
CONNECTIVITY IN MATROIDS 

W. T. T U T T E 

1. Introduction. An edge of a 3-connected graph G is called essential if 
the 3-connection of G is destroyed both when the edge is deleted and when it is 
contracted to a single vertex. It is known (1) that the only 3-connected graphs 
in which every edge is essential are the ' 'wheel-graphs.' ' A wheel-graph of order 
n, where n is an integer > 3 , is constructed from an n-gon called its "rim" by 
adding one new vertex, called the "hub," and n new edges, or "spokes" joining 
the new vertex to the n vertices of the rim; see Figure 4A. 

A matroid can be regarded as a generalized graph. One way of developing 
the theory of matroids is therefore to generalize known theorems about graphs. 
In the present paper we do this with the theorem stated above. We state the 
relevant definitions and theorems of matroid theory in the next section. For 
proofs of the theorems reference may be made to (2; 3; and 4). 

2. Matroids. Let E be a finite set. A class M of non-null subsets of E 
is called a matroid on E if it satisfies the following two axioms. 

I. No member of M is contained in another, 

II. If X and Y are members of M and a and b are members of E such that 
a Ç X C\ Y and b G X — F, then there exists Z G M such that 

b e Z Ç ( I U Y) - {a}. 

We refer to the members of E and Mas the cells and circuits of M respectively. 
Circuits are called "atoms" in (2) and (3). 

As an example we may take E to be the set of edges of a graph G. We can 
then define a circuit of M to be the set of edges of a polygon of G. Each polygon 
of G is to give rise to a circuit of M in this way. The two axioms are readily 
verified. We denote the resulting matroid by P{G) and call it the polygon-
matroid of G. 

A matroid which cannot be interpreted as the polygon-matroid of a graph 
can be constructed in the following way. We take E to be any finite set of four 
or more elements and define a circuit of M to be any set of three distinct 
elements of E. 

The rank r(M) of a matroid M on E is the least possible number of cells 
such that there is at least one in each circuit. It should be noted, however, that 
the "rank" used by Whitney in (4) is the difference between this and the 
number of members of E. For the polygon-matroid of a graph G the rank is 
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thus the least number of edges whose deletion destroys every polygon in the 
graph. This is the "cyclomatic number" or "Betti number of dimension 1." 
It is given by 

(1) pi(G) = a i ( G ) - a o ( G ) + £ 0 ( G ) , 

where piiG) is the cyclomatic number and ai(G), c*o(G), and po(G) are the 
numbers of edges, vertices, and components of G, respectively. 

We denote the number of members of a given finite set X by \X\. 
Given M, we may consider the class L of all non-null subsets X of E such 

that \X C\ Y\ 9^ 1 whenever Y Ç M. The class of all members of L not con­
taining others can be shown to be a matroid Af* on E called the dual matroid 
of M ; see (2, §§2.6 and 3.5). Dual matroids satisfy the following theorems: 

(2) M** = M, 

(3) r(M) +r(M*) = \E\. 

Let S be any subset of E. We define M X 5 as the class of all circuits of M 
contained in S. Letting Ls denote the class of all non-null intersections with 
S of circuits of M, we write M -S for the class of all members of L that do not 
contain others. The classes M X S and M-S are matroids on S, by (2, §3.3). 
We refer to them as the contraction and reduction of M to 5 respectively. 
Contractions and reductions satisfy the following theorems: 

(4) (M X S)* = M*-S (2,3.352), 

(5) (MS)* = M* XS (2,3.351), 

(6) r(M XS) + r(M- (E - S)) = r(M) (2, 3.54), 

(7) r{M X ( 5 U D ) + r(M X (S H T)) 

> r(M XS) + r(M X T) (2, 3.56). 

For complementary subsets S and T of E we write 

(8) £(M;5, r ) = r(M) - r(M X S) - r(M X T) + 1. 

We then have 

(9) Z(M;S,T) > 1 , 

by (7). By (3), (5), and (6) we can rewrite (8) in the two following forms: 

(10) S(M;S, T) = r(M-S) - r(M X S) + 1, 

(11) £(M;S, T) = \S\ - r{M X S) - r(M* X S) + 1. 

As a corollary of (11) we have 

(12) Z(M;S,T) =H(M*;S1T). 

https://doi.org/10.4153/CJM-1966-129-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-129-2


CONNECTIVITY IN MATROIDS 1303 

We say that M is k-separated, where k is a positive integer, if there are 
complementary non-null subsets 5 and T of E such that 

£(M;S,T) =k, 

Min(|S|, | r | ) >k. 

If there is a least positive integer k such that M is ^-separated, we call it the 
connectivity of M and denote it by X(ikf). If there is no such integer, we write 
X (M) = oo. We say M is n-connected, where n is a positive integer, if n < X (M). 

3. The connectivity of a polygon-matroid. We can give a somewhat 
analogous definition of connectivity for graphs. As usual we write E(G) and 
V(G) for the sets of edges and vertices, respectively, of a finite graph G. If 
5 C £(G), we write G -S for the subgraph of G determined by the edges of 5 
and their incident vertices. It is evident that 

(13) P(G-S) = P(G) XS. 

US and T are complementary subsets of E(G), we write r)(G]S, T) for the 
number of common vertices of G -S and G- T. We say G is k-separated, where 
k is a positive integer, if G is connected and there are complementary subsets 
S and T of E(G) such that 

y(G;S, T) = &, 

M i n ( | 5 | , | r | ) >k. 

We say G is ^-separated if and only if it is not connected. 
If there is a least non-negative integer k such that G is ^-separated, we call 

it the connectivity of G and denote it by X(G). If there is no such integer, we 
write \{G) = oo. This happens, for example, when G is a polygon with not 
more than three edges. We say G is n-connected, where n is a non-negative 
integer, if n < X(G). Thus G is 1-connected if and only if it is connected. 

The above definition of ^-connection for graphs is equivalent to that given 
in (1), though the preliminary definition of ^-separation is more restrictive. 
In this section we shall relate the notions of ^-connection for graphs and mat-
roids by showing that \(P(G)) — \(G) for any connected graph G. 

3.1. Let G be a connected graph and let S and T be complementary subsets of 
E(G). Then 

t(P(G);S,T) =V(G;S,T) - p0(G-S) -p0(G-T) + 2. 

Proof. 
S(P(G);S,T) =p,{G) -p^G-S) -p1(G-T) + l, 

by (13), 

= -ao(G) + a o ( C 5 ) + a0(G-T) +2 - p0(G-S) - Po(G-T), 

by (1), 
= V(G;S, T) -po(P-S) -p0(G-T)+2. 
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3.2. If G is connected, then X(P(G)) < X(G). 

Proof. If X(G) = oo, the theorem is trivial. In the remaining case, we have 
X(G) > 1 since G is connected. We can then choose complementary subsets 
S and Toi E(G) so that 

(14) v(G;S,T) = X(G), 

(15) M i n ( | 5 | f | r | ) > X ( G ) . 

But then 
S(P(G);S,T) <X(G) , 

by 3.1. Using (9) we deduce that P(G) is ^-separated for some positive integer 
k < X(G). The theorem follows. 

3.3. Let G be a connected graph. Let S and T be complementary subsets of E(G), 
and let k be a positive integer such that 

(16) v(G;S,T) <k+Po(G'S)+p0(G'T) - 2 , 

(17) Min (|5|, | r | ) >k. 

Then X(G) < k. 

Proof. Assume X(G) > k. We may suppose 5 and T chosen, consistently 
with (16) and (17), so that rj (G; 5, T) is as small as possible. 

We may further suppose that G has no loop A. For otherwise we would have 
r)(G; {A}, E(G) — {̂ 4}) = 1 <&, which is contrary to assumption. 

Since 5 and T are non-null, we have 

(18) Mm(Po(G-S),Po(G-T)) > 1. 

If po(G-S) =po(G-T) = 1, we have rj(G;S,T) < k by (16). But then 
X(G) < k, contrary to assumption. We may therefore suppose that 

(19) Po(G-S)+Po(G'T) > 3 . 

Since G has no loop, it follows from (19) that 

(20) *o(G) > 4. 

Consider any component H of G-S or G- T. Let x(H) denote the number of 
vertices of H in the intersection W of V(G-S) and V(G-T). Then 

(21) ai(H) > a0(H) - 1 > x(H) - 1. 

We say H is of Type I if ax{H) > x(H) and of Type II if ax{H) = x(H) - 1. 
In the latter case, H is a tree whose vertices are all in W. We say H is transfer­
able il\S - E(H)\ > ife and |T - E ( # ) | > jfe. We proceed to show that either 
G-S or G- T has a transferable component. 

Case I. Owe 0/ £/ze graphs G-S and G-T has more than k edges and all its 
components are of Type II. 
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We may suppose that |5 | > k and that all the components of G -S are of 
Type II. Then we can find a monovalent vertex v of G-S. Let A be the edge of 
G-S incident with v and let w be its other end. 

If w is monovalent in G -S, then G- {A} is a transferable component of G -S. 
If w is not monovalent in G -S, we write S' = S - {A}, V = T^J {A}.We 

then have 

v(G;S\r) =V(G;S,T) - 1 , 

Po(G-S') = M G - 5 ) , 

Po(G-T') = Po(G>T) or p0(G-T) - 1. 
Hence, by (16), 

V(G;S', T')<k+ Po(G-S') + PoiCT') - 2. 

Since Min (|S'|, \Tf\) > k, the choice of S and T is contradicted. 

Case II. r&e components of G-S and G-T are all of Type II. Moreover 

\s\ = m = *. 
In each of the graphs G-S and G-T, the average valency is less than 2. 

Hence the average valency in G is less than 4. 
Let w be a vertex of G of least valency 7. Then 7 < 3. Let Sw be the set of 

the 7 edges incident with w. Using (20) we find that ai(G) > 27. Hence 

\E(G) - 5 W | > |5„| = 7. 
But 

r,(G;Sw,E(G) -Sw) < |5W| < 3. 

It follows that X(G) < |5W| < 3. Hence k = 1 or 2. The first of these alterna­
tives, however, is ruled out by (19). 

By (18) and (19), we may now suppose that G-S has just two components, 
each with exactly one edge. Then 

a0(G) =a0(G'S) =a0(G-T) = 4. 

Since \T\ = k = 2, the graph G- T also has exactly two components, each with 
a single edge. The connected graph G is therefore a quadrilateral. Hence 
X(G) = 2 = k, which is contrary to assumption. 

Case III . Either G-S or G-T has two or more components, one of which is of 
Type I. 

We may suppose G -S to have a component H of Type I and at least one 
other component. We have 

ax{H) >x(H) > 1, 

\E(G) -E{H)\ > \T\ >k. 
Moreover, 

V(G;E(H),E(G) - E{H)) = x(H). 
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Now if %{H) < k, the above relations imply that X(G) < x(H) < k, 
contrary to assumption. But if x(H) > k, the other components of G -S are 
transferable. 

Case IV. One of the graphs G-S and G-T is connected, and its only component 
is of Type I. 

We may suppose that G -S is connected. We may further suppose that the 
components oi G-T are all of Type II and that \T\ = k. For otherwise the 
conditions of Case I or Case III are satisfied. We then have 

V(G;S, T) = a,(G-T) = \T\ + p,(G-T) 

= k+pQ(G-S) +Po(G-T) - 1, 

which is contrary to hypothesis. 
The four cases discussed above exhaust all the possibilities. We deduce that 

either G-S or G-T has a transferable component. 
We may suppose that G-S has a transferable component G-So. Write 

s* = s - So, r = rus0. 
Then 

17(G; 5', V) = V(G;S, T) - x(G-50), 

Po(G-S') =Po(G-S) - 1, 

Po(G-T') >Po(G-T) -x(G-So) + 1. 
Hence, by (16), 

V(G;S',T') <k + p0(G-S') +p0(G-r) - 2 . 

Moreover Min (|5"|, \T'\) > k, since G-S0 is transferable. But these results 
contradict the choice of S and T. 

This contradiction establishes the theorem. 

3.4. If G is connected, then X(G) < \(P(G)). 

Proof. If A(P(G)) = oo, the theorem is trivial. In the remaining case, we 
can choose complementary subsets 5 and T of E(G) such that 

ttP(G);S,T) = X(P(G)), 

Min (\S\, \T\) > X(P(G)). 
We then have, by 3.1, 

l(G;S,T) = X(P(G))+Po(G-S)+Po(G-T) - 2 . 

Hence X(G) < X(P(G)), by 3.3. 

3.5. If Gis connected, then X(P(G)) = X(G) (by 3.2 and 3.4). 

The preceding discussion is intended to justify the claim that the notion 
of connectivity for matroids is a generalization of that of connectivity for 
graphs. The results of the present section are not used in what follows. 
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4. Wheels and whirls. Let £ be a set of 2n elements, where n is an 
integer > 3 . We enumerate them as Ai, A2, . . . , Ain and adopt the convention 
that a suffix may be replaced by any other integer in its residue class (mod 2n). 
We write Q for the set of all elements of E with even suffixes, and R for the set 
of all elements of E with odd ones. 

Let j and k be integers such that 1 < j < n and j < k < j + n. Then we 
write 

Cj,k = {Aïj, A2J+1, ^ 2 j + 3 , • • • i A2JC-I1 AÎK). 

The members of Cjtk1 apart from Aij and A2A;, have consecutive odd suffixes. 
We denote the class of all such subsets Cjtk of E by C, and we write 
Wn=CV{R}. 

For each integer j we write Rj = RKJ {A23}. We write TFrw for the class of 
subsets of E obtained from C by adjoining the n subsets Rj (1 < j < n). 

We refer to Wn and Wrn as the w/̂ eZ and whirl respectively of order n. 
In the graphic context of (1) the term "wheel" is used for a wheel-graph. 
It can be verified that Wn is the polygon-matroid of a wheel-graph with the 
structure shown in Figure 4A. We shall not use this result in the arguments 
which follow, but we shall use the corresponding representation of E as the 
edge-set of a wheel-graph to illustrate some definitions. Thus in Figure 4B, 
representing the case n = 7, the thickened lines indicate Ci,2, a n d the broken 
ones C3,7. The polygon made up of A\, A%y A$, AQ, and Ai4 corresponds to 
CT,Z. The rim of the wheel-graph corresponds to R and the set of spokes to Q. 

FIGURE 4A 
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FIGURE 4B 

4.1. Let i be an integer and let U be a (mod 2) sum of members of Wn. Then 
\U C\ {Aii-x, A2i, A2i+i}\ is even. 

Proof. It is readily verified that the theorem holds whenever U is a member 
of Wn. It must therefore hold for any (mod 2) sum of such members. 

4.2. Let U be a (mod 2) sum of members of Wn. Then if U is non-null, it is a 
union of one or more disjoint members of Wn. 

Proof. If R C U, it follows from 4.1 that R = U. The theorem then holds. 
If i? H Z7 is null, it follows from 4.1 that U is null. 

In the remaining case R P\ U is a non-null proper subset of R. Let us define 
a U-arc of R as a maximal set of elements of R P U having consecutive odd 
suffixes. Evidently the £/-arcs of R are disjoint and their union is R P U. 

Given a particular £/-arc Ui of R we can write its elements as A2j+i, 
A2j+d, . . . , Aik^x, where j < k < j + n. Write Vt = CjtJc. Then the sets Vt 

corresponding to the £7-arcs Ui are disjoint members of Wn. Let V be their 
union, which is also their (mod 2) sum. The (mod 2) sum of U and V has a 
null intersection with R. Hence V = U, by 4.1. 

4.3. Wn and Wrn are matroids on E. 

Proof. It is clear that Axiom I holds for each of these classes. To verify 
Axiom II, let X and Y be any distinct members of the class M = Wn or Wrn 

under consideration, and let a and b be members of E such that a G X C\ Y 
and b Ç X — Y. We must show that M has a member Z such that 
K Z Ç ( I U 7 ) - { a ) . If M = Wn, this result follows from 4.2, since b 
is in the (mod 2) sum of X and Y and this sum is a subset of (X KJ Y) — {a}. 
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Suppose therefore that M — Wrn. If X and F are in C, there is a circuit 
Z' of Wn such that b G Z' C (X U F) - {a}. If Z' Ê W7^, we may take it 
as Z. In the remaining case we have Z' = R. We can then write X = C ^ and 
Y = Ck>j+n. Accordingly Z is Rj or i^ , whichever does not include a. 

If X = i ^ and F = i^ , where j < k < j + n, we can put Z = Cj1c or 
,;_i_ra, whichever does not include a. 
In the remaining case, we may suppose one of X and F to be of the form Rt 

and the other of the form Chli. If Au = a, so that i = j or k (mod 2w), we 
write Z = Rk or Rj respectively. If 4̂ 2z = b we adjust the notation, by adding 
a multiple of n to j , so that i < j < n + i. We then put Z = Cij or Cjti+n, 
whichever does not include a. If A 2i; is neither a nor 6, there is a circuit T of Wn 

such that 
6 G T C (i? U C,,*) - {a} C ( Z U F ) - {a}. 

Evidently T is not i?. It is therefore a member of IFrw and we may take it as Z. 
Let j and k be integers such that 1 < j < n and j < k < j + n. We write 

-£*./,* = {Â2J+U A2j+2j A2j+4, • • • , A 2k, ^Ufc+l}. 

The members of DjtkJ apart from A2j+i and ^U^+i, have consecutive even 
suffixes. We denote the class of all such subsets Djt1c of E by D. In Figure 8C, 
representing the case n = 7, the thickened lines indicate 2)4,5 and the broken 
ones DQ>3. 

FIGURE 4C 

For each integer j we write Qj = Q^J {̂ .2^+1}. 
We define L as the class of all non-null subsets F of £ such that \Y C\ X\ ^ 1 

for each X £ C. Replacing C by Wn and Wrn in this definition, we define sets 
Li and L2 respectively in place of L. 
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4.4. Let Y be any member of L. Then there exists X 6 D \J \Q) such that 
Z C F. 

Proof, If R C F, then A2i £ Y for some i since | F P\ C ; , ;+i | 7e 1 for each j . 
But t h e n D ^ i . i £ F. 

If i? P\ F is null, consideration of the sets C3lj+i shows that Q C F. 
In the remaining case, i? H F is a proper subset of R. Suppose first that we 

can find an integer j such that A 2j+i and -4 2̂ +2 belong to F but A2j+z does not. 
Let k be the first positive integer such that 4̂ 2̂ +2̂ +1 is in F. Consideration of 
the sets Cj+i,j+2, Cj+2tj+z, etc. shows that A2j+2, A2j+Aj . . . , A2j+2Jc are all in F. 
Hence if & < n, we have Djtj+1c C F. The only alternative is & = w, which 
implies that Ç Ç F . 

When i£ P\ F is a proper subset of i?, we can always find an integer h such 
thaty42ft+i G F and 4̂ 2̂ +3 € F. If 4̂ 2̂ +2 G F, we apply the preceding argument 
with 7 = h. If ^2TH-2 $ F, consideration of Chlh+i shows that A2h (E F. In this 
case, let k be the first positive integer such that A 2h-2k+i is in F. Evidently k 
exists and is at most n. Consideration of the sets Cn-i,m Cft-2,a-i, etc. shows that 
A2h, A2h-2, . . . , 4̂2ft-2A;+2 are all in F. Accordingly either Dh-kth C F or Q C F. 

4.5. ( IFJ* = # U { < 2 } . 

Proof. It is easy to verify that each member of D ^J {Q} is in Li, and that 
no member of D \J {Q} contains another. But each member of L\ belongs to L 
and so contains a member of D U {Q}, by 4.4. Hence D KJ {Q] is the set of 
minimal members of Li, that is (Wn)*. 

4.6. (Wrn)* = DU{Ql9Q2,...,Qn}. 

Proof. Write T = D \J {Qi, Q2, . . . , Qn}. It is easy to verify that each 
member of T is in L2, and that no member of T contains another. 

Suppose F G L2. Then F belongs to L and therefore contains either Q or a 
member of Z>, by 4.4. But if Q C F, then i 2 m Ç F for some integer i, since 
I F H Rj\ ?£ 1 for each integer j . Hence Qi C F. 

We deduce that T is the set of minimal members of L2, that is T = (PFrn)*. 

The operation of increasing the suffix of each member Ah of E by 1 transforms 
C into D, R into Q, and Rt into ()*, for each integer i. Hence, by 4.5 and 4.6, we 
have 

4.7. The dual of a wheel is a wheel, and the dual of a whirl is a whirl. 

5. Rank and connectivity in wheels and whirls. Let M be any 
matroid on a set £ , and suppose A Ç 5 C E. We define an integer 6{M\ S, A ) 
as follows: d(M; S, A) = 1 if there is a circuit X of M such that A Ç I Ç 5 , 
and 6(M\S,A) = 0 otherwise. Thus 

(22) 6(M;S,A) = f p X S ) ' ^ ) ) , 
(23) 0(M;S, ,4) = r ( M X 5 ) - r(M X ( 5 - {^})), 
by (6). 
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We make the following abbreviations: 

(24) M'A = MX(E- {A}), 

(25) M"A = M-(E- {A}). 

Now let S and T be complementary subsets of E — {A). Applying (23) to 
(8), we find that 

(26) Z(M'A;S,T) = Ç(M;SV {A},T) -6{M;E,A) 
+ 6(M;SKJ {A}, A). 

In a similar way we find 

(27) t(M"A;S, T) = ^ ; 5 U {A}, T) + 6(M; {A}, A) 

-d(M;T\J {A},A). 

However, in the proof of (27) we need the general theorem 

(28) (M-U)>V= M-V, 

where F Ç JJ CI E, see (2, 3.332). This enables us to write, for example, 

r(M" X 5 ) = r(M-(E - {A})) - r(M-T) 

= r(MX (SKJ{A})) -r(MX {A})} 

by (6). The details are given in (3, §3). 
We proceed to apply these results to the theory of wheels and whirls. We use 

the notation of §4 for Wn and Wrn. 

5.1. Write M — Wn or Wrn, and suppose S C E. Then the following proposi­
tions hold: 

(i) If S Ç R then r(M X S) = 0, unless S = R and M = Wn, in which case 
r(MXS) = 1. 

(ii) IfSQQ, then r(M X S) = 0 . 
(iii) IfRCS, then r{M X S) = \S - R\. 
(iv) IfQCS, then r(M X S) = \S - Q\. 
(v) If S r\ R is a proper non-null subset of R and S, then 

r(M XS) < \Sr\Q\ - 1. 

Proof. Proposition (i) expresses the fact that S contains no circuit of M, 
except that 5 is itself a circuit when S = R and M = Wn. Proposition (ii) 
follows from the fact that Q contains no circuit of M. 

To prove (iii) we suppose first that \S — R\ = 1. Then M X S has just one 
circuit, R if M = Wn and one of the sets Rt if M = Wrn. Hence 

r(MXS) = 1 = \S-R\. 

If \S — R\ > 2, we choose A £ S — R. There is a circuit X of M, belonging 
to C, such that A 6 X C 5. Hence r(Af X (5 - {^})) = r(ikT X 5) - 1, by 
(23). Proposition (iii) now follows by induction on |5 — R\. 
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If Q C S, then each cell of R P\ 5 belongs to a circuit X of ikf, of the form 
Cjtj+i, such that I Ç 5 . Thus for each A £ R C\ S we have 

r(MX (S - {A})) = r(MXS) - 1, 

by (23). Repeated application of this result yields 

r(M X S) = |5 - Q\ + r(M X Q) = \S - Q\, by (ii). 

To prove (v) we suppose first that \S f~\ Q\ = 1. It is then clear that S 
contains no circuit of M and so r(M X S) — 0 = |5 P\ Q| — 1. Hence we 
deduce, using \S Pi Q\ — 1 applications of (23), that in the general case 
r(MXS) < | S n Ç | - 1. 

5.2. If M = Wn or Wrny and A £ E, then r(M) = n, r(M'A) = n - 1, 
and r(M"A) = n. 

Proof. The first of these results follows from 5.1, (iii). The second then follows 
from (23). For the third we have 

r(M"A) = (2n - 1) - r((M*)'A) , 
by (3) and (5), 

= (2M - 1) - {n - 1) = w, 
by 4.7. 

5.3. \{Wn) = \{Wrn) = 3. 

Proof. Write M = Wn or Wrn. Let .S and T be complementary subsets of E. 
We note that \E\ = 2n > 6. 

Suppose |5| < 2. Since a wheel or whirl has no circuit of fewer than three 
cells, it follows from 4.7 that r(M X S) = r(M* X S) = 0. Hence 

£(M; 5, T) > \S\, 
by (11). 

We may now suppose that |5| > 3 and \T\ > 3. If 5 C Ç, we have 

KM; 5, r ) = M - 0 - \TC\Q\ + 1, by (8) and 5.1, = \S\ + 1 > 3. 

If S Ç i?, we have 

f(Af;5, r ) > M - 1 - \Tr\R\ + l, by (8) and 5.1, = \S\ > 3. 

Similar results are obtained if T C Q or T C R. 
In the remaining case each of 5* and T meets both Q and R. Applying 5.1, 

(v), we have 

^(M; S, T) > n - \Q C\ S\ - \Q H T| + 3 = 3. 

From the above results we see that \(M) > 3. 
Consider, however, the special case in which S is the circuit d ) 2 of M. Then 

\S\ = 3, | r | > 3, and r{M X S) = 1. Moreover, 5 contains no circuit of M*, 
by 4.5 and 4.6, and therefore r(M* X S) = 0. It follows that Ç(M\ S, T) = 3, 
by (11). We deduce that X(M) < 3. The theorem follows. 
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5.4. If M = Wn or Wrn and A G E, then \{Mf
A) < 2 and \(M"A) < 2. 

Proof. We have 4̂ Ç DJJ+I for some integer j . Write 5 = DJfj+i and 
T = E - S. Then |5| = 3 and |T| > 3. Evidently r(M X S) = 0 and 
KM* X S) = 1. Hence f (M;S, T) = 3, by (11). 

We have d(M;E, A) = 1 and 0(ikf;S, 4 ) = 0. Hence 

{ ( M ' ^ - S - {^} ,D = 2 , 

by (26). Since \S - {A} \ = 2 and \T\ > 2, it follows that X(M^) < 2. 
We have also \(M"A) = X((M*)^), by (12) and (5), <2 , by 4.7 and the 

first part of the present proof. 

If M is a 3-connected matroid and A is a cell of M such that neither M''A 

nor -M"A is 3-connected, then we say that A is an essential cell of M. We may 
summarize the results of 5.3 and 5.4 as follows. 

5.5. The wheels and whirls are 3-connected matroids in which every cell is 
essential. 

6. Some theorems on connectivity. In what follows we are mainly 
concerned with proving that a 3-connected matroid in which every cell is 
essential must be either a wheel or a whirl. In the present section we set out 
some auxiliary theorems. We take M to be an arbitrary matroid on a set E. 

From (7) and (8) we deduce that 

(28) £(M; S, T) + f (M; U, V) > £(M; S\J U,TC\V) 

+ %{M',Sr\ U,T\J V), 

where {S, T] and { £/, V\ are any two pairs of complementary subsets of E. 

6.1. Suppose A Ç 5 Ç T Ç E . Then 

0(M\S,A) <6(M\T,A). 

This theorem follows at once from the definition of 6. 

6.2. Let S and T be complementary subsets of E such that each circuit of M is 
contained in either S or T. Then %(M; S, T) = 1. . 

Proof. By the definition of rank, we must have 

r(M) = r(M X S) + r(M X T). 

Hence £(M;S, T) = 1, by (8). 

6.3. If M is 2-connected and \E\ > 2, then 0(M; E, A) = 1 for each A G E. 

Proof. If the theorem fails, we can find A Ç E such that each circuit of M 
is contained in E - {A}. Then £(ikf; {A\, E - {A}) = 1, by 6.2. Accordingly 
\(M) = 1, which is contrary to hypothesis. 
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6.4. If M is 2-connected and \E\ < 3, then \(M) = » . 

Proof. Since \E\ < 3 it is not possible for M to be &-separated for any 
integer k > 2. 

The next proof can be regarded as a simple example of the kind of argument 
encountered in §7. 

6.5. If M is 2-connected and A £ E, then either M' A or M" A is 2-connected. 

Proof. Suppose the theorem fails. Then there are pairs {5, T} and { U, V] of 
complementary subsets of E — {A} such that 

(29) Mm(\S\,\T\,\U\,\V\)>l, 

(30) Z(M'A;S,T) = 1, 

(31) S(M"A; U, V) = 1. 

Using (26) and the 2-connection of M, we deduce from (30) that 

(32) P ; 5 U M ) J ) = P ; S J U M ) ) = 2, 

(33) 6(M;SKJ {A},A) = 0(M;TVJ {A}, A) = 0. 

Similarly, by (27) and (31), 

(34) t(M;UKJ{A], V) = Ç(M; U, V\J{A}) = 2 , 

(35) 6(M; VVJ {A}, A) = 0(M; U U { 4 } , ^ ) = 1. 

By (26), (34), and 6.3 we have 

(36) { ( M ' i î î / , F) < 2 . 

Hence, by (28) and (30), 

3 > £(Af^, 5 n [ / J U F ) + S(M'A, S\J U,Tf^V). 

We can therefore adjust the notation, by interchanging 5 with T and U with V 
if necessary, so that 

(37) £(M'A;Sr\ U,T\JV) = l. 

We note that 6(M; T U F VJ {^}, ,4) = 1, by 6.1 and (35). Hence 

{ ( i f ; S n Î / J U F U {4}) = 1, 

by (26), (37), and 6.3. It follows from (29) and the 2-connection of M that 

\snu\ = o. 
But then U Q T, whence 6(M, U \J {A}, A) < 0(M; T U {A}, A) by 6.1. 
This is contrary to (33) and (35). 

6.6. Suppose M is ^-connected and \E\ > 4. Then\(M'A) > 2and\(M" A) > 2 
for each A £ E. 
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Proof. Suppose the theorem fails for some A £ E. Then we can find comple­
mentary subsets S and T of E — {A} such that 

Min (|S|, \T\) > 1 and £(N',S,T) = 1, 

where N is either M' A or M" A. Without loss of generality we may suppose 
that 1 < |5 | < \T\ > 2. It follows from (26) and (27) that 

t(M;SU{A},T) < 2 . 

This implies that X(M) < 2, contrary to hypothesis. 

6.7. If M is 3-connected and \E\ > 4, then each circuit Y of M satisfies 

m>3. 
Proof. Suppose F is a circuit of M such that | Y\ < 2. Then r (M X Y) = 1 

and r(M* X Y) > 0. Hence 

£(ikf ; F, £ - F) < | F | - 1 - 0 + 1 = | F|, 

by (11). Since 1 < | Y\ < E - F|, it follows that \{M) < \Y\ < 2, contrary 
to hypothesis. 

6.8. Suppose M is 3-connected and has an essential cell A. Then \E\ > 5. 

Proof. Suppose \E\ < 4. Then one of M'A and Af"A is 2-connected by 6.5, 
and therefore 3-connected by 6.4. Hence A is not essential, contrary to 
hypothesis. 

7. Triangles and triads. In this section, M denotes a 3-connected mat-
roid on a set E. We note that M* is also 3-connected by (12). 

A triangle of M is a circuit of M having just three cells. A triad of M is a 
triangle of M*. We note that the triads of M* are the triangles of M, by (2). 

7.1. Let A be an essential cell of M. Then A belongs to a triad or triangle of M. 

Proof. Since A is essential, it follows from 6.8 and 6.6 that there are pairs 
{5, T] and {U, V} of complementary subsets of E — {A} such that 

(38) M i n ( | 5 | , | r | f | C / | f | 7 | ) > 2, 

(39) Ç(M'A;S,T) =2, 

(40) UM"A;U, V) = 2 . 

In analogy with the proof of 6.5 we find by (26) and (27) and the 3-connection 
of M that 

(41) Ï(M;SVJ{A},T) = H(M;S,TU{A}) 

= i(M: U\J {A), V) = £(AT; U, F U {A}) = 3, 

(42) d(M;SVJ {A}, A) = 6{M]T\J {A}, A) = 0, 

(43) 0(Jlf; C/W{^},^4) = 0(M; F U { ^ M ) = 1. 
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From (26, (41), and (43) we have 

(44) S(M'A; U, V) = 3, 

since 0(M; L, A) = 1 by 6.3. Hence, by (28), 

(45) p ' i j s u u,rnv) + a(M'A;sr\ U,T\J V) < 5. 
We may therefore adjust the notation, interchanging S with T and [/ with F 
if necessary, so that 

(46) $(M'A\Sr\ U, T\J V) < 2 . 

By 6.1 and (43), we have 0(M; TU VU {A}, A) = 1. Hence, by (26), 

(47) £(M;Sn U,TU V\J {A}) < 2. 

I t follows by the 3-connection of M that \S C\ U\ < 1. But if \S C\ U\ = 0 we 
have UQT, d(M; U U {A}, A) < d(M; T U {A\, A), by 6.1. This is 
contrary to (42) and (43). We deduce that S Pi U consists of a single cell B. 

We now repeat the first part of the preceding argument with U and V 
interchanged. From the analogue of (45) we deduce that either 

{ ( M ' A ; 5 U V, T C\ U) < 2 

or 
Z(M'A\Sr\ V, T\J U) < 2 . 

But 

0(M;SU F U j i ) , i ) = 0(M; r U [ / U j 4 M ) = l , 

by (43) and 6.1. Hence, by (26), either 

{ ( M ; S U F U { i ) , TC\ U) < 2 

or 

P ; 5 H V,T\JU\J {4}) < 2. 

It follows by the 3-connection of M that 

(48) \sr\ v\ = i or | rn £/| = 1, 
since the relations V C L and £/ Ç 5 are false by 6.1, (42), and (43). 

If 5 P\ V consists of a single cell C, we have S = {B, C). Then 

(49) r ( M X M , £ , C}) +r(M* X {,4,5, C} ) = 1, 

by (11) and (41). \i T C\ U consists of a single cell C, then U = {B, C), and 
(49) again follows from (11) and (41). By (49) and 6.7, the set {A, B, C} is 
a circuit of either M or M*, that is it is a triangle or triad of M. 

7.2. Suppose \E\ > 4. Le/ {^4,5, C) be a triangle of M such that \(M'A) < 3 
and \{Mf

 B) < 3. Then there exists a triad of M which includes A and just one 
other cell of {A,B,C}. 
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Proof. By 6.6, there are pairs {S, T] and { U, V) of complementary subsets 
of E — {A} and E — {B}, respectively, such that 

(50) Mm(\S\,\T\,\U\,\V\)>2, 

(51) S(M'A;S,T)=2, 

(52) l(M'B; U, V) = 2. 

Using (26) and the 3-connection of M, we deduce that 

(53) t(M;SV {A}, T) = H(M;S,TV {A}) 

= t(M;Uyj{B\, V) =Z(M;U, VKJ{B}) = 3, 

(54) d(M;SVJ {A\,A) = 6{M;T\J {A\,A) 

= 6(M; UVJ \B},B) = 6(M; VU{B},B) = 0. 

If B and C are both in 5 or both in T, formula (54) is contradicted, since 
{A, B, C\ is a circuit of M. So without loss of generality we may write 

(55) B eS, Ce T. 

Similarly we may put 

(56) A 6 U, C e V. 

Let us now make the assumption that the theorem fails. 
Suppose 6(M; S, B) = 0. Then, by (26) and (53), 

(57) S(M'B;S-{B\,TV{A\)=2. 

Now 6(M; TVJ \A,B\,B) = 1 because of the triangle \A,B, C}. Hence, 
by (26) and (57), 

(58) Z(M;S-[B),TKJ{A,B}) =2. 

Since M is 3-connected, it follows, by (50), that \S — {B} \ = 1. Accordingly 

(59) | 5 W { ^ J | = 3 . 

We now have 

r(MX (SU {A})) +r(M* X (SU {A\) = 1, 

by (11) and (53). But r (M X (SU {A})) = 0 by (54) and 6.7. Hence S U {A} 
is a triad of M, by 6.7. Since SU {A) contains A and B but not C, this result 
is contrary to assumption. 

From this contradiction we deduce that 

(60) 6(M;S,B) = 1. 

A similar argument, in which the roles of 5 and T, and also B and C, are 
interchanged, shows that 

(61) 6(M; T, C) = 1. 
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Similarly we have 

(62) 6(M; U, A) = 1, 

(63) d(M; V, C) = 1. 

By (26) and (53), 

(64) t(M'A;U- {A\,vyj{B}) = 3. 

Applying (28) to (51) and (64), we obtain 

(65) t(M,
A\SniU,TUW{B\) 

+ Ï(M'A;SKJ (U - {A}),TC\ V) < 5. 
Hence either 

S{M'A\Sr\ U,T\J VKJ \B\) < 2 
or 

H(M'A; S VJ (U - {A}),Tr\ V) < 2 . 

Now 6{M\T\J VyJ \A,B),A) = 1 because of the triangle {A,B,C\, and 
8(M; S \J U, A) = 1 by (62) and 6.1. So, by (26), we have either 

Z(M;Sr\ U,T\J V\J {A,B}) < 2 
or 

K I ; 5 U U,Tr\V) <2. 

Now S C\ U is non-null, for otherwise we would have U — {A} Ç T, which 
implies that 6(M; U, A) < 6(M; T VJ {A}, A) by 6.1, and the latter result 
is contrary to (54) and (62). Moreover, T C\ V is not null since it contains C 
by (55) and (56). It follows by the 3-connection of M that either 

(66) \SC\U\ = l or \TC\V\ = 1. 

In a similar way we can deduce from (64) that either 

Z{M'A;Sr\ (VKJ {£}), TVJ (U - {A})) < 2 
or 

H(M'A;Tr\ t / , S U 7 ) < 2 . 

We have 9(M; T \J U, A) = 1 by (62) and 6.1, and 

d(M;SVJ VKJ{A},A) = 1 

because of the triangle {A, B, C\. So, by (26), we have either 

£ ( A f ; S n (V\J {B}), r U [ / ) < 2 
or 

t(M;Tr\ U,S\J F U j 4 | ) < 2. 

Now T r\ U is not null, for otherwise we would have U — {̂ 4} Ç 5 , con­
trary to (54), (62), and 6.1. Moreover, SC\ (V\J {B}) is not null, for it 
includes B, by (55). It follows by the 3-connection of M that either 

(67) \SC\ ( F W {B})\ = 1 or | m i / | = l. 
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Suppose that the first alternative of (67) is true. Then 5 P V is null, by 
(55). Hence | V\ = 1 or \S\ = 2, by (55), (56), and (66). The first of these 
alternatives is contrary to (50). The second is contrary to 6.7 since, by (60), 
there is a circuit of M contained in S. We deduce that \T P U] = 1. 

If the second alternative of (66) holds, we now have \T\ = 2, by (55). This 
contradicts 6.7 since T contains a circuit of M by (61). We conclude that 

(68) \S nu\ = \T fMJ\ = 1. 

We denote the members of 5 P U and T P Uby J and Kf respectively. Thus, 

U= {A,J,K}, 

by (56). We note that U is a triangle of ikf, by (62) and 6.7. 
/ is distinct from A, B, and C since A £ S, B $ U, and C $ U. Moreover, 

K is distinct from A, B, C, and /s ince A £ T, B £ U, C £ U, and J £ T. 
By our assumption, the set {A, B, J} is not a triad of M. Hence 

r(M* X {A,B,J}) = 0, by (12) and 6.7, 

r(M-{A,B,J}) = 3 , by (2), (3) and (4), 

(69) r(MX (E - {A,B,J})) = r(M) - 3, 

by (6). 
Suppose 6(M;E - \AyB,J\,K) = 1. Then 

r{M'B X {E- (U\J{B)))) = r(MX (E - (U V {B}))) 

= r(M) - 4, 

by (23) and (69). We have also r(M>'B) = r(M) - 1, by (23) and 6.3. More­
over, r(M'B X U) = r(M X U) = 1 since U is a circuit of M. Hence, by (8) 

${M'B\ U, V) = (r(M) - 1) - (r(M) - 4) - 1 + 1 = 3, 

which is contrary to (52). 
We deduce that d(M; E - {A, B, J}, K) = 0, whence 6(M; T, K) = 0 by 

6.1. Hence, by (26) and (53), 

{ ( t f i ; S U ( i l ) J - {K}) =2. 
But d(M]S\J {A,K},K) = 1, by the triangle {A,J,K}. So by another 
application of (26) we have 

p ; 5 U { i , X ) J - {K}) = 2 . 

It follows by the 3-connection of M that \T — {K}\ < 1, whence \T\ < 2. 
But T contains a circuit of M, by (61). These results contradict 6.7. Our 
assumption is thus false, and the theorem follows. 

7.3. Suppose \E\ > 4. Let {A, B, C] be a triad of M such that \{M"A) < 3 
and \{M"B) < 3. Then there exists a triangle of M which includes A and just 
one other cell of {A, B, C}. 
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We obtain this result by applying 7.2 to M*. For \(M*) = \(M), 
\(M"A) = \UM*)'A), and \(M"B) = X((Af*)'s), by (5) and (12). 

8. The main theorem. 

8.1. Let M be a ^-connected matroid, on a set E, in which every cell is essential. 
Then M* is a ^-connected matroid having the same property, (by (4), (5), and 
(12)). 

8.2. Let M be a ^-connected matroid, on a set E, in which every cell is essential. 
Then M is a wheel or a whirl. 

Proof. By 4.7 and 8.1 it does not matter whether we prove this theorem for 
M or for M*. 

We write a triad or triangle {A,B, C] simply as ABC. We shall find it 
possible to make use of diagrams in which cells of M are represented by edges 
of a graph. We then represent a triangle of M by a graphic triangle, and a triad 
of M by three edges meeting at a vertex. 

M has at least 5 cells, by 6.8. Let Ai be one of them. It belongs to a triangle 
or triad of M, by 7.1. Replacing M by M* if necessary, we may suppose that 
A\ belongs to a triad AIAÏAZOÎM. By 7.3, we can adjust the notation so that 
M has a triangle A^A^A^ where A4 y£ Ax. By 7.2, there is a triad A£ A4 A5 or 
AzA^A^oiM, where A 5 is not A 2 or A 3. We can evidently adjust the notation 
so that A 3 A 4 A 5 is a triad of M; cf. Figure 8A. 

A, A3 As 
« » f » 

FIGURE 8A 

In what follows, we make frequent use of the principle that a circuit of M 
and a circuit of M* cannot have exactly one cell in common. 

Assume Ai = A$. By 7.3 there is a triangle of M which includes A\ = A$ 
and just one other cell of A1 A2 A*. By the principle just stated, it includes at 
least one cell of A 3 A 4 A 5 other than A 5. Thus either there is a triangle AiA^A^ 
or A1 A 3 A± of M, or there is a triangle AiAzA§ of ikT, where ^46 is distinct 
from ^4i, 4̂ 2, A$, and 4̂ 4. 

In the first alternative, we write U = {Au A2, AZy A±} and note that U 
contains two distinct triangles and two distinct triads of M. Using (23) we 
deduce that r(M X U) > 2 and r(M* X U) > 2. Hence 

*(M; t / , E - £/) = l, 
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by (9) and (11). It follows from the 3-connection of M that U = E. But this is 
impossible, by 6.8. 

In the second alternative, we renumber A 6, A i, A 3, A 2, and A 4 as ^41, A 2, 4̂ 3, 
4̂ 4, and y45 respectively, and interchange M and if*. 

We can thus always reduce to the case in which M has five distinct cells 
A1, A2, A3, ^44, and 4̂5 such that AiA2Az and AzAAAb are triads and A2AZAA 

is a triangle. 
Now, by 7.3, Af has a triangle AdA^AQ or A^A^Ae- In the first alternative, 

^46 is 4̂1 or A2 by the principle stated above. However, ii A2 A% Abis a. triangle 
we find, using Axiom II and 6.7, that A3 ^44 A5 is a triangle. But this is impos­
sible since AzA±A$ has just one common cell with the triad AiA2Az. 

FIGURE 8B 

In the first alternative, we therefore have triangles A2 Az A4 and AiAzA$ 
and triads A±A2AZ and AZA±A*>\ see Figure 8B. Hence if 

U = {Al9A2,A3,Ai,As}, 

we have r(M X U) > 2 and r(M* X £/) > 2. Moreover, if the two cells 
Az and ^44 are removed, any remaining circuit of M X U must be a triangle 
of M having only one cell in common with the triad AzA±A$, by 6.7. Since 
this is impossible, we have r(M X U) = 2, by (23). Similarly all the circuits 
of M* X U are destroyed by the deletion of the cells A 3 and A 4 of the triangle 
A2AZA4, and r(M* X U) = 2. Hence 

£(M;U,E- U) = 2 , 

by (11). We note that E — U is not null, by (8). Hence, by the 3-connection 
of M, E — U consists of a single cell, A7 say. 
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By 7.1, 7.2, and 7.3 the cell A-j must belong to a triangle of M. This triangle 
cannot include A 3, since it would then have to have another cell in each of the 
triads AiA2Az and AzA±Ah. Evidently the triangle is Ai A2 A7 or A4 A5 A7, 
and we can adjust the notation so that the latter possibility holds. 

We deduce that the notation can be adjusted so that our second alternative 
holds, that is, there is a triangle AAA^A&. Then A6 is distinct from Ai, A2, A3, 
A4, and A^ since it cannot belong to the triad AiA-A%; see Figure 8C. 

A. A3 A5 
« # Q -p 

FIGURE 8C 

We may now make the following assertion. There is an integer n > 3 such 
that M has 2n distinct cells A\y A2, Az, . . . , A2n with the following property: 
A j A j+1 A j+2 is a triangle of M if j is even and a triad of M if j is odd 
(1 < j < 2n — 2) ; see Figures 8C and 8D. We may further suppose that these 
cells are chosen to correspond to the greatest possible value of n. 

FIGURE 8D 
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By 7.2 there is a triad T of M which contains A 2n and just one other member 
of the triangle A2n-2 A2n-iA2n. We denote the third member of T by A<2n+1. 

Suppose A2n-2 G T. Considering the triangle A2n-4 A2n-3 A9n-2, we see that 
A2n+i must be either A2n^A or A2n_z. Applying Axiom II to the circuits T and 
A2n-3 A2n-2 A2n-i of M*, we find that there is a circuit Y of M* contained in the 
set U = {A2n-.4, A^-z, A2n_u A2n]. We have indeed Y = U, by 6.7, since F 
cannot have only one cell in common with either of the triangles A ?w_4 A 2n_3 

A 2 n - 2 a n d A 2n-</ A 2w_i A 2n of Jkf. Applying Axiom II to the circuits Y and 
A2n-*>A2n-±A2n-% of if*, we find that there is a circuit Z of Af* contained in 
{^2n-5, ^2n-4, ^2W-i, A2n}. Then Z = {A2n-bjA2n-uAin} since Z cannot have 
only one cell in common with the triangle A2n-4A2n-z A2n-2 of M, and by 6.7. 
If n > 4, then Z has just one cell in common with the triangle A 2„._6 A2w_5 A2w_4 

of M. We deduce that n = 3, so that Z is the triad AhA§AxoiM. 
In the remaining case, A2n_i is in 2". Then ^42w+i cannot be one of the cells 

A2, A3, A^ . . . , A2W_2, for otherwise it would be the only common cell of T 
and some particular triangle of M. We conclude that in each case M has a 
triad A2n-i A2n A2n+ij where A2n+i is either identical with A\ or is distinct 
from each of the cells Aj (1 < j < 2n). 

We can now diminish each suffix by 1, interchange M and M*, and repeat 
the preceding argument. The result, in terms of the original notation, is that M 
has a triangle A2n A2n+i A2n+2, where A2n+2 is either identical with A2 or dis­
tinct from each of the cells Ak (1 < k < 2n + 1). 

Consider the case in which ^42w+i is not A\. Then A2n+2 is not Ai or A2, since 
the triangle A 2n A 2n+i A 2n+2 does not have only one cell in common with the 
triad Ai A2 A%. But this result is contrary to our choice of n. 

We may now suppose that A2n+i is Ax. Considering the triad AiA2A3, we 
see that A 2n+2 must be A 2. 

Write U = {Ai, A2, . . . , A2n). Deleting the cells of odd suffix, one by one, 
from I X t /we find, using (23), that r(M X U) > n. Similarly, deleting cells 
of even suffix from M* X U we find that r(M* X if) > n. Hence 

H(M;U,E- U) = 1, 

by (9) and (11). It follows, by the 3-connection of M, that U = E. 
Reverting to the notation of §4 we may say that the sets Cj,j+i are circuits 

of M and that the sets DjJ+1 are circuits of M*. But suppose dj and Cit1c 

are circuits of M, where i<j<k<n-\-i. Then, by Axiom II, there is a 
circuit Y of M contained in Citk. But then Y must be identical with Ci<ky since 
it cannot have only one cell in common with any of the triads A 27l+1 A 2h+2 A 2/2+3, 
where i - l < h < k - l . We deduce that C C M. Similarly D Ç M*. 

Applying Axiom II to the circuits Cjtj+i and Cj+i,j+n of M we find that there 
is a circuit Zj of M contained in R j . Consideration of the triads of M shows that 
Zj must contain the whole of R. We deduce that either R is a circuit of M or 
Rj is a circuit of M for each j in the range 1 < j < n. Similarly, either Q is 
a circuit of M* or each Qj is a circuit of M*. 
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By 4.4 each circuit of M* contains either Q or a member of D. Combining 
this with the results of the two preceding paragraphs, and using Axiom I, 
we find that M* = D U {Q} or D U {Qu Q2, . . . , &} . Thus M* is a wheel or 
a whirl, and the theorem is proved. 

The main result of this paper is the combination of 5.5 and 8.2. 

8.3. A ^-connected matroid has all its cells essential if and only if it is a wheel 
or a whirl. 
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