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Abstract
We present an opinion dynamics model framework discarding two common assumptions in the literature:
(a) that there is direct influence between beliefs of neighboring agents, and (b) that agent belief is static in
the absence of social influence. Agents in our framework learn from random experiences which possibly
reinforce their belief. Agents determine whether they switch opinions by comparing their belief to a thresh-
old. Subsequently, influence of an alter on an ego is not direct incorporation of the alter’s belief into the
ego’s but by adjusting the ego’s decision-making criteria. We provide an instance from the framework in
which social influence between agents generalizes majority rules updating. We conduct a sensitivity anal-
ysis as well as a pair of experiments concerning heterogeneous population parameters. We conclude that
the framework is capable of producing consensus, polarization and fragmentation with only assimilative
forces between agents which typically, in other models, lead exclusively to consensus.

Keywords: Opinion dynamics; multi-agent learning; social influence; agent-based simulation; opinion polarisation; Social
network dynamics; consensus formation

1. Introduction
The opinions held by an agent may be of crucial importance to their expressed behavior. Models
that consider opinion formation tend to focus exclusively on social influence mechanisms of opin-
ion change. We suggest a framework which includes a calculating, rational component in terms
of how the agent incorporates information resulting from life’s experience, as well as an affective
component in terms of the effect of the opinions held by alters on that of the agent. This gives
an explicit formulation of an agent’s internal thought process which we believe should not be
governed exclusively by social influence.

Our research question is: What elements constitute a model of opinion dynamics which goes
beyond social influence while still including it? In particular our aim is to present a framework to
support believable models of opinions allowing for two common phenomena:

1. agents who change their opinion based on personal experience (possibly in the absence of
social influence), and

2. agents who retain their opinion in spite of (possibly strong) social influence urging them
to change it.

There is a common idea driving both of these phenomena. Few people when asked why they
hold the opinion they do will answer: “Because my neighbors hold this opinion.” We believe it
more likely they provide reasoning, substantiation and possibly evidence from their own expe-
rience. This points to a cognitive element which is often ignored in the literature pertaining to
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opinion dynamics. In the model we propose agents learn (gather experience possibly reinforc-
ing their convictions) about the opinion they hold, while also exposed to social influence from
their neighbors. While the idea of modeling the evolution of opinions under social influence is
not new, the inclusion of learning about an opinion through personal experience has not received
much attention.

1.1 Relation to the literature
The literature in the field of opinion dynamics is expansive which is attested to by the abundance
of review papers aiming to capture a moment of the state of the art of the field (see e.g., Castellano
et al. (2009), Flache et al. (2017), Proskurnikov and Tempo (2017, 2018), Noorazar et al. (2020),
Zha et al. (2021) and Bernardo et al. (2024)). As such, an exhaustive review of the literature is
beyond the scope of this paper. The discussion that follows focuses on the commonalities between
the models in the field and where these may be expanded upon. Furthermore, we restrict ourselves
to literature pertinent to this paper in particular.

There is a stream of literature in which the agents incorporate a (possibly) weighted average
of their neighbors’ beliefs into their own (see e.g., the seminal works of French (1956), Harary
(1959), and DeGroot (1974), and more recently Altafini (2013), Proskurnikov, et al. (2016), Liu
et al. (2017) and Chan et al. (2024)). A second stream of literature follows the votermodel (Clifford
and Sudbury, 1973; Holley and Ligget, 1975) in which agents copy the opinion held by someone
in their neighborhood. Castellano et al. (2009) made a significant improvement by means of the
q-voter model in which instead of copying a random neighbor, agents copy the opinion held by at
least q of their neighbors. For an overview the interested reader may consult Redner (2019).

The models within these two streams can further be categorized according to modeling
decisions:

• Opinion representation being continuous or discrete;
• Opinion updating happening simultaneously or asynchronously;
• Forces between neighboring agents consisting only of attractive forces or including

repulsive forces.

Despite these differences, the common thread is that agents are initialized with an opinion, the
evolution of which is governed only by inter-agent communication. Another similarity of these
models is that there is no distinction between an agent’s opinion and their belief (which we define
as the strength of conviction in that opinion), or the implication that an agent adjusts their belief
(rather than their opinion) as a direct result of observing another agent’s belief.

Remark 1. Note that we distinguish between opinions and beliefs, terms that are often used inter-
changeably in the literature. We do this so that we can refer to the opinion an agent holds and the
conviction in that opinion independently. As such we define

• opinion: a discrete opinion from the set of opinions which indicates support for the point of
view represented by the opinion, and

• belief: the agent’s strength of conviction in the opinion they hold.

Giardini, et al. (2015) present a model in which an agent’s opinion is a combination of: subjec-
tive truth value, a level of confidence therein and a perceived sharedness. Subsequently these three
variables may change as result of interactions between agents.1 Empirical studies by Johnson and
Grayson (2005) and Ozdemir et al. (2020) show support for social influence effects which do not
act directly on an agent’s cognitive belief but rather on their emotive connection to the topic.

More recently Baccelli et al. (2017) challenge the assumption that agents change their beliefs2
only as consequence of their network. They present a model in which noisy signals between agents
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represent the possible endogenous evolution of belief within an agent. Though the agents have the
possibility (by means of noise) to change their belief without social influence, the influence of
another agents’ belief is still directly on their own belief.

Flache et al. (2017) highlight the need for closer inspection of the assumptions underlying social
influence and the modeling decisions that take place as a result of these assumptions. Flache et al.
(2017) acknowledge that Giardini, et al. (2015) make such an effort and call upon researchers in
the field to follow suit.

Noorazar et al. (2020) explicitly mention the need for more models like those of Baccelli et al.
(2017) which question the assumption that beliefs should evolve exclusively as a result of social
interaction. This evolution of beliefs outside the confines of social interaction is characteristic
of sophisticated agents who have internal thought processes beyond copying their neighbors or
behaving as an average of their social connections.

The gap in the existing literature is evident: There is a clear need for a model of opinion dynam-
ics in which simultaneously (a) social influence between agents is not acting directly on the belief
of agents (yet still directly on their decision making) and (b) agents have an internal process by
which belief change may occur beyond the effects of social influence. Such a model would com-
plement the existing literature which focuses on direct influence between beliefs. It would also
provide a useful tool for the modeling of complex systems which are concerning more than the
evolution of opinions.

1.2 Contribution
In an effort to address this gap and our research question, our core contribution is a model of
opinion dynamics in which the social influence between agents is present but not all-dominating.
Agents can both change and hold onto their opinion despite influence from their neighbors urging
them to do the opposite. The mechanism by which this is achieved follows an idea from social
psychology which has long been neglected in the modeling of opinion dynamics—that opinions
(or attitudes) are shaped by experience.

In particular, to address the identified gap, we present a framework in which an opinion is
modelled as a lens through which experiences are interpreted. This constitutes a random pro-
cess by which an opinion sometimes successfully aligns with an experience had by an agent and
sometimes fails to do so. This random process is a means to the end of modeling agents who can
learn through experience about the opinions they hold. In doing so we align our model with the
theory of attitude formation of Fazio et al. (2004). The agent’s opinion then is a choice of lens,
hoping for alignment between their opinion and experiences which creates cognitive harmony.
In our model this is a decision-making process by which each agent asks themself if the opinion
they hold aligns with a sufficient portion of life’s experiences. This lends some sophistication to
the agents capable of reasoning about the opinion they hold. We model the influence from one
agent to another by means of adjusted decision-making criteria rather than a direct incorpora-
tion of a neighbors belief into one’s own. That is, an agent is inclined to require a lower reliability
from an opinion they share with a large portion of their neighborhood in order to maintain that
opinion. By including this learning process as well as a social influence process we aim to align
our framework with Gerard and Orive (1987) suggesting that we (humans) make our choice of
opinion using both social and non-social information about it.

The result is a lightweight framework which may easily be implemented on top of other agent-
based simulation models. We showcase the framework by means of a model instance. The model
instance (and therefore the framework) has desirable properties which we confirm by a sensitivity
analysis as well as a pair of experiments concerning heterogeneous population parameters: The
framework instance enables polarization, consensus and fragmentation as steady state outcomes,
all in the context of exclusively assimilative forces between agents. The framework features agents
with sophistication in their view of the world yet does not incur a large computational load.
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Table 1. Key concepts used in the model

Symbol Name Interpretation

A Opinion set Discrete options for which opinions may be held by an agent
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a ∈A Opinion Opinion from the set of possible opinions
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θa ∈ (0, 1) Reliability Likelihood that an experience positively reinforces opinion a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(x) Belief density Believed probability density function of opinion reliability
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B(x) Belief distribution Believed probability distribution function of opinion reliability
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ̂a Estimated θa Point estimate of the opinion reliability based on B(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X ∈ {1, 0} Experience Reinforcement (X = 1) or contradiction (X = 0) of held opinion
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ ∈ (0,∞) Stubbornness Resistance of an agent toward social pressure

1.3 Nomenclature
There are key terms which we disambiguate to facilitate the exposition of the rest of the paper. We
use the word opinion to refer to a choice a from a discrete set of opinionsA. Each opinion a from
the set has a true reliability θa ∈ (0, 1) which relates to the likelihood that an experience X ∈ {1, 0}
reinforces that opinion (X = 1). The agents hold a belief density function b and a corresponding
belief distribution function B pertaining to the reliability of their opinion in the Bayesian sense.
These can be used to create a point estimate θ̂ of the reliability of the opinion they hold (how
reliable the agent believes their opinion to be). We use stubbornness κ ∈ (0,∞) as it relates to
resistance toward social influence, not resistance to changing opinions in general. These key terms
are summarized in Table 1.

1.4 Organization of paper
The remainder of the paper is presented in two parts. The first part details the framework: In
Section 2 we describe an opinion dynamicsmodel framework for a single agent which we extend to
many agents in Section 3. The second part of the paper entails a model instance of the framework
with a sensitivity analysis and a set of experiments. Specifically, Section 4 deals with the model
instance from the framework. In Section 5 we describe the process and results of a sensitivity
analysis of the model. In Section 6 we discuss experiments conducted on the model. We close
with a discussion of our work and possible avenues of future research in Section 7.

2. Solo agent opinion dynamics model
For ease of exposition we first present a solo agent opinion dynamics model. We believe that
agents should be able to adjust their opinion also in the absence of social influence. This model
grew out of, and therefore closely follows, the model of Meylahn, et al. (2024) that investigates
the problem of trusting institutions as a learning problem. Specifically we present a generalized
framework which covers the single agent model of Meylahn, et al. (2024) as a special case. We
posit that holding an opinion is akin to trusting that this opinion provides a good enough lens
through which to interpret experiences and therefore may be modeled to have a reliability.

We note that modeling the evolution of an opinion using both social and non-social infor-
mation aligns with the ideas from social psychology (cf. Gerard and Orive, 1987). We model the
non-social information by means of experiences which drive belief formation as suggested by
Fazio, et al. (2004).
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2.1 Definition and interpretation of opinions
The dynamics evolve over rounds indexed t = 1, 2, . . .. At the start of each round our agent holds
an opinion a from the set of possible opinions A. We refer to the opinion held by the agent
in round t ∈N as at ∈A. The agent is subsequently exposed to an experience. We call the out-
come of an experience in round t holding opinion a ∈A: Xt

a ∈ {0, 1}. When Xt
a takes the value

one, the agent’s opinion a aligns with (is reinforced by) the experience in round t. Conversely,
when Xt

a takes the value zero, the agent’s opinion a does not align with the experience in round t.
Specifically Xt

a for all a ∈A and t ∈N are random variables:

Xt
a =

{
1, with probability θa
0, with probability 1− θa,

with θa ∈ (0, 1), ∀a ∈A. (1)

We call the probability that opinion a aligns with an experience, opinion a’s reliability, θa ∈ (0, 1)
for all a ∈A. Experiences {Xt

a : t ∈N} are i.i.d. for each opinion a ∈A. We note the conscious
decision to not fixXt

a = 1− Xt
b or θa = 1− θb for a �= b and a, b ∈A. While opinions a �= b fromA

are indeed concerning the same subject, we allow for overlap in the sets of experiences which may
align with different opinions. Consider, for example, that dissatisfaction with one political party
does not necessarily imply satisfaction with an alternative. The agent only interprets experiences
using the opinion they hold. This means they do not observe Xt

b for b �= at . We assume this for
simplicity. If the agent did observe Xt

b for b �= at would imply that agents interpret all of their
experiences with each possible opinion. Furthermore, they do not know the respective opinion’s
reliabilities θa for a ∈A. We suppose that the agent receives utility p ∈N when an experience
aligns with their opinion (Xt

a = 1) and loses utility l ∈N when it not(Xt
a = 0).

The analogy of viewing an opinion as a lens through which to interpret experiences may be
elaborated into a set of views which comprise something like a narrative about a particular sub-
ject. The narrative we follow may provide: explanations for experiences, a guideline on how to
act, heuristic answers to questions, and an ideal to strive for. We present an example of our
interpretation from the folklore of Robin Hood.

Example 1 (Robin Hood). Two possible narratives, or opinions, provide a means for the townsfolk
to make sense of what is happening in Nottingham. The two opinions support the Sheriff and Robin,
respectively:

• Supporters of the Sheriff of Nottingham believe that the people of Nottingham are indebted
to him and should work hard and pay taxes to him.

• Others, who support Robin, believe that the people of Nottingham have been treated unfairly
and should be helped, rather than taxed and punished.

Consider the position of one of the Sheriff’s friends. They accept that some people of the town
have nothing, because they believe this to be the result of laziness. Their opinion is affirmed when
they observe a lazy person lose their fortune i.e., an experience which aligns with their opinion.
Alternatively, if they meet someone whose livelihood was unjustly taken by the Sheriff, their views
might be challenged.

Similarly one of Robin’s supporters might be affirmed in their views when witnessing the
widespread poverty in the town. Yet, their views too may be challenged if they see the Sheriff protect-
ing townsfolk from injustices that may befall them. This experience disagrees with their opinion by
providing an example of how the taxes are being used to the benefit of the town.

The binary expression of the opinions in this example is support for Robin or the Sheriff. The
opinions on the other hand are complex objects. In the case of political preferences our “narrative”
interpretation aligns with the description of an ideology summarized by Weber (2019). We use
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“opinion” rather than “narrative,” in order to avoid (direct) connection to how narratives within
media might influence opinions.

2.2 Agent belief
The agent holding opinion a ∈A has a belief which measures the strength of their conviction of
their opinion. This takes the form of a belief density (function) b(x) and a corresponding belief
distribution (function) B(x). These are related in the usual way:

B(x)=
∫ x

0
b(s)ds. (2)

In particular the belief distribution denotes the subjective probability (as in the Bayesian interpre-
tation of probability) they place on the true reliability of the opinion they hold being below a given
value,

B(x) := P(θa ≤ x) x ∈ [0, 1]. (3)

The agent uses their belief distribution to attain an estimate for the true value of θa. In the absence
of other evidence, the agent uses their prior belief. After any number of experiences, the agent
adjusts their belief accordingly.

2.2.1 Prior belief distribution
We model the agent to start with a prior belief distribution which is what they believe the distri-
bution function of θa to be for all opinions a ∈A that they have no other information about. The
agent has prior belief density b0(x) and distribution B0(x) meaning that they initially believe that
the probability relating to the reliability of opinion a0 is such that:

P(θa0 ≤ x)= B0(x)=
∫ x

0
b0(s)ds. (4)

If the agent switches their opinion at some time t0 to opinion at0 ∈A then they revert to their prior
belief b0(x) regardless of which opinion they are switching to. This models the agent’s forgetting
of experiences with an opinion they may have held in the past. The formulation (4) generalizes
the formulation of belief in Meylahn et al. (2024) by allowing general belief distributions instead
of only the Beta-distribution.

In agent-based models with more richness, agent features may play an important role in deter-
mining the prior an agent has for each of the opinions. Examples of characteristics that may play
a role are age, education attained and current employment. We assume that their prior beliefs are
all the same for simplicity.

2.2.2 Belief distribution update
We call the consecutive rounds in which the agent held opinion a, a run with opinion a. We
refer to the most recent switching time as St , which identifies the round in which the current run
started:

St := min{n : am = at , ∀m ∈ [n, t]}. (5)

We model the agent to “forget” previous runs with an opinion. In constructing their belief distri-
bution of an opinion, they only use their most recent run’s history which started at time St . This
means that they only use the experiences gained since they most recently switched to the opinion
they are currently holding to formulate their belief distribution of that opinion. We define the
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agent’s current experience history until the end of round t ∈N asHt . That is the set of experiences
observed up until (and including) round t during their current run:

Ht = {Xn
an : n ∈ [St , t]} for t ∈N. (6)

This information along with their prior belief is used by the agent to formulate a belief distribution
at time t ∈N:

B0 ×Ht → Bt(x). (7)
With this incorporation of an agent’s ability to “forget” it may be noted that more complicated

mechanisms are possible, and we do not insist that ours is the best, however, we do suggest there
is value in having at least some form of forgetting in a model of opinion dynamics which includes
learning.

2.2.3 Point estimate of opinion reliability
We model the agent to use this belief to attain a point estimate θ̂t ∈ [0, 1] of the reliability, θat .
A common example is the mean value of the belief density,

θ̂t =
∫ 1

0
xbt(x)dx, ∈ [0, 1]. (8)

Alternatives to the mean value are the upper or lower confidence intervals and many more. The
way in which the history is incorporated is part of the modeller’s choice. A logical choice for a
Beta-distributed prior belief is Bayesian updating. Alternatively if the prior is a point mass on the
estimate, simple exponential smoothing might better serve the task.

Note that each agent has only one belief distribution at any time which is their belief in the
opinion they currently hold. We assume, as simplification, that the agents do not continuously
compare the alternative interpretations (resulting from different opinions) of an experience. This
is what would be required to track the reliability of each opinion in order to explicitly com-
pare these. Should the number of possible opinions be large, agents which compare between all
opinions often would be faced with a heavy computational effort.

2.3 Threshold decisionmaking (choosing an opinion)
The agent is faced with deciding whether to place their trust in the opinion which they held in
the previous round. They do so by a satisficing procedure (cf. Simon 1956; Artinger et al. 2022);
checking if the current opinion is good enough. The agent decision-making process we use has
mechanical similarities with the “state system” in the “consumats” model proposed by Jager and
co-authors (see e.g., Jager et al. 1995, 1999; Janssen and Jager, 1999). In this consumer behavior
model, agents who are satisfied with their consumption do not spend cognitive resources to find
alternatives as long as they deem their current options to be good enough. It is only the dissatisfied
consumer who investigates other avenues of consumption as motivated by their dissatisfaction.

In choosing an opinion to hold the agent asks themselves whether they expect positive util-
ity from the opinion they are currently holding. In other words they check the truth of the
inequality:

pθ̂t − l(1− θ̂t)≥ 0. (9)
This inequality may be rearranged and so equivalently the agent asks themselves whether:

θ̂t ≥ l
p+ l

=: θcrit ∈ (0, 1). (10)

Here we have defined θcrit, the minimum reliability point estimate the agent requires an opinion to
have in order to continue holding that opinion. If the agent chooses to switch opinions (because
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they are sufficiently dissatisfied), they choose a new one from the set of opinions excluding the
opinion they are switching from. The choice of the agent at time t ∈N can now be defined:

at =
{
at−1, if θ̂t ≥ θcrit,
b ∈A \ at−1, otherwise.

(11)

This generalizes the decision making in the single agent model presented by Meylahn et al. (2024)
from trusting or not trusting to holding one of the opinions in A. The protocol used to choose
which of the alternative opinions the agent chooses is up to the modeller. For a set A of only
two opinions the choice is straightforward; simply the other opinion. If there are three or more
opinions the choice could make use of a direct comparison between the remaining options to
decide which opinion to switch to. These mechanisms of switching in the solo agent model serve
as a baseline. In the multiple agent model there are more sophisticated and believable mechanisms
by which an agent might choose which opinion to switch to.

This is a simple satisficing model in which the agent is not concerned with continuous compar-
isons between opinions. Instead the agent has a desired level of reliability and retains the opinion
they are holding if they believe it to satisfy this level.

3. Many agent opinion dynamics framework
In this section we extend the solo agent framework by placing N solo agents into a network. The
reason for delaying this exposition is clarity. There is interdependence of the actions taken by
agents and the actions taken by their neighbors. By first introducing a solo agent model which
contains the basic elements of the many agent model, all that remains is to describe how these
are influenced by the interplay between agents. The agents in the network communicate their
opinion with their neighbors which is how we induce social influence between them. The crucial
difference between this framework and other opinion dynamics models is that the effect of the
inter-agent communication is not on the agents’ belief distributions but rather on their decision-
making threshold θcrit.

We start by recapitulating those elements of the single agent model which are specified per
agent in the many agent model. As such §3.1 will have much overlap with §2 with only small
differences. Thereafter, in §3.2 we describe the new elements which create the social influence
between agents.

3.1 A network of solo agents
The framework does not prescribe a population structure but assumes that one is given. That is,
either the modeller uses a network empirically sourced or makes use of an appropriate random
graph model to generate a network. The interested reader may consult the work of Robins, et al.
(2001) relating to models of network generation. We suppose that there exists a population of
agents of finite size N ∈N. The population is embedded in a network G= (V , E), with |V| =N
vertices representing agents and a set of social ties represented by the edges, E. The edges are
directional in nature; an edge (u, j) ∈ E indicates that agent u exerts social influence on agent j.

We define the opinion held by agent j ∈V in round t as at(j) ∈A. In each round every agent
(a) holds an opinion, (b) has an experience which corroborates or contradicts their opinion and
(c) observes the opinions held by their neighbors. The outcome of the experience had by agent
j ∈V , holding opinion a ∈A at time t ∈N is the random variable:

Xt
a(j)=

{
1 with probability θa,
0 with probability 1− θa,

with θa ∈ (0, 1), ∀a ∈A. (12)
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Similarly to the solo agent model, agent j ∈V receives utility pj ∈N when an experience agrees
with their opinion and loses utility lj ∈N when an experience disagrees with their opinion. We
think it is a reasonable starting point to assume that θa for a ∈A is the same for all agents because
it is a property of the opinion rather than the agents.

Now each agent j ∈V is equipped with a prior belief density bj0(x) and distribution Bj0(x)
relating to the reliability of opinion a0(j) as before:

Bj0(x) := P(θat(j) ≤ x)=
∫ x

0
bj0(s)ds, x ∈ [0, 1]. (13)

Agents may switch between opinions and so we refer to agent j’s most recent switching time:
St(j) := min{n : am(j)= at(j), ∀m ∈ [n, t]}, for j ∈V and t ∈N. (14)

Subsequently, agent j’s current experience history until the end of round t ∈N isHt(j). That is the
set of experiences observed up until (and including) round t during their current run:

Ht(j)= {Xn
an(j)(j) : n ∈ [St(j), t]}, for j ∈V , and t ∈N. (15)

This information along with their prior belief is used by the agent to formulate a belief distribution
for the opinion they are holding at time t ∈N:

Bj0 ×Ht(j)→ Bjt(x). (16)

This belief, in turn gives an updated estimate θ̂t,j (assuming use of the mean value),

θ̂t(j)=
∫ 1

0
xbjt(x)dx, (17)

representing the strength of their conviction in the opinion they are holding.

3.2 Social influence
The process of social influence we present aligns with the internalization process of opinion
change presented by Kelman (1961). That is, the agents are using the information provided by
their network to facilitate their decision making, rather than simply trying to comply or identify
with one another. An agent u ∈V influences agent j ∈V if there is an edge (u, j) ∈ E. Each agent
j ∈V has a set of social ties which we call the neighborhood of agent j:

N(j) := {
u : (u, j) ∈ E

}
, (18)

that is the set of agents who are said to influence agent j. For ease of notation we assume that the
edges between agents are unweighted. Agent j ∈V observes the opinions held by the agents in
their neighborhood N(j). We thus model agents to communicate only which opinion they hold
to their neighbors and not their belief, i.e. the strength of their conviction in that opinion. This
assumption is based on the idea that it is much easier to convey a discrete choice of opinion to
a social connection than it is to elucidate the nuances involved in the procedure by which such a
choice was made. This provides agent j ∈V with their network influence set for time t ∈N:

It(j) := {at(k) : k ∈N(j)}. (19)
In formulating the influence of N(j) on agent j ∈V we aim to follow empirical literature which

shows that peer-to-peer influence has its effect not in cognitive elements of belief but rather affec-
tive elements influencing decision making (Johnson and Grayson, 2005; Ozdemir et al., 2020).
In doing so, we posit that the role of peer-to-peer influence is similar in the context of brand
loyalty and the expression of opinions. Indeed the methods of marketing are commonly used in
politics (Newman. 2002) which is one of the main arenas of opinions dynamics. The affective ele-
ments may of course still influence decision making, but the channel they follow does not effect
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the rational calculating elements associated with decision making. Instead the agent’s threshold is
adjusted based on the information gained from their network. Consider an agent’s thoughts: ‘If it
is good enough for my neighbors, why should it not be good enough for me?’

Define θ∗
crit,t(j) as the network adjusted critical reliability of agent j ∈V at time t ∈N:

θ∗
crit,t(j) : pj × lj × It(j) �→ [0, 1]. (20)

The elements this function may use are thus contained in pj, lj and It(j). We define the number of
agents in j’s neighborhood expressing the same opinion as agent j ∈V at time t ∈N as:

mt(j) :=
∣∣{b : (

b ∈ It(j)
) ∧ (

b= at(j)
)}∣∣ , (21)

i.e. the number of agents in agent j’s neighborhoodmatching agent j’s opinion. Similarly we define
the number of agents in agent j’s neighborhood not matching agent j’s opinion as:

nt(j) := |N(j)| −mt(j). (22)

Note that if it is desirable to have weighted connections between agents, the abovemay be replaced
with total weight within agent j’s neighbohood in agreement with agent j’s opinion and the total
weight remaining, respectively. The functions θ∗

crit,t(i) can be chosen in various ways. We suggest
the following properties of the network influence function:

• If there is equal support and opposition (mt(j)= nt(j)), the effect is null, θ∗
crit,t(j)= θcrit(j).

• If there is more support than opposition (mt(j)> nt(j)), then the threshold is lowered,
θ∗
crit,t(j)< θcrit(j).

• If there is more opposition than support (mt(j)< nt(j)), then the threshold is increased,
θ∗
crit,t(j)> θcrit(j).

The belief updating of the agents thus has not changed, yet their decision making is affected
by the communication of their neighbors. This means that θ̂t(j) is still constructed as in the solo
agent model. Instead of comparing this believed point estimate to a constant threshold θcrit(j),
agent j ∈V uses the truth of the inequality θ̂t(j)> θ∗

crit,t(j) to determine whether they keep holding
their opinion. Note that there are two possible triggers for an agent to switch their opinion. Their
estimate may drop below their critical reliability as a result of one too many experiences which
did not align with their opinion. Alternatively, a change in the opinions held by their neighbors
may increase their critical reliability above their current estimate. Once an agent has decided to
switch their opinion, they might make use of one of a number of switching rules to figure out
which opinion to switch to:

• Agents can make a direct comparison of the remaining opinions based on their rational
beliefs of those opinions, choosing the ‘best’ one. Such reasoned behavior has been studied
extensively (Fishbein and Ajzen, 1977; Ajzen. 1991), for a recent description and discussion
of developments consult (Ajzen, 2020).

• The agent might imitate a neighbor. Jager and various co-authors (Jager et al., 1995, 1999
Janssen and Jager, 1999) suggest that imitation is most likely to occur when agents are faced
with high uncertainty about their options and are not willing to spend a lot of cognitive
resources.

• Or the agent can adopt the majority opinion within their neighbohood. This corresponds
to the expected choice under the random imitation described in the previous option.

The choice of switching rule is up to the modeller using the framework and may well be heavily
influenced by the topic of the opinions. For a more detailed discussion on agent decision making
the interested reader may consult the survey of Balke and Gilbert (2014).
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Figure 1. A graphical illustration of the opinion dynamics framework proposed.

This formulation of social influence is in stark contrast with the mechanism of social influence
in the dual agent model presented by Meylahn et al. (2024). In their study, agents use the observa-
tion of their neighbors’ action rationally to adjust their belief, our agents simply use the heuristic
of changing the threshold which they use for the decision making. This saves a lot of computation
making the model tractable for more than two agents.

3.3 Summary of framework
Agents choose an opinion to hold in each round at(j) ∈A. Subsequently they experience agree-
ment or disagreement. The effect of this experience is an updated belief distribution Bjt based on
Ht(j). In order to choose whether to switch opinion in the following round, they compare a point
estimate from their belief θ̂t(j) with a critical reliability θ∗

crit,t(j). This critical reliability is adjusted
according to the opinions expressed by the agent’s neighbors captured in It(j). Their own opinion
expression is also how the agent influences their neighbors. Figure 1 serves to illustrate how the
elements of the framework fit together. In the single agent model, the agent’s opinion boils down
to a ‘strong enough’ belief. In the multi-agent model, an agent’s opinion is the result of a process
combining cognitive processing of experiences in the agent belief and the affective forces of social
influence.

Example 2 (Political preferences). The opinion setAmay consist of political parties, while the opin-
ion held by an agent represents their current voting inclination. The experiences had by the agents
correspond to daily experiences which may enhance or diminish an agent’s support for their politi-
cal party. For instance, an agent may observe a system implemented by their political party failing
(or succeeding) thereby weakening (or strengthening) their support for the party. It need not be the
case that an agent grows in support for an alternative party simply because they are dissatisfied with
their own. Our framework assumes that agents only consider other parties once they are sufficiently
dissatisfied with their previous one, as opposed to performing a constant comparison.

4. Framework instance
We consider an opinion set of two opinions A= {0, 1}. The opinions 0 and 1 have reliability
θ0, θ1 ∈ (0, 1), respectively. The agents in our framework instance are embedded in a Watts and
Strogatz (1998) generated network. The workings of the Watts-Strogatz model are illustrated in
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the Appendix. Note that for this model instance we assume that if agent u influences agent v, then
also agent u is influenced by agent v. That is if (u, v) ∈ E then also (v, u) ∈ E. Studying the effect
of asymmetrical influence is an interesting avenue for future work which falls outside the scope of
this paper.

4.1 Belief in the opinion
The agents in our model have a prior belief density in the form of a Beta-distribution with shape
parameters α, β ∈N,

b0(x)= xα−1(1− x)β−1∫ 1
0 yα−1(1− y)β−1dy

. (23)

At time t ∈N, each agent j ∈V is only aware of the most recent history Ht(j), which pertains
to the opinion they currently hold. As such the agent keeps track of the number of confirming
experiences during their most recent history Ht(j) up until time t ∈N using:

ct(j)=
t∑

n=St(j)
Xn. (24)

Similarly they use

rt(j)=
t∑

n=St(j)
(1− Xn), (25)

to keep track of the number of experiences during their most recent history Ht(j) up until time
t ∈N which refute their current opinion. Furthermore, the agents make use of Bayesian belief
updating to keep:

Bjt(x)= P
(
θat(j) ≤ x |Ht(j)

)
, for t ∈N. (26)

With the convention that if Ht(j)= ∅, then P(θat(j) ≤ x)= Bj0(x). The agent j thus holds a belief
density bjt(θ) at time t ∈N

bjt(x)=
xct(j)(1− x)rt(j)bj0(x)∫ 1

0 yct(j)(1− y)rt(j)bj0(y)dy
, x ∈ [0, 1]. (27)

As point estimate the agents use the mean of their belief distribution at time t ∈N. Conveniently,
for the combination of Beta-distributed prior belief and Bayesian updating the mean of the belief
distribution is given by

θ̂t(j)= α + ct(j)
α + β + ct(j)+ rt(j)

, ∀t ∈N, and all j ∈V . (28)

4.2 Threshold and network influence
In equations (21) and (22) in §3.2 we have defined the number of agents in agent j’s neighborhood
in agreement with agent j ∈V at time t ∈N asmt(j) and the number of agents in disagreement as
nt(j), respectively. We define the network influence function θ∗

crit,t(j) representing the influence of
agent j ∈V ’s neighborhood on their decisionmaking as amapping θ∗

crit,t(j) : pj × lj × It(j) �→ [0, 1]
by

θ∗
crit,t(j)=

pj + fj(It(j))
pj + lj

, for t ∈N, (29)
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Figure 2. A graphical illustration of an example network agent model.

with the crucial element fj(It(j)) defined:

fj(It(j)) := nt(j)−mt(j)
κj|N(j)| , for t ∈N, j ∈V , (30)

where κj ∈ (0,∞) is agent j’s stubbornness parameter. A large κ represents agents who are not very
influenced by their neighborhood. In fact if κ is large enough for an agent, their opinion switching
happens independently from their neighborhood.3 It should be noted that even the most stubborn
agents in our model may change their opinion based on their individual belief updating. For the
most stubborn agent possible (κj = ∞) the network influence becomes negligible (fj → 0) and
so their criteria remains unchanged θ∗

crit,t = θcrit. It is possible that this agent’s estimate of their
opinion’s reliability drops below this threshold and so they can still switch their opinion. This
highlights that the stubbornness in our model is not a stubbornness of a particular opinion but
rather a stubbornness with respect to influence from others.

It is worth mentioning that if κ is small enough for all agents then the model reduces to one in
which agents adopt the opinion being held by the majority of their neighborhood.4

We use a natural starting point for utility parameters. By setting lj = pj = 1 for all j ∈V we have
that every agent’s starting threshold is θcrit = 1/2. This means that an agent in the absence of a
network influence will continue to hold their current opinion if their belief satisfies: θ̂t(j)> 0.5.
The resulting decision making is made by checking the inequality of θ̂t(j)> θ∗

crit,t(j):

α + ct(j)
α + β + ct(j)+ rt(j)

≥
(
1+ nt(j)−mt(j)

κj|N(j)|
)

/2. (31)

A graphical representation of this model is presented in Figure 2. This example has three agents
V = {1, 2, 3} with connections E= {(1, 2), (2, 1), (1, 3), (3, 1)}. The question mark icons represent
a check of the inequality (31). A transition from trusting one opinion to trusting the other should
take place whenever this inequality is not true.

4.3 Observable outcomes of a simulation
In the model we have presented, agents are able to converge onto an opinion. For an agent j ∈V
holding opinion a ∈A, with enough time (and thus sampling of experiences) the agent’s estimated
reliability may tend towards the true reliability, θ̂t(j)→ θa and if θa > θ∗

crit,t(j) it is possible that the
agent holds this opinion indefinitely. If at some time t0 ∈N this is true for all the agents in the
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network, the process has reached a steady state, as anymore switching of opinions becomes more
unlikely. For the purposes of the simulation, we use a proxy for steady state: 100 simulated rounds
in which no agent switches their opinion. We are interested in whether there is consensus in such
a steady state or if there is some level of discordance. We define the probability of consensus as
the probability of each agent holding the same opinion at a steady state time t0 ∈N:

C := P
(
at0 (j)= at0 (1), ∀j ∈V

)
. (32)

The choice of reference to the first agent’s opinion at0 (1) is arbitrary as all agents are required to
be in agreement.

We define the proportion of discordance as the number of discordant edges divided by the total
number of edges. A discordant edge (u, v) is one in which the opinions of the agents are different:
au �= av. We label the set containing the discordant edges at time t ∈N, ED(t):

ED(t) := {(u, v) | at(u) �= at(v), with (u, v) ∈ E}. (33)

As such we can define the asymptotic proportion of discordance as:

D := E

[
lim inf
t→∞

|ED(t)|
|E|

]
. (34)

Considering that we are performing a simulation study we can only approximate the quantities
of interest with empirical measures at the end of simulation runs. To this end we consider the
empirical value:

Ĉ = zc
Zsim

, (35)

where zc is the number of simulation runs in which at0 (j)= at0 (1), ∀j ∈V at termination time
t0, and Zsim is the total number of simulations that were run. Similarly, for the proportion of
discordance:

D̂=
∑Zsim

n=1 |ED(t0, n)|
Zsim × |E| , (36)

where ED(t0, n) is the set of discordant edges at the time when the n-th simulation iteration ter-
minates t = t0. In other words, we sum the number of discordant edges at the termination time of
each simulation run and divide this by the total number of edges. This gives the average proportion
of edges that were discordant at termination time across all simulations.

5. Sensitivity analysis
We are interested in the effect of the model parameters on the probability of consensus and the
level of discordance. To study this we conduct a sensitivity analysis of which we now describe the
setup and the results. The base network consists of N = 20 agents in the Watts-Strogatz model
Watts and Strogatz (1998) with d = 4 nearest neighbors and a rewiring probability of w= 0.20.
Note that we generate a new network for each simulation run. All the agents in the population
hold a uniform prior belief distribution which is a Beta-distribution with shape parameters α = 4,
and β = 2. We reiterate that whenever an agent switches their opinion they restart their learning
process from their prior belief. The value of the stubbornness is varied along with the parameters
being tested for the sensitivity though is kept homogeneous between agents, κj = κ , ∀j ∈V . We
take κ = 0.5 to κ = 5 in increments of 0.3. In general the trend we observe is that as κ increases
the probability of consensus decreases and the level of discordance increases (Figure 3).

The opinions in the sensitivity analysis have identical reliability θ0 = θ1 = 0.6. Keeping these
the same allows us to focus on the agent dynamics rather than questions of convergence to a
‘better’ opinion. The simulation starts with a warm-up phase ts = 5 rounds. In these rounds the

https://doi.org/10.1017/nws.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2024.14


Network Science 15

(a) (b)

Figure 3. Results of the sensitivity analysis inspecting the number of agents in the system with 4 nearest neighbors.
Parameters: d= 4,w= 0.2, ts = 5, α = 4, β = 2, and θ0 = θ1 = 0.6.
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Figure 4. Results of the sensitivity analysis inspecting the number of agents in the system with 6 nearest neighbours.
Parameters: d= 6,w= 0.2, ts = 5, α = 4, β = 2, and θ0 = θ1 = 0.6.

agents follow the solo agent model. Thereafter they start communicating with neighbors and
take this communication into consideration changing their θ∗

crit,t accordingly. We run the sim-
ulation model 5 000 times under each of the parameter settings in order to obtain 95% confidence
intervals for the quantities of interest (Figure 4), (Figure 5).

5.1 Number of agents
We vary the total number of agents N ∈ {20, 30, 40, 50}. Additionally, for each of these values
of N, we vary the nearest number of neighbors taking values l ∈ {4, 6, 8}. We present the results
grouped according to the number of nearest neighbors. Within Figures 3a, 4a, and 5a, depicting
the probability of consensus, we observe that as the population grows, the probability of consensus
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(a) (b)

Figure 5. Results of the sensitivity analysis inspecting the number of agents in the system with 8 nearest neighbors.
Parameters: d= 8,w= 0.2, ts = 5, α = 4, β = 2, and θ0 = θ1 = 0.6.

decreases. By comparing between these figures we see that as the number of neighbors increases
the probability of consensus increases. Both of these results are conceivable. A larger population
(keeping the number of neighbors constant) is likely to make it difficult for an opinion to spread
throughout the entire network. Similarly, the more neighbors the agents have (keeping the popu-
lation size constant), the easier it should be for an opinion to spread throughout the population.
Quite logically, we observe the inverse effect in Figures 3b, 4b, and 5b, on the level of discordance.
We would like to draw the reader’s attention to the fact that both of these effects (comparing
between population size) becomes smaller as the stubbornness κ increases to 5. We believe this
is conceivable because a greater κ means that the agents in the population become increasingly
independent of one another and thus are less effected by the network they form a part of.

5.2 Probability of rewiring
In order to see how the probability of rewiring affects the outcome of the model, we take the
probability of rewiring each edge from the set w ∈ {0, 0.05, 0.10, 0.15, 0.20, 0.25}. We present
the probability of consensus for these probabilities of rewiring in Figure 6a and the level of dis-
cordance in Figure 6b. Again we can see the effect of the network decreasing as κ increases in
Figure 6a by the fact that the probabilities of consensus seem to merge at roughly κ = 4. Sensibly,
we see that the probability of consensus is higher for networks with more rewiring. We posit that
this is because of the greater number of cross population connections which make the formation
of two (or more) polarized groups more difficult.

We also observe an interesting phenomenon in Figure 6b. Namely, that level of convergence for
different probabilities of rewiring all seem to intersect just after κ = 2. Furthermore, these have an
inverse ordering before and after this crossing point. Our explanation for this effect follows: Before
the crossing point, a higher probability of rewiring makes polarization harder, and so the popula-
tion tends toward consensus which has the lowest level of discordance. The setting with low level
of rewiring has much more structure which allows more easily for polarization. After the crossing
point, a high enough κ creates more room not only for polarization but also fragmentation. As the
agents become more independent, the cross population connections at greater w create a higher
level of discordance. More structured populations with low w have more of a balance between
polarization (with relatively low discordance) and some fragmentation.
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Figure 6. Results of the sensitivity analysis inspecting the probability of rewiring. Parameters: N= 20, d= 4, ts = 5, α = 4,
β = 2, and θ0 = θ1 = 0.6.

5.3 Prior belief
The parameters α and β of the beta-distributed belief are a measure of optimism in the agents in
which a larger ratio α/β indicating greater optimism. To identify the effect of this prior belief dis-
tribution, we choose values (α, β) ∈ {(4, 4), (4, 2), (3, 3), (3, 2), (2, 2), (2, 1), (1, 1)}. This takes into
consideration that α ≥ β must hold. This is required to ensure that θ̂0 > θcrit = 0.5 and the agents
do not switch immediately away from an opinion they have just switched to. First, we consider
those prior beliefs in which α = β . Thereafter, we consider the prior belief combinations in which
α > β .

5.3.1 Priors with α = β

In these cases, switching early is quite likely as the initial estimate is on the cusp of the critical
level. The general trend we observe in Figure 7a is that the lower α and β lead to lower probability
of consensus than higher vales of α and β . This is explained by the fact that greater values of
α and β mean that the change in their estimate from one round to the next is comparatively
small at the start of a run with an opinion. As an illustration, consider an agent with 5 affirming
experiences during the warm-up. If this agent has the α = β = 1 prior, their estimate at the end of
the warm-up is θ̂ = 0.86, which may allow them to retain this opinion in the face of a disagreeing
neighborhood. If instead this agent had the α = β = 4 prior, their estimate at the end of the warm-
up would be θ̂ = 0.69. This lower estimate can withstand less disagreement and so it makes sense
that greater initial values of α = β lead to more consensus. We see the opposite effect on the level
of discordance in Figure 7b.

5.3.2 Priors with α > β

The case with α > β exemplifies a greater optimism of an agent in their opinion at the start of
a run. The greater level of optimism is represented by a ratio of 2 to 1 in the settings of (α, β) ∈
{(2, 1), (4, 2)}. The remaining settings (α, β) ∈ {(3, 2), (4, 3)} also exhibit optimism but to a lesser
extent. In Figures 8a and 8b, respectively, we see that the more optimistic settings lead to less
consensus and more discordance than the somewhat less optimistic settings. Furthermore, we
see that the more optimistic settings (both having a ratio of 2:1) do not differ greatly from one
another. The slight difference we do see is that there is less consensus and more discordance
when (α, β)= (4, 2) than (2, 1). This is because the greater values of α and β mean that the belief
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Figure 7. Results of the sensitivity analysis inspecting the prior belief distribution of the agents with α = β. Parameters:
N= 20, d= 4,w= 0.2, ts = 5, and θ0 = θ1 = 0.6.
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Figure 8. Results of the sensitivity analysis inspecting the prior belief distribution of the agents with α > β. Parameters:
N= 20, d= 4,w= 0.2, ts = 5, and θ0 = θ1 = 0.6.

estimate changes less in the first couple of rounds, and so there is a greater chance of staying with
the starting opinion. Within the less optimistic settings, we note that the slightly more optimistic
of the two (α = 3, β = 2) leads to less consensus and more discordance than (α = 4, β = 3). In
summary, as optimism increases, the probability of consensus decreases and the proportion of
discordance increases.

5.4 Opinion reliability
To elucidate the effect of the level of reliability of the opinions, we choose θ0 = θ1 ∈
{0.55, 0.60, 0.65, 0.70, 0.75}. We plot the probability of consensus for these settings in Figure 9a
and the level of discordance in Figure 9b. We see that a greater reliability of both opinions lead to
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Figure 9. Results of the sensitivity analysis inspecting the effect of the reliability of the opinions θ0 = θ1. Parameters:N= 20,
d= 4,w= 0.2, ts = 5, α = 4, and β = 2.

(a) (b)

Figure 10. Results of the sensitivity analysis inspecting the effect of the warm-up period. Parameters: N= 20, d= 4,w= 0.2,
α = 4, β = 2, and θ0 = θ1 = 0.6.

less consensus andmore discordance. This is conceivable as when the reliability is greater, conver-
gence of their point estimate of the reliability to this true parameter allows for neighborhoods with
more disagreement (and thus greater θ∗

crit,t). As the reliability increases, agents are less dependent
on their network to agree with them (thus decreasing θ∗

crit,t) in order for their point estimate of an
opinion’s reliability to converge.

5.5 Warm-up length
We vary the warm-up length ts taking values ts ∈ {0, 10, 20, 30}. In Figure 10a, which plots the
probability of consensus for differing warm-up lengths, we see that a shorter warm-up period
leads to more consensus. Similarly in Figure 10b, we see that longer warm-up periods lead to more
discordance. This result is conceivable as in the early stages of an interaction with an opinion, the
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estimated reliability is changing a lot more than toward the end. In other words, having a longer
warm-up period allows for an agent’s belief distribution to “settle” before having to compete with
a network adjusted threshold θ∗

crit,t .

5.6 Discussion
We highlight the fact that in the model, the agents are exposed only to attractive forces between
each other. That is we follow the assumption of assimilative social influence between agents and
yet we have rich results illustrating a range of possible outcomes from polarization to consensus.
We believe that especially for agent-based simulationmodelers who would like to include an opin-
ion dynamic within a greater context, this model may prove to be useful because of the diversity
of its outcomes which interact in a conceivable way with the parameter settings. We acknowl-
edge that stubbornness does facilitate the reaching of polarization and fragmentation states. We
highlight that a high stubbornness is not a requirement for avoiding consensus which is clear
from the simulation results showing that even when κ = 0.5, the greatest probability of consen-
sus observed in Figure 5a is at C(κ)≈ 0.85. We thus hypothesise the origin of the disagreement
between neighboring agents in steady states to be rooted in the differences in agent experiences
(and interpretations thereof) and not in the incorporation of a stubbornness parameter.

6. Experiments on framework instance
The sensitivity analysis conducted in §5 showcases that the model is capable of a variety of end
states and that these interact with themodel parameters in a logical way. A strength of agent-based
modeling is describing micro-behavior rules of agents resulting from the combination of their
characteristics and their environment (possibly interactions between agents) and subsequently
observing the resulting macro behavior of the population. The strength of our model then is the
possibility of modeling agents with different parameters; prior belief distributions, stubbornness
parameters, or interpretation of agreement and disagreement with an opinion (pj and lj for j ∈V).
This section is devoted to the results of two experiments in which we introduce heterogeneity to
the model. We do this by drawing the stubbornness parameter for different agents from a distri-
bution in one experiment and defining the reliability of one opinion to be greater than the other
in another experiment.

As a result of the sensitivity analysis, a suitable set of parameters were chosen as the baseline
for the experiments presented in §6. The definition of suitable parameters we use are those which
present a richness in the type of results that may be obtained in the steady state. We chose a pop-
ulation of N = 30 agents, connected to their d = 6 nearest neighbors with a rewiring probability
of w= 0.2. As prior belief parameters, we chose α = 4 and β = 2. This was done in order to keep
frivolous switching back and forth between opinions to a minimum, which is more likely when
the agent’s prior estimate is closer to typical threshold values. The opinion’s reliability is kept at
θ = 0.6 as this setting provides a relatively high probability of consensus at low κ and reaches a
minimum toward the end of our chosen range at κ = 5. The warm-up period is set to 10 rounds,
which we believe to strike a good balance between allowing the agents’ belief to settle without
blocking dynamics completely.

6.1 Heterogeneous agent stubbornness
The value of κ plays an important role in determining how sensitive the agents are to the opinions
held by their neighbors. We conducted simulation runs in which the stubbornness of each agent
was drawn from a Gaussian distribution centered on μ ∈ {1.5, 2.5, 3.5, 4.5}. The standard devia-
tion of this distribution was varied taking values σ ∈ {0.5, 1.0, 1.5}. In fact, we use the truncated
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(a) (b)

Figure 11. Results of experiment with agent stubbornness drawn from a Gaussian distribution with mean depicted on the
horizontal axis and standard deviation shown in the legend. Parameters: N= 30, d= 6, w= 0.2, ts = 10, α = 4, β = 2, and
θ0 = θ1 = 0.6.

Gaussian distribution on the support {0.5, 5.5}. We present the results from a set of simulation
runs in which the stubbornness parameter for each agent was taken from the uniform distribu-
tion U[0.5,5.5]. The resulting probability of consensus is depicted in Figure 11a, and the proportion
of discordance is depicted in Figure 11b.

In Figure 11a and Figure 11b, we see that simulations with greater σ behave more like the sim-
ulation in which the stubbornness is uniformly distributed than the other simulation runs. This
means that when μ is relatively low, there is more discordance and less consensus for these runs
compared to runs with lower σ . The opposite holds for greater μ. In words: A population which
has, in general, a lower stubbornness, greater variability between agents helps diversify opinions.
Conversely, in population with, in general, a greater stubbornness (stronger sense of individu-
ality), greater variability between agents hinders diversity of opinions. This showcases a subtle
(though possibly expected) paradox: In populations that are in general individualistic (greater μ),
a greater diversity of agent characteristics (greater σ ) results in lower diversity of agent opinion.
Reason for this is that with a greater σ there are more agents who also have a lower stubbornness.
The agents with a lower stubbornness drive the system to more agreement. Thus, an increase in
diversity of agent stubbornness causes a decrease of diversity in agent opinions.

6.2 Opinions with different reliability
This experiment bears the flavor of models of learning in populations. The agents in question are
given a homogeneous κ , but the true reliability of the opinions is set unequal: θ0 > θ1. Specifically,
we simulated the pairs (θ0, θ1) ∈ {(0.65, 0.60), (0.70, 0.60), (0.75, 0.60)}, which showcase a grow-
ing difference between the more reliable opinion and the other. We also experiment on the
effect of a constant difference in the reliability between two opinion’s reliabilities by the pairs
(θ0, θ1) ∈ {(0.65, 0.60), (0.70, 0.65), (0.75, 0.70)}, which highlight the effect of a greater general
reliability while keeping the nominal difference between the two opinion’s reliability constant.

6.2.1 Growing difference
We depict the probability of consensus in the growing difference experiment in Figure 12a. The
corresponding portion of discordance is depicted in Figure 12b. In Figure 12a, we see that a greater
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Figure 12. Results of the experiment in which the difference between θ0 and θ1 is growing. Additionally plotted in solid lines
is the probability of consensus on opinion 0 keeping inmind that θ0 > θ1. As κ increases the solid lines join their simulation’s
counterpart: θ0 = 0.65, θ1 = 0.6 in blue, θ0 = 0.7, θ1 = 0.6 in purple, and θ0 = 0.75, θ1 = 0.6 in red. Parameters: N= 30, d= 6,
w= 0.2, ts = 10, α = 4, and β = 2.

difference in the opinion’s reliability fosters a greater probability of consensus. We also note that
as the stubbornness of the population grows, the less likely it becomes that the population reaches
consensus on the “inferior” opinion. This becomes so extreme that if κ is great enough, if there
is consensus in the population, this is on the opinion with the greater reliability. Similarly in
Figure 12b, we see that a greater difference in reliability implies a lower portion of discordance
in expectation.

6.2.2 Constant difference
We plot the probability of consensus in the subexperiment with constant difference between θ0
and θ1 in Figure 13a. We plot the corresponding portion of discordance in Figure 13b. We see
a similar trend in Figure 13a to the one present in the sensitivity analysis: Lower reliability leads
to more consensus of opinion. As in the experiment with a growing difference between opinion
reliability, we see that greater stubbornness in the population leads to a greater chance of agreeing
on the “better” opinion. In Figure 13b, we see again (as in the sensitivity analysis) that a greater
reliability leads to more discordance.

7. Discussion
In this section, we discuss the results of the experiments conducted. In doing so, we also reflect on
themerits of the model when interpreted as a heuristic for communication interpretation between
agents. Subsequently, we discuss differences between our framework and relevant literature.

7.1 Interpretation of the experiments
As a result of the experiment with different κ per agent, we see that an increase in heterogene-
ity (greater standard deviation of the distribution from which we sample the stubbornness κ)
decreases the differences which arise from shifting the mean μ of the distribution. From a mod-
eler’s perspective this may be intuitive, as a greater spread in the distribution should decrease the
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(a) (b)

Figure 13. Results of the experiment in which the difference between θ0 and θ1 is constant. Additionally plotted in solid lines
is the probability of consensus on opinion 0 keeping inmind that θ0 > θ1. As κ increases the solid lines join their simulation’s
counterpart: θ0 = 0.65, θ1 = 0.6 in red, θ0 = 0.7, θ1 = 0.65 in purple, and θ0 = 0.75, θ1 = 0.7 in blue. Parameters:N= 30, d= 6,
w= 0.2, ts = 10, α = 4, and β = 2.

effect of shifting its mean. It does, however, also hint to the important difference between indi-
vidualism and diversity. In this context: Populations with lower individualism tend toward more
consensus. Furthermore, populations with diversity in the extent of its agent’s individualism may
increase or decrease the probability of consensus depending on the mean value of the population’s
individualism.

The experiment with opinions of different reliability show us that populations with greater
stubbornness may be more sure that if they reach consensus, it is upon the better alternative.
Furthermore, the greater the difference between two opinions, the less discordance one expects
in the population. The more clear-cut the difference between two opinions, the easier it should
be for the population to learn this and subsequently reach consensus on the better of the two. It
should be said here that it is also true that enough stubbornness leads to general disagreement in
the population. Thus, balance may be important to the goal of reaching consensus on the better
of two opinions. In general, it seems that the agents in the model make good use of the informa-
tion provided by their network: Consensus on the better opinion is more likely than on the worse
opinion, and this is increasingly the case the greater the difference between the two opinions.
Though agents are not modeled ‘rationally’ this outcome suggests that the heuristic method by
which agents incorporate their neighbors opinions does aid the agents in making good decisions.
We note that the model captures situations in which because agents are in agreement with one
another, they do not critically assess their decision. This is underlined by the fact that when stub-
bornness is low enough, consensus may be reached upon the ‘inferior’ opinion. We believe this
results from the modeling decision for agents to be influenced by the opinion expressed rather
than the belief held by their neighbors.

7.2 Contributions and future work
The framework we present in Sections 2 and 3 addresses the current lack of models in the opinion
dynamics literature which have sophisticated agents whomay a) adjust their opinion in absence of
network influence beyond the introduction of noise and b) retain their opinion despite network
influence. This is achieved by following social psychological theory that attitudes are driven by

https://doi.org/10.1017/nws.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2024.14


24 Benedikt V. Meylahn and Christa Searle

experience (Gerard and Orive, 1987; Fazio et al., 2004), which was also eluded to by Giardini,
et al. (2015). Furthermore, it entails models from the same basic assumptions of assimilative forces
between agents yet with a novel aspect: Opinions of alters do not affect an agent’s strength of
conviction (belief) of an opinion directly but rather the decision- making process by which an
agent chooses their opinion. This is an attempt towards modeling interacting agents as opposed
to what Giardini et al. (2015) call interacting opinions. Furthermore, the framework for social
influence we present generalizes the celebrated majority rule dynamics (Galam, 2002). Our model
thus also presents a possible explanation as to what internal process may result in dynamics that
resemble majority rules. The framework also is computationally light despite the relatively high
level of detail of the agents. This enables the modeling of agents with reasonable sophistication in
general models (not focused exclusively on opinion dynamics) using this framework.

The results of the framework instance and experiments we present in Sections 4, and 6 high-
light that models from the framework have desirable and reasonable characteristics: An array of
outcomes is possible entailing consensus, polarization as well as fragmentation, all without the
need for repulsive forces between agents of different opinions. The current framework shows that
fragmentation is possible without explicitly modeling selection dynamics (see for instance Kempe
et al. (2016)), which describe the tendency of individuals to interact with others who are similar to
them. An interesting line of future work is thus to incorporate evolution of the network structure
alongside the evolution of the opinions using the principle of selection.

The definition of the opinions used in our framework is broad and allows for interesting future
work in which agent behavior may be coupled back to the reliability of an opinion. For exam-
ple consider a population of agents who are faced with the choice of a means of transportation.
The agent’s belief on the reliability of the options available is likely to play a role in their deci-
sion making. Closing the feedback loop: The agent decision making (the number of people using
each type) is likely to influence the reliability of the options available. The fact that our model
is lightweight means that it may be straightforwardly implemented in agent-based models which
investigate more than opinions but rather the interface between opinion dynamics and their effect
on agent behavior.

With careful adjustment, the framework we present can also be applied to the diffusion of
innovation. Martins, et al. (2009) draw the connection between the diffusion of innovation and
opinion dynamics by modeling agents who learn the quality of a new product through their social
interactions. Fu and Riche (2021) present a theoretical model for the adoption of a new technology
within a market. Their model includes learning of the quality of the new technology, yet does not
include the effect of network ties. Valente (1996) and Iyengar et al. (2011) empirically investigate
the adoption of innovation and show that social influence plays an important role. In particu-
lar, Valente (1996) does so using a (social network) threshold based decision-making model. We
could interpret such adoption behavior through our framework: two technologies (opinions) of
differing quality (reliability) in the context of a network in which the older technology is dom-
inant at initialization. Due to a small group of early adopters using the new technology as well
as dissatisfaction with the older technology, agents start adopting (and learning about) the newer
technology. An extension to the current framework is to incorporate the effects of marketing and
othermedia on the agents which, as pointed out by Van den Bulte and Lillien (2003), are important
in this context.
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Notes
1 While they do distinguish between opinions and beliefs, they use direct influence between the elements which constitute
the belief.
2 Baccelli et al. (2017) do not distinguish between beliefs and opinions and use the word “opinion.” We use “belief” in
discussing their paper because this aligns with our definitions.
3 Yildiz et al. (2013) studied an extension of the voter model including stubborn agents who were unable to adjust their
opinion. We consider our stubbornness parameter a generalization as an agent might be anywhere between the two extremes:
completely unaffected by their neighborhood or completely susceptible to the majority opinion in their neighborhood.
4 Majority rules models have received attention in their own right by Mossel et al. (2014); Tamuz and Tessler (2015);
Benjamini et al. (2016) and more recently Nguyen et al. (2020).
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Appendix A. Watts–Strogatz network
The agents in our example are embedded within a Watts–Strogatz random graph model Watts
and Strogatz (1998). The creation of a Watts–Strogatz random graph is illustrated in three steps.
This uses, N ∈N the number of agents in the population, d ∈ 2N the initial number of nearest
neighbors to each agent, and w ∈ (0, 1) the rewiring probability.

1 First, we arrange the population of N agents, on a cycle graph and connected each agent to
their d-nearest neighbors.

2 Second, for each edge in the circulant created, we flip a coin that lands heads with
probability w and if it lands heads, we “cut” the edge off of one of its vertices.

3 Finally, each of the edges cut in this way is rewired to another vertex uniformly at random.
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Figure 14. The steps to create a Watts–Strogatz random graph on N= 8 agents with d= 4 nearest neighbors.

This network structure has the property that average path lengths between vertices are short,
yet there is still high clustering of vertices. We illustrate this process in Figure 14 for a network on
N = 8 agents, with d = 4 nearest neighbors.
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