For i ¥• j , the /th geometric
edge connecting the vertices x{ and x, if and only if |a,,a,/| = 1. There are at most
two edges connecting any pair x, and xt. Assume that they are the /th and /'th
geometric edges, then al7a,7= aitaiV by Lemma 5.6. Therefore |£ ana:ii\ is in any case
the number of edges connecting x, and xh so |m,:/| = |£ a;;a,,|.

A diagonal entry AM,, is the number of geometric edges with both ends being ey.
Clearly mu = 0 or 1. By the discussion above, Inc Ex. =2m,,+X, a],. Since Inc Ex. =4
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(Proposition 2.5),

m« = 2-Ha?,. •

THEOREM 5.13. Let G be an underlying graph of a dual graph G. Let & be a Morse
flow that G = G(S'). Then the nonnegative symmetric form f?( •, •) uniquely determines
the graph G and conversely the graph G uniquely determines the form fy(-, •).

Proof. The first assertion is immediate from Theorem 5.12. Conversely let M = (m^)
be an adjacency matrix of the graph G. Let B = {b,j) be given by bu = my if i^j,
but bii=4-2mh. Then from the proof of Theorem 5.14, there is a matrix A.?e
Horn (Z2", Z"), such that A.f represents the KK'-element given by C*(G(JF)) and
B = A'?A:? defines the nonnegative symmetric form /*(•,•) over K,(I(G)). The
basis Kt(I(G)) is chosen to correspond to the labelling of vertices given by M.

•
Example 5.14. For planar coloured dual graphs with either only one s-cycle or only
one w-cycle (figure 5.5), one can show by induction on the number of vertices that
the underlying graphs determine the dual graphs. Thus the symmetric forms f?{ •, •)
determine the C*-algebras up to isomorphism.

The symmetric form ff( •, •) does not determine the grading of the graph G. For
polar flows on a closed surface of genus less than 7, one may check that two dual
graphs are isomorphic if and only if the two underlying graphs are isomorphic.

Example 5.15. Figures 5.6 and 5.7 are two coloured dual graphs on the closed surface
with genus g = 8. The two underlying graphs are isomorphic. However, the two
underlying dual graphs are not isomorphic. One can show that the automorphism
group of the graph is Z2, where the nontrivial element interchanges the two vertices
Pt and P2, and does not carry the grading of one dual graph to the other.

Question. Do there exist nonisomorphic underlying graphs G,, G2 of some dual
graphs G, and G2, and some Ae GL(2n,Z) such that the adjacency matrices are
congruent: M(G,) = AM(G2)A"!

FiciURt: 5.5
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FIGURE 5.7
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