CONNECTIVITY IN MATROIDS
W. T. TUTTE

1. Introduction. An edge of a 3-connected graph G is called essential if
the 3-connection of G is destroyed both when the edge is deleted and when it is
contracted to a single vertex. It is known (1) that the only 3-connected graphs
in which every edge is essential are the ‘‘wheel-graphs.” A wheel-graph of order
n, where » is an integer >3, is constructed from an n-gon called its ‘‘rim”’ by
adding one new vertex, called the “hub,” and # new edges, or “‘spokes’ joining
the new vertex to the n vertices of the rim; see Figure 4A.

A matroid can be regarded as a generalized graph. One way of developing
the theory of matroids is therefore to generalize known theorems about graphs.
In the present paper we do this with the theorem stated above. We state the
relevant definitions and theorems of matroid theory in the next section. For
proofs of the theorems reference may be made to (2; 3; and 4).

2. Matroids. Let E be a finite set. A class M of non-null subsets of E
is called a matroid on E if it satisfies the following two axioms.

I. No member of M 1is contained in another.

II. If X and Y are members of M and a and b are members of E such that

a € XN\ Yand b € X — Y, then there exists Z € M such that
beZC (XUY) — {a}.

We refer to the members of E and M as the cells and circuits of M respectively.
Circuits are called “atoms’ in (2) and (3).

As an example we may take £ to be the set of edges of a graph G. We can
then define a circuit of M to be the set of edges of a polygon of G. Each polygon
of G is to give rise to a circuit of M in this way. The two axioms are readily
verified. We denote the resulting matroid by P(G) and call it the polygon-
matroid of G.

A matroid which cannot be interpreted as the polygon-matroid of a graph
can be constructed in the following way. We take E to be any finite set of four
or more elements and define a circuit of M to be any set of three distinct
elements of E.

The rank »(M) of a matroid M on E is the least possible number of cells
such that there is at least one in each circuit. It should be noted, however, that
the “‘rank” used by Whitney in (4) is the difference between this and the
number of members of E. For the polygon-matroid of a graph G the rank is
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thus the least number of edges whose deletion destroys every polygon in the
graph. This is the ‘“cyclomatic number” or “Betti number of dimension 1.”
It is given by

1) 21(G) = a1(G) — ao(G) + po(G),

where p;(G) is the cyclomatic number and a:(G), ao(G), and po(G) are the
numbers of edges, vertices, and components of G, respectively.

We denote the number of members of a given finite set X by |X]|.

Given M, we may consider the class L of all non-null subsets X of E such
that |X M Y| #£ 1 whenever ¥ € M. The class of all members of L not con-
taining others can be shown to be a matroid M* on E called the dual matroid
of M;see (2, §82.6 and 3.5). Dual matroids satisfy the following theorems:

2) M** = M,
3) r(M) + r(M*) = |E|.

Let S be any subset of E. We define M X S as the class of all circuits of M
contained in S. Letting L g denote the class of all non-null intersections with
S of circuits of M, we write M-S for the class of all members of L that do not
contain others. The classes M X S and M-S are matroids on S, by (2, §3.3).
We refer to them as the contraction and reduction of M to S respectively.
Contractions and reductions satisfy the following theorems:

) (M X S)* = M*-S (2, 3.352),
() (M-S)* = M* X S (2,3.351),
(6) r(MXS)+r(M-(E—S)) =r(M) (2,3.54),
(7) r(MX (SYUT))+r(MXESNT))

>r(MXS)+r(MXT) (2, 3.56).

For complementary subsets S and 7" of E we write
®) EM;S,T) =r(M) —r(M XS) —r(MXT)+ 1.
We then have
9) EM;S, T) > 1,
by (7). By (3), (5), and (6) we can rewrite (8) in the two following forms:
(10) EM;S, T) =r(M-S) —r(M XS) +1,
(11) EM; S, T) =S| —r(M XS) —r(M*XS) + 1.

As a corollary of (11) we have

(12) EM; S, T) = £(M*; S, T).
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We say that M is k-separated, where k is a positive integer, if there are
complementary non-null subsets .S and 7 of E such that

EM; S, T) =k,
Min(|S], [T]) > &.

If there is a least positive integer k such that M is k-separated, we call it the
connectivity of M and denote it by A(M). If there is no such integer, we write
MM) = =.Wesay M is n-connected, where n is a positive integer, if n < X\ (M).

3. The connectivity of a polygon-matroid. We can give a somewhat
analogous definition of connectivity for graphs. As usual we write E(G) and
V(G) for the sets of edges and vertices, respectively, of a finite graph G. If
S C E(G), we write G-S for the subgraph of G determined by the edges of .S
and their incident vertices. It is evident that

(13) P(G-S) = P(G) XS.

If S and T are complementary subsets of E(G), we write 9(G; S, T) for the
number of common vertices of G-S and G-7. We say G is k-separated, where
k is a positive integer, if G is connected and there are complementary subsets
S and T of E(G) such that

7(G; S, T) =k,

Min (IS, |T]) > &.

We say G is 0-separated if and only if it is not connected.

If there is a least non-negative integer % such that G is k-separated, we call
it the comnectivity of G and denote it by A(G). If there is no such integer, we
write A\(G) = . This happens, for example, when G is a polygon with not
more than three edges. We say G is n-connected, where n is a non-negative
integer, if # < M\(G). Thus G is 1-connected if and only if it is connected.

The above definition of z#-connection for graphs is equivalent to that given
in (1), though the preliminary definition of k-separation is more restrictive.
In this section we shall relate the notions of #-connection for graphs and mat-
roids by showing that A(P(G)) = A(G) for any connected graph G.

3.1. Let G be a connected graph and let S and T be complementary subsets of
E(G). Then

EPG); S, T) =0(G; S, T) — po(G-S) — po(G-T) + 2.

Proof.
EPG); S, T) = p1(G) — p1(G-S) — p1(G-T) + 1,
by (13),
= —ao(G) + a(G-S) + a(G-T) + 2 — po(G-S) — po(G-T),
by (1),

=1(G;S, T) — po(G-S) — po(G-T) + 2.
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3.2. If G 1is connected, then N\(P(G)) < MG).

Proof. If M(G) = =, the theorem is trivial. In the remaining case, we have
A(G) > 1 since G is connected. We can then choose complementary subsets
S and T of E(G) so that

(14) 2(G; S, T) = \NG),
(15) Min (IS}, [T1) > NG).
But then

E(PG): S, T) < \G),

by 3.1. Using (9) we deduce that P(G) is k-separated for some positive integer
k < A(G). The theorem follows.

3.3. Let G be a connected graph. Let S and T be complementary subsets of E(G),
and let k be a positive integer such that
(16) 7(G; S, T) <k + po(G-S) + po(G-T) — 2,
an Min (S, |T]) >
Then \(G) < k

Proof. Assume N(G) > k. We may suppose S and T chosen, consistently
with (16) and (17), so that 4(G; .S, T') is as small as possible.

We may further suppose that G has no loop 4. For otherwise we would have
7(G; {4}, E(G) — {4}) = 1 < k, which is contrary to assumption.

Since S and T are non-null, we have

(18) Min (po(G-S), po(G-T)) > 1

If po(G-S) = po(G-T) =1, we have 4(G;S,T) <k by (16). But then
MG) < k, contrary to assumption. We may therefore suppose that

(19) p0(G-S) + po(G-T) >3
Since G has no loop, it follows from (19) that
(20) (G) >4

Consider any component H of G-S or G-T. Let x(H) denote the number of
vertices of H in the intersection W of V(G-S) and V(G-T). Then
(21) a1(H) > ag(H) — 1 > x(H) — 1.

We say His of Type I if a1 (H) > x(H) and of Type II if oy (H) = x(H) — 1.

In the latter case, H is a tree whose vertices are all in W. We say H is iransfer-
able if |S — E(H)| > k and |T" — E(H)| > k. We proceed to show that either
G-S or G- T has a transferable component.

Case 1. One of the graphs G-S and G-T has more than k edges and all its
components are of Type I1.
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We may suppose that [S| > % and that all the components of G-S are of
Type II. Then we can find a monovalent vertex v of G-S. Let 4 be the edge of
G-S incident with v and let w be its other end.

If w is monovalent in G-S, then G-{A4} is a transferable component of G-.S.

If w is not monovalent in G-S, we write S’ = S — {4}, 7" = T U {4}. We
then have

n(G;S,y T) = W(G;Sy T) - 1y
p0(G-S") = po(G-S),
po(G-T") = po(G-T) or po(G-T) — 1.
Hence, by (16),
2G; S, T") <k + po(G-S') + po(G-T") — 2.
Since Min (|S’], |77|) > k, the choice of S and T is contradicted.

Case 11. The components of G-S and G-T are all of Type 11. Moreover
IS| = |T] = &.

In each of the graphs G-S and G-7, the average valency is less than 2.
Hence the average valency in G is less than 4.

Let w be a vertex of G of least valency v. Then v < 3. Let S, be the set of
the v edges incident with w. Using (20) we find that @;(G) > 2v. Hence

IEG) — Sol > ISu| = 7.
But
W(G'Sva(G) - Sw) < !Swl <3

It follows that A (G) < |S.] < 3. Hence & = 1 or 2. The first of these alterna-
tives, however, is ruled out by (19).

By (18) and (19), we may now suppose that G-S has just two components,
each with exactly one edge. Then

ao(G) = Odo(GS) = Olo(GT) = 4.

Since |T| = k = 2, the graph G- T also has exactly two components, each with
a single edge. The connected graph G is therefore a quadrilateral. Hence
M(G) = 2 = k, which is contrary to assumption.

Case 111. Either G-S or G- T has two or more components, one of which is of
Type 1.

We may suppose G-S to have a component H of Type I and at least one
other component. We have
ai(H) >x(H) >
EG) — E(H)| > ITI >k

Moreover,
7(G; E(H), E(G) — E(H)) = x(H).
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Now if x(H) < k, the above relations imply that A (G) < x(H) < %,
contrary to assumption. But if x(H) > k, the other components of G-S are
transferable.

Case 1V. One of the graphs G-S and G- T is connected, and its only component
is of Type 1.

We may suppose that G-S is connected. We may further suppose that the
components of G-T are all of Type II and that |7] = k. For otherwise the
conditions of Case I or Case III are satisfied. We then have

7(G; S, T) = ao(G-T) = |T| 4+ po(G-T)
=k + po(G-S) + po(G-T) — 1,

which is contrary to hypothesis.

The four cases discussed above exhaust all the possibilities. We deduce that
either G-S or G- T has a transferable component.

We may suppose that G-S has a transferable component G-So. Write

S'=5 -9, "= T\ULS,.
Then
W(G;S,y T’) = n(G;Sv ]‘) - x(GSO)y

20(G-S") = po(G-S) — 1,

2o(G-T") > po(G-T) — x(G-So) + 1.
Hence, by (16),

1(G; S, 1) <k + po(G-S) + po(G-T7) — 2.

Moreover Min (|S’], |T7]) > k, since G-S, is transferable. But these results
contradict the choice of S and 7.
This contradiction establishes the theorem.

3.4. If G is connected, then AN(G) < MNP (G)).

Proof. If N(P(G)) = =, the theorem is trivial. In the remaining case, we
can choose complementary subsets .S and T of E(G) such that

EP(G); S, T) = \MP(G)),

Min (], |7]) > M(P(©)).
We then have, by 3.1,

7(G; S, T) = MLP(G)) + po(G-S) + po(G-T) — 2.
Hence N (G) < MNP (G)), by 3.3.
3.5. If G is connected, then N(P(G)) = MG) (by 3.2 and 3.4).

The preceding discussion is intended to justify the claim that the notion
of connectivity for matroids is a generalization of that of connectivity for
graphs. The results of the present section are not used in what follows.
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4. Wheels and whirls. Let E be a set of 2# elements, where # is an
integer >3. We enumerate them as 41, 4, . . ., 49, and adopt the convention
that a suffix may be replaced by any other integer in its residue class (mod 27).
We write Q for the set of all elements of £ with even suffixes, and R for the set
of all elements of E with odd ones.

Let j and & be integers such that 1 < j < # and j < & < j 4+ #. Then we
write

Cj,k = {A2j; A21+1, A21+3, cooy Aoy A2k}-

The members of C;;, apart from 4s; and A4, have consecutive odd suffixes.
We denote the class of all such subsets C;; of E by C, and we write
W, = C\U {R]}.

For each integer j we write R; = R\U {A4,,}. We write Wr, for the class of
subsets of E obtained from C by adjoining the % subsets R; (1 <j < n).

We refer to W, and Wr, as the wheel and whirl respectively of order .
In the graphic context of (1) the term ‘“wheel” is used for a wheel-graph.
It can be verified that W, is the polygon-matroid of a wheel-graph with the
structure shown in Figure 4A. We shall not use this result in the arguments
which follow, but we shall use the corresponding representation of E as the
edge-set of a wheel-graph to illustrate some definitions. Thus in Figure 4B,
representing the case » = 7, the thickened lines indicate Cj,s, and the broken
ones C3,7. The polygon made up of 44, As, As, As, and 414 corresponds to
C7,3. The rim of the wheel-graph corresponds to R and the set of spokes to Q.

ARn-l Al

F1GURE 4A
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FiGure 4B

4.1. Let © be an integer and let U be a (mod 2) sum of members of W,. Then
[UN {Ayi1, Aoy Azia}] is even.

Proof. 1t is readily verified that the theorem holds whenever U is a member
of W,. It must therefore hold for any (mod 2) sum of such members.

4.2. Let U be a (mod 2) sum of members of W,. Then if U is non-null, it is a
union of one or more disjoint members of W,.

Proof. If R C U, it follows from 4.1 that R = U. The theorem then holds.
If RN Uis null, it follows from 4.1 that U is null.

In the remaining case R M U is a non-null proper subset of R. Let us define
a U-arc of R as a maximal set of elements of R M U having consecutive odd
suffixes. Evidently the U-arcs of R are disjoint and their union is R M U.

Given a particular U-arc U; of R we can write its elements as 4,41,
Asjizy ooy Aog—1, where j < k < j+ n. Write V; = C; ;. Then the sets V,
corresponding to the U-arcs U, are disjoint members of W,. Let 7 be their
union, which is also their (mod 2) sum. The (mod 2) sum of U and V has a
null intersection with R. Hence V = U, by 4.1.

4.3. W, and Wr, are matroids on E.

Proof. 1t is clear that Axiom I holds for each of these classes. To verify
Axiom II, let X and Y be any distinct members of the class M = W, or Wr,
under consideration, and let ¢ and & be members of E such thata € X N\ YV
and b € X — Y. We must show that M has a member Z such that
bEZC (XVUY)—{a}. If M =W, this result follows from 4.2, since b
is in the (mod 2) sum of X and Y and this sum is a subset of (X U V) — {a}.
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Suppose therefore that M = Wr,. If X and Y are in C, there is a circuit
Z' of W, such that b € Z/ C (X U Y) — {a}. If Z/ € Wr,, we may take it
as Z. In the remaining case we have Z' = R. We can then write X = C;; and
Y = Ci, jtn Accordingly Z is R; or Ry, whichever does not include a.

If X =R, and ¥V =R, where j <k <j+ n, we can put Z = C,; or
Ck, j+n» Whichever does not include a.

In the remaining case, we may suppose one of X and Y to be of the form R,
and the other of the form C; ;. If 4:; = @, so that 2 = j or & (mod 2n), we
write Z = R; or R, respectively. If 4,; = b we adjust the notation, by adding
a multiple of # to j, so that ¢ < j < n 4+ ¢. We then put Z = C;,; or C;, i1,
whichever does not include a. If 4,; is neither a nor b, there is a circuit T of W,
such that

beET S (RYUC) —fa € (XVUY) — {a}.

Evidently T is not R. It is therefore a member of Wr, and we may take it as Z.
Let j and % be integers such that 1 < j < #wandj < k < j + n. We write

Dj,lc = {Ang, A2j+2y A21+4y RO A2ky A2k+l}'

The members of D;;, apart from 4,;,; and Ag41, have consecutive even
suffixes. We denote the class of all such subsets D, ; of E by D. In Figure 8C,
representing the case n = 7, the thickened lines indicate D45 and the broken
ones Dg,s.

Ficure 4C

For each integer j we write Q; = Q\J {A43:,41}.

We define L as the class of all non-null subsets Y of E such that |V M X| = 1
for each X € C. Replacing C by W, and Wr, in this definition, we define sets
L, and L, respectively in place of L.
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4.4. Let Y be any member of L. Then there exists X € D\J {Q} such that
XCcv.

Proof. If R C Y, then 43, € Y for some 7 since |V M Cj, ;44| # 1 for each j.
But then D;;,; C V.

If RN\ Y is null, consideration of the sets C,,;4; shows that Q C V.

In the remaining case, R M Y is a proper subset of R. Suppose first that we
can find an integer j such that 4,1 and 4,;,» belong to ¥ but 42;.3 does not.
Let % be the first positive integer such that 4s;1941 is in Y. Consideration of
the sets Cji1, 12, Ciro,i+3, €tc. shows that Aejye, Aojys, - - ., Aojperareall in V.
Hence if £ < n, we have D; ;1 € V. The only alternative is k& = », which
implies that Q C V.

When R M Y is a proper subset of R, we can always find an integer % such
that Aopyy € Yand Aopys € V. I Aoy € Y, we apply the preceding argument
with 7 = k. If Aeyye € V, consideration of Cj,;y1 shows that 4s, € V. In this
case, let k be the first positive integer such that Ao o4y is in V. Evidently k
exists and is at most #. Consideration of the sets C,_1,3, Cy—2,—1, €tc. shows that
Aoy Aop_ay . o .y Aap_spre are all in V. Accordingly either Dy 4, € YVorQ C V.

4.5. (W)* = D U {0)].

Proof. It is easy to verify that each member of D \U {Q} is in L;, and that
no member of D \U {Q} contains another. But each member of L, belongs to L
and so contains a member of D \U {Q}, by 4.4. Hence D \U {Q} is the set of
minimal members of L,, that is (IW,)*.

4.6. (Wr)* = D\U {0y, Qs ..., Oul.

Proof. Write 7= D \J {Q4, Qs, ..., Q,}. It is easy to verify that each
member of T is in L., and that no member of 7 contains another.

Suppose Y € L,. Then Y belongs to L and therefore contains either Q or a
member of D, by 4.4. But if Q C Y, then 42,;, € ¥ for some integer 1, since
| ¥ M R,| 5% 1 for each integer 7. Hence Q; C Y.

We deduce that 7" is the set of minimal members of L,, that is T = (Wr,)*.

The operation of increasing the suffix of each member 4, of E by 1 transforms
Cinto D, R into Q, and R; into Q,, for each integer 7. Hence, by 4.5 and 4.6, we
have

4.7. The dual of a wheel is a wheel, and the dual of a whirl is a whirl.

5. Rank and connectivity in wheels and whirls. Let M be any
matroid on a set £, and suppose 4 € S C E. We define an integer (M ; .S, 4)
as follows: 8(; S, 4) = 1 if there is a circuit X of M such that 4 € X C .S,
and 8(M;S, A) = 0 otherwise. Thus

(22) O(M;S, A) = r((M X S)-{4}),
(23) O(M; S, A) = r(M X S) — r(M X (S — {4}])),
by (6).
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We make the following abbreviations:
(24) My=MX(E-—{4}),
(25) M, = M-(E— {4}).

Now let S and 7" be complementary subsets of £ — {4}. Applying (23) to
(8), we find that

(26) E(M'4;S, 1) = ¢(M;S\I {4}, T) — 0(M; E, 4)
+ 0(M; S\ {4}, 4).

In a similar way we find
@7) tM";S, 1) =EM;S\Y A}, T) +6(M; {4}, 4)
—0(M; T\J {4}, 4).
However, in the proof of (27) we need the general theorem
(28) (M-UyV=MY,
where V C U C E, see (2, 3.332). This enables us to write, for example,
r(M” X S) =r(M-(E — {A})) — r(M-T)
=7r(M X (S\U{4})) — r(M X {4}),

by (6). The details are given in (3, §3).
We proceed to apply these results to the theory of wheels and whirls. We use
the notation of §4 for W, and Wr,.

5.1. Write M = W, or Wr,, and suppose S C E. Then the following proposi-

tions hold:
(1) If ST Rthenr(M X S) = 0, unless S = Rand M = W,, in which case
r(M XS)=1.

(i) If SC Q, then r(M X S) = 0.

Gil) If R C S, then r(M X S) = |S — R|.

(Gv) If Q C S, then r(M X S) = |S — Q.

v) If SN R is a proper non-null subset of R and S, then

r(MXS)<ISNQ|—1.

Proof. Proposition (i) expresses the fact that S contains no circuit of M,
except that S is itself a circuit when S = R and M = W,. Proposition (ii)
follows from the fact that Q contains no circuit of M.

To prove (iii) we suppose first that |S — R| = 1. Then M X S has just one
circuit, R if M = W, and one of the sets R, if M = Wr,. Hence

r(MXS)=1=|S—R)|

If |S — R| > 2, we choose 4 € S — R. There is a circuit X of M, belonging
to C,such that 4 € X C© 5. Hence (M X (S — {4})) = r(M X .S) — 1, by
(23). Proposition (iii) now follows by induction on |S — R|.
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If Q C S, then each cell of R M S belongs to a circuit X of M, of the form
C;,+1, such that X € S. Thus for each 4 € R M S we have

r(M X (S—1{4})) =r(M XS) —1,
by (23). Repeated application of this result yields
r(MXS)=[S=Q +r(MXQ)=[S—20Q|, by (i.

To prove (v) we suppose first that [S/M Q| = 1. It is then clear that S
contains no circuit of M and so (M X S) =0 = |SN Q| — 1. Hence we
deduce, using |[S/MN Q| — 1 applications of (23), that in the general case
r(MXS)<[SNQl—1.

52. If M = W, or Wry, and A € E, then r(M) =n, r(M',) =n — 1,
and r(M" ;) = n.

Proof. The first of these results follows from 5.1, (iii). The second then follows
from (23). For the third we have

r(M"4) = @2n — 1) — r((M*) ),
by (3) and (5),
=02n—1)— (n—1) =mn,
by 4.7.

53. N(W,) = N(Wr,) = 3.

Proof. Write M = W, or Wr,. Let S and 7 be complementary subsets of E.
We note that [E| = 21 > 6.

Suppose |S| < 2. Since a wheel or whirl has no circuit of fewer than three
cells, it follows from 4.7 that (M X S) = r(M* X S) = 0. Hence

§(M;S, T) > |S],
by (11).
We may now suppose that |S| > 3 and |7 > 3. If S C Q, we have
EM;S,T)=n—0—|TNQ|+1, by @® ands.l, =[S +1>3.
If S € R, we have
EM;S,T) >n—1—|TNR|+1, by (8) and 5.1, = |S| > 3.
Similar results are obtained if 7 C Q or 7' C R.

In the remaining case each of S and 7" meets both Q and R. Applying 5.1,
(v), we have

EM; S, T)>n—[0NS| = [0NT]+3 =3.

From the above results we see that \(4/) > 3.

Consider, however, the special case in which S is the circuit C; , of M. Then
IS| = 3, |T] > 3, and (M X S) = 1. Moreover, S contains no circuit of M*,
by 4.5 and 4.6, and therefore » (M* X S) = 0. It follows that §(M; S, T) = 3,
by (11). We deduce that A(4/) < 3. The theorem follows.
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54 If M = W,or Wrpoand A € E, then N(M' 1) < 2 and N(M" ;) < 2.

Proof. We have 4 € D, ;41 for some integer j. Write S = D, ;1 and
I'=E—S. Then |S| =3 and |7]| > 3. Evidently (M X S) =0 and
r(M* X S) = 1. Hence £§(M; S, T') = 3, by (11).

We have 6(M; E, A) =1 and 6(M; S, A) = 0. Hence

EM ;S = {4} T) =2,

by (26). Since |S — {4}| = 2 and |T] > 2, it {ollows that N(M",) < 2.
We have also N(M" ;) = N((M*)"4), by (12) and (5), <2, by 4.7 and the
first part of the present proof.

If M is a 3-connected matroid and 4 is a cell of M such that neither M’ ,
nor M’ 4 is 3-connected, then we say that 4 is an essential cell of M. We may
summarize the results of 5.3 and 5.4 as follows.

5.5. The wheels and whirls are 3-connected matroids in which every cell is

essential.

6. Some theorems on connectivity. In what follows we are mainly
concerned with proving that a 3-connected matroid in which every cell is
essential must be either a wheel or a whirl. In the present section we set out
some auxiliary theorems. We take M to be an arbitrary matroid on a set E.

From (7) and (8) we deduce that

28) EMGS,T)+EM; U V) >EQLSUUTNAT)
+:tM;SNU, TU YD),

where {S, T} and {U, V} are any two pairs of complementary subsets of E.
6.1. Suppose A € ST T C E. Then
O(M;S,A) <6(M;T,A).
This theorem follows at once from the definition of 6.

6.2. Let S and T be complementary subsets of E such that each circuit of M is
contained 1n either S or T. Then §(M;S, T) = 1. .

Proof. By the definition of rank, we must have
r(M) =r(M XS)+r(M X T).
Hence ¢(M; S, T) = 1, by (8).
6.3. If M is 2-connected and |E| > 2, then 6(M; E, A) = 1 for each A € E.

Proof. 1f the theorem fails, we can find 4 € E such that each circuit of M
is contained in E — {4}. Then £(M; {4}, £ — {A4}) = 1, by 6.2. Accordingly
N(M) = 1, which is contrary to hypothesis.
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6.4. If M 1is 2-connected and |E| < 3, then N(M) = o.

Proof. Since |E| < 3 it is not possible for M to be k-separated for any
integer k > 2.

The next proof can be regarded as a simple example of the kind of argument
encountered in §7.

6.5. If M is 2-connected and A € E, then etther M' 4 or M 4 1is 2-connected.

Proof. Suppose the theorem fails. Then there are pairs {.S, 7'} and {U, V} of
complementary subsets of E — {4} such that

(29) Min (IS, [71, [U], [V]) > 1,
(30) EM ;S8 T) =1,
(31) EM'4; U, V) = 1.

Using (26) and the 2-connection of M, we deduce from (30) that
(32) EM;S\U{AY, T) = £(M; 8, T\U {4}) = 2,
(33) 6(M; S\ {4}, 4) = 6(M; T\U {4}, 4) = 0.
Similarly, by (27) and (31),

(34) EQL U (AL V) = 8(M; U, VU {4)) = 2,
(35) 8(M; VU {4}, 4) = 6(M; U\U {4}, 4) = 1.

By (26), (34), and 6.3 we have

(36) EM 4 U V) <2

Hence, by (28) and (30),
3>EM 4, SNU,TYUV)+EM L, SUU,TNYV).

We can therefore adjust the notation, by interchanging S with 7" and U with V
if necessary, so that

37) EM G SNU, T UV = 1.
We note that (M; 7\J VU {4}, 4) = 1, by 6.1 and (35). Hence
EM; SN U, TU VU {4)) =1,
by (26), (37), and 6.3. It follows from (29) and the 2-connection of M that
SN U| = 0.

But then U € T, whence (M, U\J {4}, 4) < 6(M;T\J {4}, 4) by 6.1.
This is contrary to (33) and (35).

6.6. Suppose M is 3-connected and |E| > 4. Then \(M' 4) > 2and \(M"' ;) > 2
for each A € E.
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Proof. Suppose the theorem fails for some 4 € E. Then we can find comple-
mentary subsets S and T of E — {4} such that

Min (IS, [T]) > 1 and §(WV;S,7) =1,

where N is either M’ or M’ .. Without loss of generality we may suppose
that 1 < |S| < |T] > 2. It follows from (26) and (27) that

s§(M;SVU{A4},T) < 2.

This implies that M(M) < 2, contrary to hypothesis.

6.7. If M is 3-connected and |E| > 4, then each circuit Y of M satisfies
Y] > 3.

Proof. Suppose Y is a circuit of M such that [¥]| < 2. Thenr(M X ¥) =1
and »(M* X Y) > 0. Hence

tM;Y,E-V)LK|Y|—-1-041=]Y|,

by (11). Since 1 < |¥Y| < E — Y], it follows that A\(M) < |Y]| < 2, contrary
to hypothesis.

6.8. Suppose M is 3-connected and has an essential cell A. Then |E| > 5.

Proof. Suppose |E| < 4. Then one of M’, and M", is 2-connected by 6.5,
and therefore 3-connected by 6.4. Hence A4 is not essential, contrary to
hypothesis.

7. Triangles and triads. In this section, M denotes a 3-connected mat-
roid on a set E. We note that M* is also 3-connected by (12).

A triangle of M is a circuit of M having just three cells. A iriad of M is a
triangle of M*. We note that the triads of M* are the triangles of M, by (2).

7.1. Let A be an essential cell of M. Then A belongs to a triad or triangle of M.

Proof. Since A4 is essential, it follows from 6.8 and 6.6 that there are pairs
{S, T} and {U, V} of complementary subsets of E — {4} such that

(38) Min (IS}, |71, [U], [V]) > 2,

(39) EM' 458, 1) =2,

(40) §M' ;U V) =2,

In analogy with the proof of 6.5 we find by (26) and (27) and the 3-connection
of M that

(1) eM;S\UAY, T) = £(M;S, T {4})

= t(M: UU A}, V) = ¢(M; U, VU {4)) = 3,
(42) O(M;S\U {4}, A) = 6(M; T \U {4}, 4) = 0,
(43) O(M; U'U (A}, A) = 0(M; VU {4}, 4) = 1.

I
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From (26, (41), and (43) we have

(44) §M'4; U, V) =3,
since (M ; E, A) = 1 by 6.3. Hence, by (28),
(45) EM;,SVUU,TNTV)+ M, SNU,TUV) 5.

We may therefore adjust the notation, interchanging S with 7 and U with V
if necessary, so that

(46) EM;SNU,TUY) 2
By 6.1 and (43), we have 6(M; T \JU VU {4}, 4) = 1. Hence, by (26),
(A7) EM; SN U, TU VU A4} <2

It follows by the 3-connection of M that [SM U| < 1. Butif [SN U| = 0 we
have UC T, 0(M;U\J{4},4) <0(M;T\U{4},4), by 6.1. This is
contrary to (42) and (43). We deduce that S M\ U consists of a single cell B.
We now repeat the first part of the preceding argument with U and V
interchanged. From the analogue of (45) we deduce that either

EM G SUV, TNU) L2
or

EM;SNTV, TUU) 2.
But

O(M;SU VU4, A)=0M; TU U {4},4) =1,

by (43) and 6.1. Hence, by (26), either
EM;SUTVVUALTNU)K2

or
EM; SNV, TUUWU {4}) 2.

It follows by the 3-connection of M that

(48) SNV|=1 or |[TNU|=1,

since the relations V' C 7"and U C S are false by 6.1, (42), and (43).

If S M V consists of a single cell C, we have S = {B, C}. Then
(49) r(M X {4, B, C}) + r(M* X {4, B, C}) = 1,

by (11) and (41). If 77N\ U consists of a single cell C, then U = {B, C}, and
(49) again follows from (11) and (41). By (49) and 6.7, the set {4, B, C} is
a circuit of either M or M*, that is it is a triangle or triad of M.

7.2. Suppose |E| > 4. Let {A, B, C} be a triangle of M such that N\(M',) < 3
and N(M'p) < 3. Then there exists a triad of M which includes A and just one
other cell of {4, B, C}.
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Proof. By 6.6, there are pairs {S, 7"} and {U, V} of complementary subsets
of E — {4} and E — {B}, respectively, such that

(50) Min (S}, [T, [U], [V]) > 2,
(61) §M (S, T) = 2,
(52) EM 5 U, V) = 2.

Using (26) and the 3-connection of M, we deduce that

(33) EM;S\U{A}, T) = £(M; S, T\J {A4})
=t UV B V) = ¢(M; U, VU {B}) =3,

(54) O(M;S\U (A}, A) = 0(M; T U {4}, A)
=9(M; U\U {B},B) = 6(M; VU {B}, B) = 0.

If B and C are both in .S or both in 7, formula (54) is contradicted, since
{4, B, C} is a circuit of M. So without loss of generality we may write

(55) B¢ S, cecT.
Similarly we may put
(56) A eU, ceV.

Let us now make the assumption that the theorem fails.
Suppose (M ; S, B) = 0. Then, by (26) and (53),

(7) E(M'5; S — (B}, T'U {4}) = 2.

Now 8(M; T \U {4, B}, B) = 1 because of the triangle {4, B, C}. Hence,
by (26) and (57),

(58) ¢§(M;S — {B}, T\U{4, B}) = 2.
Since M is 3-connected, it follows, by (50), that [S — {B}| = 1. Accordingly
(59) S\ {4} = 3.

We now have
r(M X (SU{4})) +r(M* X (S\U {4}) =1,

by (11) and (53). But »(M X (S\U {4})) = 0by (54) and 6.7. Hence S \U {4}
is a triad of M, by 6.7. Since S \U {4} contains 4 and B but not C, this result
is contrary to assumption.

From this contradiction we deduce that
(60) 60(M;S, B) = 1.

A similar argument, in which the roles of S and 7', and also B and C, are
interchanged, shows that

(61) 9(M; T, C) = 1.
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Similarly we have

(62) 0(M; U, 4) =1,
63) 0(M; V,C) = 1.
By (26) and (53),
(64) EM'4; U — {4}, VU {B}) = 3.

Applying (28) to (51) and (64), we obtain
©65) t¢WM;SNU, T\JUVU{B}
+EM . SYU (U —{4]), TN V) <5

Hence either

EM SN U, TUVUI{B}) <2
or

EM 4 SYU U —{4}), TN V) <2
Now 6(M; T U VU {4, B}, A) = 1 because of the triangle {4, B, C}, and
6(M;S\UU,A) =1by (62) and 6.1. So, by (26), we have either

EM;SNU, T\UVVU{4,B}) <2
or
EM;SUU, TN V) L2

Now SN U is non-null, for otherwise we would have U — {4} C 7, which
implies that 6(M; U, 4) < 6(M; T\U {A}, A) by 6.1, and the latter result
is contrary to (54) and (62). Moreover, 7 M\ V is not null since it contains C
by (65) and (56). It follows by the 3-connection of M that either

(66) SNUl=1 or |[TNV|=1.
In a similar way we can deduce from (64) that either
EM SN (VULBE, TV (U —{4})) <2

or
EM G, TNUSUT) 2.

We have 6(M; T\U U, A) = 1 by (62) and 6.1, and
O(M;SUTVU{4},4) =1
because of the triangle {4, B, C}. So, by (26), we have either
§M; SN (VU({B}), TUU) L2

or
EM; TN U,SU VU {4}) < 2.

Now 7'M\ U is not null, for otherwise we would have U — {4} C S, con-
trary to (54), (62), and 6.1. Moreover, S/ (VU {B}) is not null, for it
includes B, by (55). It follows by the 3-connection of M that either

67) ISN(VUIBD| =1 or [TNU|=1.
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Suppose that the first alternative of (67) is true. Then S/ V is null, by
(55). Hence |V| =1 or |S| = 2, by (55), (56), and (66). The first of these
alternatives is contrary to (50). The second is contrary to 6.7 since, by (60),
there is a circuit of M contained in .S. We deduce that [T N U] = 1.

If the second alternative of (66) holds, we now have |T| = 2, by (55). This
contradicts 6.7 since 7" contains a circuit of M by (61). We conclude that

(68) ISNU|l=|TNU|=1.
We denote the members of S M U and 7'M U by J and K, respectively. Thus,
U = {4,J, K},

by (56). We note that U is a triangle of M, by (62) and 6.7.
J is distinct from A4, B, and Csince 4 ¢ S, B ¢ U, and C ¢ U. Moreover,
K is distinct from 4, B, C,and Jsince 4 ¢ T,B ¢ U,C ¢ U,and J ¢ T.
By our assumption, the set {4, B, J} is not a triad of M. Hence
r(M* X {4,B,J}) =0, by (12) and 6.7,
r(M-{4,B,J}) =3, by (2), 3)and (4),
(69) r(M X (E — {4, B,J})) =r(M) — 3,
by (6).
Suppose (M; E — {4, B, J}, K) = 1. Then
r(M's X (E— (U {B}))) =r(M X (E— (UVY {B})))
=r(M) — 4,
by (23) and (69). We have also »(M'p) = »(M) — 1, by (23) and 6.3. More-
over, ¥*(M'z X U) = r(M X U) = 1 since U is a circuit of M. Hence, by (8)
EM'p; U V)= (M) —1) — (r(M) —4) —1+1=3,

which is contrary to (52).
We deduce that 6(M; E — {4, B, J}, K) = 0, whence 8(M; T, K) = 0 by
6.1. Hence, by (26) and (53),
E(M'g; SU (A}, T — {K}) = 2.
But 6(M;S\U {4, K}, K) =1, by the triangle {4, J, K}. So by another
application of (26) we have
EM;SU{4, K} T — {K}) = 2.

It follows by the 3-connection of M that |T — {K}| < 1, whence |T] < 2.
But 7T contains a circuit of M, by (61). These results contradict 6.7. Our
assumption is thus false, and the theorem follows.

7.3. Suppose |E| > 4. Let {4, B, C} be a triad of M such that N\(M" ,) < 3
and N(M'" g) < 3. Then there exists a triangle of M which includes A and just
one other cell of {4, B, C}.
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We obtain this result by applying 7.2 to M*. For NM*) = N(M),
N ) = M) 4), and N(M" ) = MN(M*)'5), by (5) and (12).

8. The main theorem.

8.1. Let M be a 3-connected matroid, on a set E, in which every cell is essential.
Then M¥* is a 3-connected matroid having the same property, (by (4), (5), and
(12)).

8.2. Let M be a 3-connected matroid, on a set E, in which every cell is essential.
Then M 1is a wheel or a wharl.

Proof. By 4.7 and 8.1 it does not matter whether we prove this theorem for
M or for M*,

We write a triad or triangle {4, B, C} simply as ABC. We shall find it
possible to make use of diagrams in which cells of M are represented by edges
of a graph. We then represent a triangle of M by a graphic triangle, and a triad
of M by three edges meeting at a vertex.

M has at least 5 cells, by 6.8. Let 4 be one of them. It belongs to a triangle
or triad of M, by 7.1. Replacing M by M* if necessary, we may suppose that
A, belongs to a triad 41 A2 A3 of M. By 7.3, we can adjust the notation so that
M has a triangle Ao A3 A4, where A4 = A,. By 7.2, there is a triad 4: 44 45 or
Az Ay As of M, where A5 is not A, or A3. We can evidently adjust the notation
so that 43 A4 A5 is a triad of M; cf. Figure 8A.

FiGure 8A

In what follows, we make frequent use of the principle that a circuit of M
and a circuit of M* cannot have exactly one cell in common.

Assume 4, = A; By 7.3 there is a triangle of M which includes 4; = 45
and just one other cell of 4, 45 4;. By the principle just stated, it includes at
least one cell of 43 A4 A5 other than A ;. Thus either there is a triangle 4, 4, A4
or Ay A3 Ay of M, or there is a triangle 4, 43 A of M, where 4 is distinct
from A4, A, A, and A,

In the first alternative, we write U = {41, 42, A3, A4} and note that U
contains two distinct triangles and two distinct triads of M. Using (23) we
deduce that (M X U) > 2 and »(M* X U) > 2. Hence

EM; U E—-U) =1,
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by (9) and (11). It follows from the 3-connection of M that U = E. But this is
impossible, by 6.8.

In the second alternative, we renumber 4, A1, A3, A2, and Asas A4, Ao, 43,
Ay, and A4; respectively, and interchange M and M*.

We can thus always reduce to the case in which M has five distinct cells
Aq, s, A3, Ay, and Assuch that 4; As Azand A3 Ay Asaretriadsand 4, A3 4.4
is a triangle.

Now, by 7.3, M has a triangle 43 45 Agor A4 A5 A¢. In the first alternative,
Agis A or A by the principle stated above. However, if 4, A3 A5 is a triangle
we find, using Axiom II and 6.7, that 45 44 45 is a triangle. But this is impos-
sible since 43 A4 A5 has just one common cell with the triad 4; 4, 4.

Ficure 8B

In the first alternative, we therefore have triangles 42 4; A4 and A, 43 A5
and triads 4, 42 4; and A3 A4 As; see Figure 8B. Hence if

U= {Al; A?y A3y A47A5}7

we have r(M X U) > 2 and r(M* X U) > 2. Moreover, if the two cells
Az and A4 are removed, any remaining circuit of M X U must be a triangle
of M having only one cell in common with the triad 43 44 45, by 6.7. Since
this is impossible, we have r(M X U) = 2, by (23). Similarly all the circuits
of M* X U are destroyed by the deletion of the cells 4; and 4, of the triangle
Ag A3 Ay, and r(M* X U) = 2. Hence

¢M; U E—-U) =2,

by (11). We note that E — U is not null, by (8). Hence, by the 3-connection
of M, E — U consists of a single cell, 47 say.
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By 7.1, 7.2, and 7.3 the cell 4; must belong to a triangle of M. This triangle
cannot include 43, since it would then have to have another cell in each of the
triads 4, A2 A3 and A3 A4 As. Evidently the triangle is 41 A2 A7 or A4 A5 44,
and we can adjust the notation so that the latter possibility holds.

We deduce that the notation can be adjusted so that our second alternative
holds, that is, there is a triangle 4, A5 A¢. Then A is distinct from 4, 4, A5,
Ay, and 43, since it cannot belong to the triad 4, 4. 43;; see Figure 8C.

Al A:I, A5
A+
A
A 2 13
Ficure 8C

We may now make the following assertion. There is an integer #n > 3 such
that M has 2x distinct cells 4y, Ay, A3, ..., Aay, with the following property:
A; A1 Aje is a triangle of M if j is even and a triad of M if j is odd
(1 € j < 2n — 2);see Figures 8C and 8D. We may further suppose that these
cells are chosen to correspond to the greatest possible value of #.

FI1GUrRE 8D
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By 7.2 there is a triad 7" of M which contains 4, and just one other member
of the triangle 4,y A9,—1 A2, We denote the third member of T by A, 1.

Suppose As,—s € T. Considering the triangle 42,4 Ao,—3 Aon_s, We see that
A sy1 must be either A, or A, 3. Applying Axiom II to the circuits 7" and
Aop_z Aop_s Ay of M*, we find that there is a circuit ¥ of M* contained in the
set U = {Aoys, Aoys, Aoy—1, As,}. We have indeed ¥ = U, by 6.7, since ¥
cannot have only one cell in common with either of the triangles 4s,_4 A9,_3
Agn—e and Aoy Asy1 As of M. Applying Axiom II to the circuits ¥ and
Aoys Aoy_s Aon_z of M*, we find that there is a circuit Z of M* contained in
{Asys, Aon—s, Aoy1, A2n}. Then Z = {A9,_5, Asp—1, Asn} since Z cannot have
only one cell in common with the triangle A, 4 A2,—3 A2,_s of M, and by 6.7.
If n > 4, then Z has just one cell in common with the triangle A9, ¢ A 2,5 Aon_a
of M. We deduce that n = 3, so that Z is the triad 45 4As A, of M.

In the remaining case, As,—; is in 7. Then 4,1 cannot be one of the cells
A9y Asy Ayy ..., Aoys, for otherwise it would be the only common cell of T
and some particular triangle of M. We conclude that in each case M has a
triad Ao,y A2y Aont1, where Ag,yy is either identical with A4, or is distinct
from each of the cells 4; (1 <j < 2n).

We can now diminish each suffix by 1, interchange M and M*, and repeat
the preceding argument. The result, in terms of the original notation, is that M
has a triangle Aq, A2y1 Aopy2, where As,ys is either identical with A, or dis-
tinct from each of the cells 4; (1 < k < 2n + 1).

Consider the case in which 44,,; is not 4. Then 4 4,.5 is not 4; or 4, since
the triangle A3, A2,11 Aont2 does not have only one cell in common with the
triad 4; 4, A;. But this result is contrary to our choice of #.

We may now suppose that 4,1 is 41. Considering the triad 4, 4, 4;, we
see that A4 ,,» must be A4..

Write U = {44, Ay, ..., As,}. Deleting the cells of odd suffix, one by one,
from M X U we find, using (23), that r(M X U) > n. Similarly, deleting cells
of even suffix from M* X U we find that »(M* X U) > n. Hence

by (9) and (11). It follows, by the 3-connection of M, that U = E.

Reverting to the notation of §4 we may say that the sets C;, ;41 are circuits
of M and that the sets D; ;1 are circuits of M*. But suppose C;,; and C;
are circuits of M, where 7 < j < k < n + 4. Then, by Axiom II, there is a
circuit Y of M contained in C; ;. But then ¥ must be identical with C;,,, since
it cannot have only one cell in common with any of the triads A ss4+1 4 opt2 A 2pys,
where 7 — 1 < h < B — 1. We deduce that C € M. Similarly D C M*.

Applying Axiom II to the circuits C;, ;41 and Cji1, 54, of M we find that there
is a circuit Z; of M contained in R;. Consideration of the triads of M shows that
Z ; must contain the whole of R. We deduce that either R is a circuit of M or
R; is a circuit of M for each j in the range 1 < j < #. Similarly, either Q is
a circuit of M* or each Q; is a circuit of M*.
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By 4.4 each circuit of M* contains either Q or a member of D. Combining
this with the results of the two preceding paragraphs, and using Axiom I,
we find that M* = D\J {Q} or D \U {Q1, Qs, . . ., Qu}. Thus M* is a wheel or
a whirl, and the theorem is proved.

The main result of this paper is the combination of 5.5 and 8.2.

8.3. A 3-connected matroid has all its cells essential if and only if it is a wheel
or a whirl.
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