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Assuming the Birch and Swinnerton-Dyer conjecture, the root number of an elliptic
curve E/Q is —1 to the rank of E(Q), the group of rational points of E. Given a ‘gen-
eric’ algebraic family E; of elliptic curves, one would expect to find the same numbers
of curves with even and odd rank (see, for example, the graph in [16]). If E; is a family
of twists of a given curve (i.e., the j-invariant is constant), then there are known coun-
terexamples: assuming Selmer’s Conjecture, Cassels and Schinzel prove in [2] that
(7+7t*)* = x* — x has odd rank for any ¢ € Q. Given E/Q and a polynomial
f(t) € Q[1], we can build the family E/1 of twists of E by f{); then Rohrlich [11] proves
that, if £ acquires everywhere good reduction over some Abelian extension of Q, then
W(E/) = W(E)sgn(f(1)). Given any E/Q, the author ([8, 9]) has shown that the set
{Avo W(E/")} is dense in the interval [—1, 1], where f(¢) varies over all polynomials in
Q7] and Avg W denotes the average value of the root numbers for 7 € Q.

It has been suggested by Silverman — see the final remarks in [14] — that this kind of
phenomenon could occur only for constant families: we present here some counter-
examples with ¢ € Z.

THEOREM 1. Let E;:y* = x> +1x*> —(t+3)x+ 1. Then j(t) = 256(* + 3t +9),
while W(E,;) = —1 for every t € L.

THEOREM 2. Let
3612 . A
t— 1728 t—1728°

t
E;: y2 =x +sz (1)

*This work was supported by a EU TMR fellowship ‘Arithmetic Algebraic Geometry’, contract ERB
FMR XCT 960006.
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Then j(t) = t while the average value over Z of W(E,) is 0.0037182...

The example of Theorem 1 is due to L. Washington: he proved that, for every
t such that > + 37 4+ 9 is square free and assuming the finiteness of the Tate-Shafar-
evich group, the rank is odd [15]: this has been verified unconditionally for r < 1000
[4]. Theorem 1 is a (not too difficult to prove) consequence of the Halberstadt—Rohr-
lich tables (as presented in Section 1): for completeness, we give a proof in Section 2.
In order to prove Theorem 2, instead, we need to deal with some density result,
somewhat in the spirit of [9].

Some remark on notations: we will often be sloppy and confuse an elliptic curve E
with its Weierstrass equation y> 4+ a;xy + a3y = x> + ayx? + asx + ag; let ¢4, ¢6 and
A be the usual invariants. A prime will always be a finite prime, while p will denote
a prime number, unless specified otherwise. We will also shorten (v,(c4), v,(cs),
vp(A)) as vy(ca, ¢, A). For any x € Q,, we will write x, = x’ for x/pN; forn =4,6
we will also write ¢, . for ¢,/p”, where w = nlv,(c,)/n] + e. At last, recall that if E
is a Weierstrass equation for an elliptic curve with coefficients «; € Q,, then any
equivalent equation E with coefficients a; is obtained by a change of coordinates of
the form

X = u’X + r, y= u3y + ulsX + t, (2)
where (u,r, s, t) € Qp and u # 0.

1. Root Numbers

Let E be an elliptic curve over Q of conductor N. By the Modularity Theorem (cf.
[5]), the L-function attached to E is the Mellin transform of a normalized Hecke
eigenform for I'y(N) and thus admits an analytic continuation to an entire function
satisfying the functional equation

Ax(2 — s) = W(E)Ap(s), where Ag(s) = N"*2n)*T(s)Lx(s).

The number W(E) = +£1 is called the root number of E. It is a consequence of the
Birch and Swinnerton-Dyer Conjecture that W(E) = —1 if and only if the group
of rational points of E has odd rank. On the other hand, W(E) can be expressed
as a product [[ W,(E) taken over all places of Q, each local root number W, being
defined in terms of representations of the Weil-Deligne group of Q,. ([3] and [12]).
We recall here some results.

FACT 3. Let p be any prime of Q. Then

(1) If E is any elliptic curve over R, then W (E) = —1.

(2) If E/Q, has good reduction, then W,(E) = 1.

(3) If E/Q, has multiplicative reduction, W,(E) = —1 if and only if the reduction is
split.
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(4) If E/Q, has additive, potentially multiplicative reduction and p > 2, then
W,(E) = (=1/p); if p = 2, then W,(E) = —c6/2%) mod 4.

(5) If E/Q, has additive, potentially good reduction with p >3, let e=
12/ged(v,(A), 12). Then W,(E) = (—x/p), where x=1if e=2 or 6, x =3 if
e=3and x =2 if e =4.

(6) If E/Q, has additive, potentially good reduction with p = 3 (resp. p = 2) and E
is given in minimal form, then W,(E) depends only on the p-adic expansion of
¢4, cg and A; if E'is given in minimal Weierstrass form, W,(E) can be read from
Table II (resp. Table I) of [6].

Notice that the first four points are classical (but see [11] for proofs) except the
2-adic case of point 4 which, in this form, is due to Connell [2]; the fifth is due to
Rohrlich [11] and the last to Halberstadt [6] (by the Modularity Theorem, his result
is now unconditional).

It follows that, if p > 3, it is straightforward to compute W),(£). Even for the cases
p < 3, the only difficulty is when E has additive, potentially good reduction at p, in
which case we need first to compute a minimal equation, which is not a trivial task if
we are working on a parametric family. Thus, we would rather remove the minim-
ality restriction on Halberstadt’s tables: our results are presented in Tables I, 1I
and III where, for completeness, we have added also the cases missing from [6],
namely good and (potentially) multiplicative reduction.

1.1. HOW TO READ THE TABLES

Let (a,b,c) be the smallest triplet of nonnegative integers such that
a = vp(cs) mod4, b=wvy(cs) mod6, ¢=uv,(A) mod12. Then Table I (resp. II, resp.
III) lists W, = W,(E) for p > 3 (resp. p = 3, resp. p = 2), the different cases classified
by the value of (a, b, ¢). If this value is not enough to make a distinction, a special
condition depending only on the p-adic expansion of ¢4, ¢4, A is given.

Table 1. The local root number W,, for p >3

(a, b, ) Kod o(N) w,
(>0,0,0) Io 0 +1

(0, >0,0) I 0 +1
(0,0,>1) I 1 —(=¢s/p)
(=1,1,2) 11 2 (~1/p)
(1,22,3) 11 2 (=2/p)
(>2,2,4) v 2 (=3/p)
(2.23,6) 1§ 2 (~1/p)
(>2.3,6) 1§ 2 (~1/p)
(2737 27) ;1(—6 2 (7l/p)
(>3,4,8) v+ 2 (-3/p)
(3,25,9) I1* 2 (—2/p)
(>4,5,10) I 2 (—1/p)
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Table II. The local root number W;

(a,b,c) Special condition Kod v(N) W

0,0, 0) Iy 0 +1
(1,23,0) Iy 0 +1
0,0,>1) Ic 1 =103
*(1,2,0) 1 4 1

2,2, 1) I 5 d=1(3)
(>2,3,3) A2 +2# 3¢, (9) 11 3 c, =4,7,8 (9)
(>2,3,3) &2 +2=3¢4, (9) 11 2 +1

(2. 4,3) 11 3 d#d(3)
(2,>5,3) 111 2 +1

(2,3,4) 1 4 +1

2.3,5) v 3 A =d (3)
(>3,4,5) 11 5 & =2(03)
(2737 26) I?‘iﬁ 2 -1

(3,5,6) v 4 =2 (3)
(3,>6,6) I3 2 -1
(>4,5,7) v 5 ¢, =2(3)
(>4,6,9) A2 +2=3c44 (9) Ir* 2 +1

, 6, 9) A2 +2#3¢4 (9) Iv* 3 ¢y =48 (9)
(=5,6,9) ¢, =+4 (9) v* 3 =129
4.7,9) Iv* 3 & =2(03)
(4,28,9) r* 2 +1

(4, 6, 10) Iv* 4 =42 (9)
4,6, 11) I 3 4 =1(3)
(=5,7,11) Iv* 5 d=1(03)

A star near the triplet (a, b, ¢) means that the given equation cannot possibly be
minimal: in this case, one needs to apply a change of coordinates of the form (2) with
u = 1/p(and r, s, t suitably chosen) to put £ in minimal Weierstrass form. If there is
not such a symbol, then E may already be in minimal form: anyhow, if a change of
coordinates is needed, it will have u = 1 —i.e., ¢4, ¢ and A will not vary.

In the next columns we read the Kodaira symbol and the exponent of p in the con-
ductor. In the last column, if W), is not constant in the mentioned case, a necessary
and sufficient condition for W), to be equal to +1 is given (except in Table I, where
the value of W), is given).

We remark that in the third line of Table 1 of [6], the special condition
¢, = 1 mod 4 was clearly forgot.

1.2. ADMISSIBLE TRIPLETS

Fix p. We now explain how the minimality condition can be dropped. We may well
assume that the Weiestrass equation for £/Q, is integral: if it is not, it will suffice to
apply a change of coordinates of the form (2) with (u, r, s, ) = (p~“,0,0,0) and @
large enough. Notice that, if E is the new equation, then (c4(E), c4(E), A(E)) =
(p4wC4, p(’wCé, pIZwA)_
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Table III. The local root number W,

(a,b,c) Special condition Kod u(N) W,
0, 0, 0) =3 (4) " 0 41
H0,0,50) =1 (4) . 4 -1
*(3,3,0) r* 5 G =1(4),c¢==x1(8)or
4 =34),¢=13()
(>4,3,0) w=1(4) Iy 0 +1
4,300 ¢, =3(4) I 4 -
*(2,=4, 0) G=3(4) I3 6 b=4
2,400 =14 I 5 ¢, +4¢, = 9,13 (16)
*(2,=5, 0) g =14 I3 5 ¢y +4dcea =5,9 (16)
0,0,>1) & =3(4) L 1 d=3(8)
2,3, 1) I 7 cy+4c¢g =3 (16) or ¢ = 11 (16)
(2.3.2) Ih 6 A=d (4)
*(3, 4,2) r* 7 G=1,¢=57@®) ord,=3,¢=3,5(8)
. orcy=5c=1,38) orcy=7¢c,=1,7(8)

*(>4,4,2 1 6 =1 (4
*22, 3, 3)) I* 6 A= ((4)
“3, 5, 3) w8 2, +¢,=1,3 (8)
*(3,26,3) 111 8 dy=5,7(8)
*(2,3,=>4) o 6 s =3 (4)
4,5,4) g =c (4) 11 4 d=1(4)
4,5, 4 Gg=1=—c (4) 111 3 cheg =3 (8)
4,5, 4 w=l=-c (4 v 2 -1
(=5,5,4) =34 II 4 a=>5
(5,5,4) w=1(4) 11T 3 s =5(8)
(>6,5,4) x=1(4) v 2 -1
(5, 6, 6) 11 6 =34
(>6,6,6) 11 6 =1 (4)
(4,=7,6) d=1(4) 11 6 b=
(4,=7,6) =3 (4) 111 5 ¢y —4ce7=7,11 (16)
4,6,7) 11 7 g =5,5¢, (8)
4, 6, 8) 2¢6 + ¢, =3,15 (16) I§ 4 2¢ + ¢, =3 (16)
4, 6, 8) 2+ ¢y =7 (16) If 3 2¢p + ¢, =23 (32)
4,6, 8) 2¢ + ¢, =11 (16) v* 2 -1
5,7, 8) 11 7 2+ cg=7(8) or g =3 (8)
(>6,7,8) s =3 (4) I§ 4 a=6
6,7, 8) =14 If 3 2¢,+ ¢ =3 (8)
(=7,7,8) =1 (4) v* 2 -1
4,6,9) I§ 5 2¢+ =11 (32) or ¢y =7 (8)
(5,8,9) 111 8 2¢5 + ¢, =+£1 (8)
(5,29,9) I 8 =138
(4, 6, 10) g =1(4) I3 i 4 +1
4,6, 10 =34 111 3 =2, =3,19 (64
EGSIO; ’ “ I§ 6 ’;":%4 ©

> 0, 0 e =3 (4)
(=7,8,10) I§ 6 =14
4, 6, 11) g =1(4) I¥ 4 +1
4,6, 11) =34 m* 3 s =3(8)
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DEFINITION. A triplet of integers (a, b, ¢) is p-admissible if

(1) there is a minimal elliptic curve E/Q, such that v,(c4, ¢s, A) = (a, b, ¢);
(2) for every nonzero integer k, there is no minimal elliptic curve E/Q, such that
vy(cs, c6, A) — (a, b, ¢) = (4k, 6k, 12k).

(cq, c6 and A being the invariants associated with the given Weierstrass equation.)
We say that (a, b, ¢) is semi-admissible if it satisfies the first condition.

Remark 4. If (a, b, ¢) is semi-admissible it is clear that the three values are non-
negative. If p > 3, then it is well known (cf. [13], Ex. VIL.7.1) that semi-admissibility
implies a < 4, b < 6 or A < 12: in particular, semi-admissibility implies admissibility.
If p = 3, we can read the list of admissible values in Table III of [7]: in particular,
semi-admissibility still implies admissibility. If p =2, we can read the list of
admissible values in Table IV of [7]: in particular, only (0,0,>0), (4, 6,>12),
(>4, 3,0),(=8,9, 12) are semi-admissible but not admissible.

Let p =2; let £/Q, be an elliptic curve such that v,(cs, ¢, A) = (a, b, ¢) 1s semi-
admissible but not admissible. After a change of coordinates with u power of 2,
we get a minimal equation E: we say that v, (c4(E), ¢6(E), A(E)) is the minimal triplet
of E. It is clear that this triplet is well defined; it actually depends only on (cq, ¢g, A):

PROPOSITION 5. Fix a prime p and let E/Q, be a Weierstrass equation for an
elliptic curve. If E is in minimal form then v,(cs, cs, A) is (at least) semi-admissible.
Vice versa,

(1) suppose v,(ca, cs, A) is admissible, then after a change of coordinates that leaves
(cq, c6, A) fixed, E becomes minimal.
(2) Suppose v,(cs, cs, A) is semi-admissible but not admissible (thus p = 2), then
(a) if va(cs, c6,A) = (0,0,=0) or (4,6, >12), then the minimal triplet is the for-
mer if /2" = 3 mod 4, the latter otherwise;
(b) if va(cq, c6, A) = (=4,3,0) or (=8,9, 12), then the minimal triplet is the for-
mer if c/2") =1 mod 4, the latter otherwise.

Proof. If E is minimal then Tate algorithm applied to E as in [7] (i.e., using only
¢4, ¢¢ and A rather than the coefficients ;) will stop and give one of the (semi-)
admissible cases.

(1) Suppose that v,(c4, cs, A) is admissible. As above, we can suppose the equation
integral; thus we can apply Tate’s algorithm to find, after some change of coor-
dinates of the form (2), a minimal equation E. By definition, we must have
(ca(B), c6(E), A(E)) = (c4, ¢, A).

(2) Suppose now that v,(c4, cs, A) is semi-admissible but not admissible. Arguing as
above, there is a change of coordinates with # a power of 2 that will give us an
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integral equation with vy(cs, ¢, A) = (4, 6,>12) or vy(cs, cs, A) = (28,9, 12).

We will analyze the two cases separately.

(a) Suppose that v(cy, cg, A) = (4, 6, >12); we claim that the equation is mini-
mal if and only if ¢s/2") = 1 mod4. Following [7], we are at least in
Tate’s case (7). In particular v(a;) = 1, v(ay) = 1, v(az) = 2, v(ag) = 3 and
v(ag) = 4. It follows that c¢q = —a$ + 4atar + O(2%); thus v(a;) = 1 while
v(ay) = 1 if and only if ¢6/2° = 1 mod4. By Proposition 4 of [7], we are
in Tate’s case (7) if and only if the equation a, = sa; + s> mod 4 has no
solution s; i.e., if and only if ¢s/2° = 1 mod 4. This proves the claim.

Suppose that the equation is not minimal, then Tate’s algorithm rolls
over with a change of coordinates of the form 2 with u = 2, so that the
new invariants are (0, 0, 0): this time the algorithm must terminate, so we
have a minimal equation (possibly after another change of coordinates with
u=1).

(b) Suppose that v(cq4, ¢, A) = (= 8,9, 12); then we are at least in Tate’s case
(10). In particular v(a;) = i for i =1, 2, 3, 4, while v(ag) = 5. It follows that
¢y = d} + 8alar + 8aya; + O(2%); since wv(cs) > 8, this implies that
v(ay) = 2. Therefore, v(by) = 4, v(bg) = 5, v(bg) = 6, v(bg) = 8 and propo-
sition 6 of [7] becomes E is minimal if and only if the equation
be = s> mod 2% has no solution s. Since ¢s = 8bg + O(2!!) and wv(cg) =9,
we have that v(bg) = 6 and the equation can be solved if and only if
¢6/2° = 1 mod 4, which proves our claim. O

1.3. PROOF OF THE TABLES

Using Proposition 5, we can remove the minimality assumption from Halberstadt’s
tables by introducing additional special conditions to distinguish between the semi-
admissible but not admissible cases. So, by Fact 3, the only thing left to do is to show
how to deduce the reduction type from the triplet (cq4, cg, A). We recall some well
known facts, which we apply to Papadopolous’ list of possible triplets.

FACT 6. For any prime p, if £/Q,, is in minimal Weierstrass form, then its reduction
is: good if and only if v,(A) = 0. Multiplicative if and only if v,(A) >0 and
vp(cs) = 0. Additive if and only if v,(A) > 0 and v,(c4) > 0; in this case, it is poten-
tially multiplicative if and only if v,(A) > 3v,(c4).

If p > 3, the results in Table I follow at once from Fact 6 and Table I of [7], except
for the following lemma.

LEMMA 7. For any prime p, an elliptic curve E/Q,, in minimal Weierstrass form has
multiplicative reduction if and only if v,(cs4, cs, A) = (0,0, = 1). Suppose so; then, if
p = 2, the reduction is split if and only if c¢ =7 mod 8, if p > 2, the reduction is split if
and only if —cg is a square modulo p.
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Proof. The first statement is obvious. Suppose then that E has multiplicative
reduction; let E be its reduction modulo p. Moving the node onto the origin, we may
assume that the equation for E is

y2 +axy = X+ arx?, 3)

where a; is the reduction of a; modulo p (cf. Section III.1 of [13]). In particular,
6 = —(@ +dar)’ + O(p).

If p = 2, then v(¢g) = 0 implies v(a;) = 0 and Equation (3) is split if and only if
ay=0mod2. Since wvy(a3) >0, we have wva(bs) >0 and c¢q=—b}=—a+
4a‘1‘a2 mod 8. Given that a% = 1 mod 8, this shows that a; = 0 mod 2 if and only if
¢ = 7 mod 8, as we claimed.

If instead p > 2, Equation (3) is split if and only if @} +4a, is a square; since its
valuation is zero, this is equivalent to —c¢g being a square, as we claimed. O

If instead p < 3, we need another couple of lemmata, which are easily proved
using Papadopolous’ tables, Proposition 5 and Fact 6. Let c4, ¢, A be the invariants
of a Weierstrass equation E over Q,.

LEMMA 8. Let p =3 and let (a, b, ¢) be the smallest triplet of nonnegative integers
such that (a, b, ¢) = v3(cq, cg, A) mod (4, 6, 12). Then

(1) E has good reduction if and only if (a, b, ¢) = (0,0,0) or (1, =3,0), in this case,
Wi(E) = 1.

(2) E has additive, potentially multiplicative reduction if and only if
(a,b,c) = (2,3, =7); in this case, W3(E) = —1.

LEMMA 9. Let p =2 and let (a, b, ¢) be the smallest triplet of nonnegative integers
such that (a, b, ¢) = vy(cq, cs, A) mod (4, 6, 12). Then

(1) E has good reduction if and only if (a,b,c) =(0,0,0) with ¢, =3 mod4 or
(a,b,c) =(=4,3,0) with ¢, = 1 mod 4, in this case, W>(E) = 1.

(2) E has additive, potentially multiplicative reduction if and only if
(a,b,¢) =(0,0,=7) with ¢, =1mod4 or (a,b,c)=(2,3,=7); in this case,
W>(E) =1 if and only if c; = 3 mod 4.

2. Washington’s Family

Let E, be as in Theorem 1 and let f{) = > 4+ 3t+9. Then c4(t) = 16/ (1), co(t) =
=322t + 3)f(1), A(t) = 16f7(1).

PROPOSITION 10. We have, for every integer t,

1 ift=0,1mod 4,
+ i o = f(t) mod 4,

W- =
2! {—1 if =23 mod 4
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o +1 ift=#3 mod9,
= = T
—1 ift=3mod9;

_1 Uﬂ/(t)
Wy(t) = (7> ,  for every p > 3.

Proof. Notice that, independently from the characteristics, if ¢ is integral then all
the coefficients of E, are integral. Suppose p = 2; then f{(f) =1 mod2 for every
t€Z,. Thus wvy(cs, co,A) =(4,5,4). Moreover, ¢, =1mod4 if and only if
t=0,1 mod4 and ¢; =1 mod4 if and only if +=1,2 mod4. We can now read
W, () from Table III, exception made for the case t = 0 mod 4; nevertheless, we can
easily check that ¢(#)ci(f) = 1 mod 8 for every such ¢.

Suppose p = 3; then

0 ifr=+103) ‘1) Lfii%
nf(=12 ifr=0,609), 1:2r+3)= e y
3 ifi=3 ) 2 ifr=3,21(27),
- ’ >3 ifr=12 (27).
Thus,
0,0,0)  if r==+1 mod3,
b3(ca, ¢, A) = (2,3,4) if t=0,6 mod9,

(3,5,6)  if r=3,21 mod27,
(3,>6,6) if r=12mod?27.

Notice that, if =3 mod9, then ¢j(f) =1 mod3. We can now read W3(f) from
Table II.
Finally let p > 3. Write v,f{(f) = 6w + 7, where 0 < 7 < 6; then

vp(ca, c6, A) = 2w + 1, T+ v,(2t + 3), 27) mod (4, 6, 12).
The right hand side is minimal, since 2t < 12. Moreover, notice that, if
v,(2¢ 4 3) > 0, then v, f(¥) = 0. Therefore, we can read from Table I:
+1 if v, (1) = 0 mod 6,
w1 (5) ifefn=1mod2

(*73) if v, (1) = 2,4 mod 6.

On the other hand, if v,f{f) > 0 for some ¢ € Z,, then f{) splits over F,,; its discrimi-
nant being —27, this is equivalent to (—3/p) = +1. This proves our claim.

Proof of Theorem 1. if p is an odd prime, then (—1/p) = p mod 4. Since v,f{(¢) =0
for every ¢, thanks to Proposition 10 we have

_1\w®
GO LAGE ]‘[(%) = f(t) = W»(t) mod 4.

p=5 p=3
Hence, for every integer ¢,
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W(Z) = - 1_[ Wp([) = _(_1)03'/‘({) 1_[ Wp(l) = —I/Vz(l‘)2 = —1
P

p#3

3. Specializing Halberstadt—Rohrlich

Let E, be as in Theorem 2. In order to apply the tables of Section 1, we need to find,
for each parameter ¢ and each prime p, a minimal nonnegative triplet (a, b, ¢) such
that (a, b, ¢) = v,(c4, c6, A) mod (4, 6, 12). We have

A A 8

=— g =——— Aty =———. 4

W)= g el =~ A= 0)
Thus, letting © = v,(¢), we need to find an integer w such that

(a,b,¢) =1(3,4,8) —w(4,6,12) —v(t — 1728)(1,1,3) = 0 (5)

is minimal. The computations are similar to those in the previous section and are not
too difficult; moreover, they can be easily verified with a computer algebra system.
On the other hand, they are quite long, so we prefer to omit them: nevertheless, they
can be found in an earlier version of this paper [10].

PROPOSITION 11. Let p be a prime > 3: notice that we cannot have both v,(t)
and vy(t — 1728) strictly positive. Then W), is given by Table IVa if v,(t) > 0 and by
Table 1Vb if v,(t — 1728) > 0.

PROPOSITION 12. Let t € Z3; let t' = t/3". Then we have

— If v3(t) # 3, then W3 is as in Table Va if v3(t) < 3 and as in Table Vb if v;(t) > 3.

—If v3(t)=3 and t# 1728 mod3’, then Wi =+1 if and only if t = +£2,
+4 mod9, =19 mod27. If v(1) =3 and t = 1728 mod 37, then W3 = +1 if and
only if v(t — 1728) # 2 mod 4.

PROPOSITION 13. Let t € Z, and write ' = t/2'D. Then we have

— If v2(t) # 6, then W» is as in Table Vlia.

— If va(f) = 6 and t # 1728 mod 2", then W> =1 if and only if ¢ =9, 13,15 mod 16,
' =17,23,3551 mod 64, or ¢ =43,187,235,251 mod256. If v(t)=6 and t=
1728 mod 2'!, then W, is as in Table VIb.

Table IVa. v,(f) >0 Table IVD. v,(t—1728) > 0
(1) W,(E)) v,(t — 1728) W,(E/)
0 mod3 +1 0 mod 4 +1
+1 mod 3 (‘7‘) +1 mod?2 (‘[—]2)
2 mod 4 (%)
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Table Va. vs3(t) <3 Table Vb. vs3(t) >3

0] W; v(t) >3 W3

0 +1 0mod3 /£ £1(9)
1 -1 I mod 3 +1

2 ’'=2(3) 2mod 3 -1

Table VIa. va(t) # 6 Table VIb. vy(f) = 6,t = 1728 mod 2!

v2(7) W, vo(t — 1728) W»

0,1, 4,8, ! =1 mod4 0 mod 4 " =7,11 mod 16
2 ¢ #5mod8 1 mod 4 ' =1,3 mod8
3,59 { =3 mod4 2 mod 4 =59 modl16
7 ¢ =1,3mod8 3 mod4 ' =5,7mod8
=10 —1

4. Locally Constant Multiplicative Functions

Let us consider the root number W(¢) = W(E,) as a function of the parameter #; then
we can write W(t) = [[ W, (), where each W, is a ‘nice’ p-adic function. Our goal is
to express the average value of W in terms of the average values of all the W, which
turn out to be standard integrals over Z,. Our idea of niceness is the following:

DEFINITION. Given a prime p, we say that a function f; Z — R is a p-uniformly
locally constant multiplicative function if there exist a positive integer # such that f{x)
depends only on v,(x) and on the first # digits of the p-adic expansion of x; i.e., f
factors through the map Z — Z>° x (Z/p"Z)* given by x > (vp(x), xp~ ™ mod p").

By abuse of notation we will write f{dp®) with d € (Z/p"Z)" and ¢ a nonnegative
integer to mean f{x), where x is any integer = dp® mod p**". We say that 5 is a uni-
formity constant of f.

DEFINITION. Given a finite set of primes p = {py, ..., ps}, we say that fis a
p-uniformly locally constant multiplicative function if f=[[._, f,, where each f; is
pi-uniformly locally constant multiplicative. A uniformity constant for f'is an integer
n which is such for every factor f;.

Remark 14. Clearly, W(t) does not satisfy the above conditions. Nonetheless, we

will show in Section 5 that it can be approximated closely enough by uniformly
locally constant multiplicative functions.
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4.1. p-ADIC INTEGRALS

Suppose that f'is a p-uniformly locally constant function with a uniformity constant
n. Then we can define, for every e > 0,

[ rwa = > D ©)

de(Z/p2)"

vy(f)=e
It is easy to verify that the sum is indipendent of the choice of . We can, henceforth,
give the following:

DEFINITION. Suppose that fis a p-uniformly locally constant function. Then let

[ ﬂf(t)dtzei; [ o

= pp(n)=e

assuming the sum converges absolutely. In this case we say that f € L1(Z,).

Notice that this definition induces the standard Haar measure on Z, and that the
measure of {r € Z,:v,(1) = e} is (p — 1)/p**!. In particular, by the compactedness of
Z,, any continuous and uniformally locally constant function f: Z, — R belongs to
LY(Z)).

4.2. AVERAGING

Given p = {p1, ..., ps}, write P for [] p:.

DEFINITION. The average value of a function i Z — R is

Z\z|< rf ()
2T ’

provided that the limit exists. In this case we say that /e L'(Z).

Avz f{t) = lim

LEMMA 15. Let f be a p-uniformly locally constant function, bounded by some F > 0
and with uniformity constant n. Then, for any integers r and k with r = 3, we have

kP
> f(? - 11 / VAGIHES ;Zp”‘l =0<21,>-

P
t=(k—1)Pr+1 PEP 0(0) < = PEP

Proof. Let J be the set of integers in ((k — 1)P", kP"]. Define
Jo={teJNZ:Vpep,v,(t) <r—n)
and J; as its complement in J. Then

' J F F
S <N < IS e g < 23 ! ™

7
tey P PEP pep
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Remark that, if ¢t € Jy, then f(t + sP") = f(¢) for any integer s. hence

oo =Y "ThHow,

= reJy PEP
where Jy = {t € Z/P'Z :¥p € p, v,() < r —n). We claim that
(D)
Z ]_[ 22 =1] f(nydr.
redy PP PP <

We will prove the claim by induction on the number of primes in p: suppose that
P = p; then, by the well-definedness of Equation (6),

r—n
T, e=0 de(Z/p—Z)* p up(t) < 1=

If g € p, let P = P/q and factor Z/PZ as Z./qZ. ® Z./P'Z. Then,

Spllno= 3 [0 5 1157

ey pIP wzipzse\ 4 1€Z/P" Zs.t. p| P’
vg(t) <r—n YplP op(1) < r—n

which, by the induction hypothesis, is
)
PP rﬂ([) <r—n

which proves the claim. By Equation (7), this suffices to prove the lemma. O

NOTATION. For every positive integer T let T=Ty+ T\P+---+ T,P" be the
P-adic expansion of T; ie, r=|logpT] and 0 < T, < P for every e=0,...,r.
Moreover, we will write T, for T,P° +---+ T, P".

LEMMA 16. Suppose that the series Y a, converges absolutely. Then

logp T T
lim E —a E a
T—o0 ¢ ¢
e=

Proof. Since 0 < 1 — TE/T < P°/T if e = 0, we have

logp T ,1"-, logPTPe
li 1 —— li — = 1 P
pin 3 (1= o < i 3 vt =t 3

where x =logp 7. Fix now an arbitrary ¢ > 0, then there is an # such that
ZD” |a.| < e. Noting that |P°~*| < 1 for every e < x, we get

X n
. . .1
lim E P a,| < e+ lim — E Plla,| = .
x—00 £ x—o0 PX g
e= —

The constant ¢ being arbitrary, the lemma follows. O
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NOTATION. Given p as above, let i be a multi-index p — Z>°. We will write i, for
i(p) and |[li|| for max,ep{iy,}.

LEMMA 17. For every p € p, suppose given a sequence {S,(1)}>,. Then, for every
positive T,

logp T

Z TP“HZS(z)_ Z e > TTSntn)

pIP = e=0 lil=e plP

In particular, if the series y_; S,(i) converge absolutely for every p € p, then

logp T e e
Jim Y FETTY 50 =TT 5,0

e=0 pIP i= pIP i=

Proof. We have, for every e > 0,

1> 50=3 3 [Is.

pIP i=0 =0 [lil|=i p|P
Thus
logp T logp T ¢
Z TP‘HZS(z)— Z ZTP‘ I I)
[P i=0 lill=i pIP
! logp Tlogp T !
=Y > TP Y []S06)
i=0 =i llill=i pIP
logp T
= > 7Y [ s

i=0 lill=i p|P
as we claimed. Suppose now that every » Sp(i) converges absolutely. Then
]ng Pe 0

Tli_)ngoz HZS(Z)— lim Z Z]‘[S(zp)

plP i=0 i=0 ||1|| i p|P
which, by Lemma 16 and rearrangement,

= i Y IIs =) T1sn =11 i Sp(@),

i=0 |lil=i p|P i>0plP plP i=0

which concludes the proof. [

THEOREM 18. Suppose that f: Z. — R is a bounded, p-uniformly locally constant
function. Then f e L'(Z) and

Avzf(1) = / Jp()dt.

pep
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Proof. Let n be the uniformity constant of f and F a bound for | f{¢)|; then we
claim that, for T large,

T .
0 _ I / f(ode] +o(1). (8)

=1 P2\ 40 < Togp(D)—1

Since each f, is integrable, the equation passes to the limit proving the theorem.
Therefore, it suffices to prove Equation (8). Let r =logp T; define, for e <r,
T,=3_, T;and, for n < Ty,

0 ifn=0,
An)y=1 P if0<n< <7,

Peif TL+1 <n < T,, where n<e<r(T);
Iy=[~T, =T U0} U(T;, T},

n—1 n
(Z (), Zi(i):|, for 0 < n < Ty;

last, let /_, = —1I,,. Clearly, U i . I, is a partition of [T, T] N Z. We have
- ’7
#Ip <2P"—1 and #I,=#I_,=An), for n>0
Thus,

I,

/R

_ M_;)H / fode] + o(%).

L’/;(’) < logp A(n)—n

Therefore,
logp T
r 2T(,P€ In
Z o _ / flndr + o( 7)
— 2T
e=n p‘P vp(H) < e—n
Applying Lemma 17 with S,(i) = [ ()i nf,,(t)dt if i = n and S,(i) = 0 if not, we get
lim7_ o0 Zt 02T =1L,» fZ f,,(t)dt as we claimed. O

4.3. APPROXIMATIONS

For our goals, we will have to deal with functions which are not exactly locally con-
stant, so we need to state an analogous of Lebesgue’s Dominated Convergence
Theorem. Given a bounded function f: Z — R, we write

https://doi.org/10.1023/A:1022669121502 Published online by Cambridge University Press


https://doi.org/10.1023/A:1022669121502

16 OTTAVIO G. RIZZO

U )

Av, (1) = 11m mf Z Avy f(f) = lim sup Z

T—o0 =
Moreover, if Z C Z, we say that its density is

: #Hrel:1|<T)
7)=limsup—————.
u7) m sup 3T
Clearly, Av,f < Avzf and equality holds if and only if /€ L'(Z).
Suppose that ¢(f) € L'(Z). Let £{(f) be a function Z — R and suppose that |$(7)|
and | f(¢)| are bounded by some F < oco. Let Z = {t € Z : f(t) # ¢(¢)}. Then it is easy
to show that

Avzd(t) — 2F(T) < Avy fit) < Avz f(1) < Avzd(t) + 2Fu(T). )

THEOREM 19. Let f: Z. — R be a bounded function (say by F). Suppose that there is
a real number ® and a family {¢,} C L'(Z) such that |$,(1)| < F,lim,_ ., Avz¢, = ®
and lim, oo (Z,) =0, where I,={teZ:f(t)# ¢,(0)}. Then fe L (Z) and
Avzfih) = ®

Proof. Fix ¢ > 0. Then, by hypothesis, there is a v such that, for every
nzv,|0—Avz¢,| <¢/2 and w(Z,) < ¢/4F. By Equation (9), we have

\Ezf(t) — <D| < |Avzf(t) — Avz o, | + |Avz o, — D <&, forn > v;

and similarly for Av, f(¢). Since ¢ is arbitrary, Av,f(1)=® = Avzf(1), as we
claimed. ]

5. Proof of Theorem 2

Since we have ‘nice’ formula for the local root numbers, we would like to use
Theorems 18 and 19 to approximate AvW(E,) by computing, for P large,
HP<P pr W,(¢)dt. The problem is, Z,»P 1/p does not converge: the approximation
is not good enough for Theorem 19. On the other hand, Z,»P 1/p* does converge!
hence, our plan is to rewrite W(E,) as a product of local factors w, such that
,(f) = 1 whenever ¢ is not divisible by P

5.1. THE ROOT NUMBERS REVISITED
Let
- _3 Up(t) - _2 b‘/,(t71728)
Ws(t) = sgn(7) H(—) . Wh(1) = sgn(t — 1728) ]‘[(—)
p>3 P p>2 p

Notice that W;(r) and Wa(t 4 1728) are completely multiplicative functions; in par-
ticular, they are monoid maps Z7° — (Z/3Z)*. Recall that we write x), to mean
x/pir.
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LEMMA 20. We have that

Wi(t) = (—1)D%, mod 3. (10)
41 i (1—1728),=1,3 modS8,
WZ([)_{—I if (1 — 1728), = 5,7 mod 8 (1n

Proof. By quadratic reciprocity, we have that, for every prime p # 3,
(—=3/p) = p mod 3. Thus, Equation (10) follows from

v, (1)
Wis(1) = sgn(r)(—1)>" ]‘[<_—3) T (—=1)2¢;, mod 3.
P#3 p

Let now w: Z7° — (Z/3Z)* be the monoid map defined by w(—1) = —1, w(2) = 1,
w(p) = (=2/p) for every p > 2. Thus, Wz(t) = w(t — 1728). For every odd prime p we
have, by quadratic reciprocity, w(p) = —1 if and only if p = 5, 7 mod 8. Therefore, w
factors through (Z/8Z)"; 1ie., w=pfoo, where o(f)=1r, mod8 and
B(5) = p(—=1)=—1. Since ot —1728) = (r—1728), mod8, we have proved
Equation (11). O

DEFINITION. Let

0\ U(=1728) 3\ 0y(0)
s=mo(5)(5)

B Wi(t) if 1’3 =1 mod 3,
w3(t) = { —Ws(¢) if 5 =2 mod3;

(=D2DWs() i (t—1728), = 1,3 mod 8,

1) =
(1)2( ) { (_l)vz(t)-H Wz(f) if (l — 1728)/2 = 5,7 mod 8;

Remark 21. If t ¢ [0, 1728], then Lemma 20 and the definitions give

» ) 0, (t—1728) -3 v, (1)
~[Mew=-TI Wp(r)Wp(z)-l‘[Wp<t)( ) (—)

p=2 p=23 p>3 p p

=[] w,0 =wo.

p>2

Moreover, for every p > 3, Proposition 11 implies that w,(¢) # 1 only if v,(#) = 2 or
vp(t —1728) = 2. O

Applying some tedious but straightforward computations to Propositions 13 and
12 we can prove the two following results. (Where, in the left column, if w, is not
constant in the mentioned case, a necessary and sufficient condition for w, to be
equal to 1 is given.)
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PROPOSITION 22. Let t € Z3. Then we have
— If t #1728 mod 37; i.e., v3(t) # 3 or v3(t) = 3 but 1y # 64 mod 81, then ws is

as in Table VII.
— If t = 1728 mod 37, then w;(t) = +1 if and only if v3(t — 1728) # 2 mod 4.

Table VII. t # 1728 mod 37

v3(7) w3

0 t=1mod3

1 fh =—1mod3

2 —1

3 3 =4,7,8 mod9,
=19 mod 27

>3,=0mod3 t,=4,7,8 mod9

> 3,=1mod3 =1 mod3

>3,=2mod3 fy =2 mod3

PROPOSITION 23. Let t € Z,. Then we have

— If v2(t) # 6, then w, is as in Table VIlilia.

— If va(f) = 6 and t #1728 mod 2'? (i.e., t, %27 mod 64 ), then wy = 1 if and
only if t, =3,5,13 mod 16, = 31 mod 32, =7, 55 mod 64 or = 11 mod 128.
If t =1728 mod 2'2, let 1" = (t — 1728),, then w; is as in Table VIIIb.

Table VIla. t % 1728 mod 2'? Table VIIIb. t = 1728 mod2'?

v2(2) (0))) va(t — 1728) [0}

0,3,7 th=1,7 mod8 0 mod 4 ' =5,11,13,15 (16)
1,4 #, =3,5mod8 1 mod 4 +1

2 #h,=1,3,5mod8 2 mod 4 "' =1,9,13,15 (16)
5 t,=1,3mod8 3 mod 4 -1

8 #, =1 mod4

9 t, =3 mod4

=10 v2(f) =0 mod 2

5.2. PARTIAL INTEGRALS

PROPOSITION 24. We have that

1027 9717
/;3 (l)}(t) dl:—m and /;2(1)2([) dl:m

Proof. Let I ={teZs;:v3(f)=3,t#1728 mod3’} and, for =n
Zon={t€eZs:4n—1 < v3(t — 1728) < 4n + 2}. Then,

V

2, let
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/h w3(1) dr =) / w3(7) dr +/Ia>3(z) dz+2/” ws(7) dr. (12)

=
A3 v3(1)=e "

If e # 2,3, then Proposition 22 implies that [, o3()dt =0. If e =2, we get
f“(,) ,w3(7) dt = —2/27. Suppose now that e = 3: on one hand, [, =7/37; on the
other, [; ws(1) dr =76/3*"*3; thus

19
/ @s(t) dr = 34n+3 ~ 43740
Putting all together, Equation (12) becomes fz3 ws(t) dt = —1027/14580, as we
claimed.
Define now, as above, Z = {t € Z, : v5(t) = 6, t # 1728 mod 2'?} and, for n > 3, let
TIo={te€Z,:4n < vy(t —1728) < 4n+ 3}. Then,
oo o0
/ wy(rydt =" [ () dt+/w2(t) dt+Z/ w,(7) dr. (13)
7 26 va(f)=c ’ n=3 7 In

Ifee{0,1,3,4,5,7,8,9}, then fvv(t) , @2(2) dt = 0 by Proposition 23. If e = 2, by the

definition of the p-adic integral (cf. § 4.1) and by Proposition 23, we have

3 o(4d) 3-1 1
257 32 16

/ w(1)dt =

(=2 de(Z/8Z)

If e > 10, we have fm:e wy()dt = (=D u({va(¢) = e}); thus,

< < (1)1

> | e =3 =

7 n(H)=e -
Suppose now that e = 6; then, arguing as above we find [ w,(1)dr = 3/2'2. On the
other hand, if n > 3, it is not difficult to check that [; wa(r)dr=3 /2%+4: hence,
>onzs Jz, @2(7) dt = 1/20480. Putting all together, Equation (13) gives [, wa(1)d?
=977/15360, as we claimed. O

PROPOSITION 25. For every p = 5, we have

I, ifp=1mod 12,
1D if p=15mod 12,
/prp(z) dr = 1_(p32+p2211p+1),2 if p=7mod 12,
D G epey Yr=timed 2
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Proof. Recall that, if both v,(¢) and v,(t — 1728) are zero, then w,(¢) = 1; hence,

/ wp(t) dt = u({t € Z,, : t # 0, 1728 mod p}) +
ZF
+ / wp(1) dt + / w,(1) dt. (14)

0,(1)>0 0, (1—1728)>0

Notice that, by definition and by Proposition 11, if v,(f)=e >0 (resp.
v,(t — 1728) = e > 0), then w,(t) = w,(p°) (resp. wy(f) = w,(p° + 1728)). Moreover,
for every e > 1,

—1 ifp=2mod3ande=2,3,4modo,

+1  otherwise;

if p=1mod4 and ¢ =2 mod4,

wp(pe) = {
—1

w,(p¢ +1728) =
(7 ) { +1  otherwise.

In particular, fv,,(t)>0 wy)(1)ydt=1/p if p=1mod3, while if p=3mod4,

fv,,(t71728)>0 wp(r)dt =1/p.
Suppose now that p =2 mod 3, then

/ (1) dt

vp(6)>0

=p{teZ,:v,() >0}) -2 u({t € Z, 2 vp(t) = e})

I oINS 1 2
=_—2 - — — _— = = — .
P ([,2 p5) Ze:l pe p pP+1

Finally, if p = 1 mod 4, by Theorem 19,

w,(dt= iw,,(pe F1728)u({t € Z, : v,(t — 1728) = e})

e=1

0, (1—1728)>0
1
=-=2 Y u{t€Z,:v(t—1728) = ¢})
e=2 (4)
_o»
P PP+l
The proposition now follows easily from Equation (14). O

5.3. FINAL STEPS

From now on, we will suppose that ¢ & [0, 1728]: clearly, throwing away a finite

number of cases will not make any difference. Hence, W(E;) = — H;; w,(1) by
Remark 21. Let Q(¢) = H;is wp(t) and, for every prime P > 5, let Qp(t) = H;):s wp(t)
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PROPOSITION 26. For every prime P = 5 we have that
u{r € Z: Qp(n) # Q(n}) < 2/P.
Proof. For every T > 0 let I(T) =[-T, T]N Z; we have
{te(T):Qp(t) QM) C{te (T):3p> P:wy(t) =—1}.

Since, by definition, w,(f) = 1 whenever v,(1), v,(t — 1728) < 1, we get

#{t € (1) : Qp(1) # Q1))
< > #teIT):vy(r) =2 or vy(t— 1728) > 2}

P<p<oo
JT
4T 4T
=y <2+ 0(1)) = +O(VT).
p P
p=P+1
The proposition follows by considering the limit as 7 — oo. O

Proof of Theorem 2. Write X, for pr wp(t). Then, by Proposition 26, we can apply
Theorems 18 and 19 to W(1) = — [] w,(1) to get the estimate Avz W(E)) = — ]2, Z);
in particular W(E,) € L(Z). Moreover, since |m,| < 1,

[ee) P
1= -T]%| <4/P:
p=5 p=5
therefore,
r 43,54
Avy, W(E,)—i—QZ,, <=

Take P =900,001. Using PARI and Propositions 24 and 25, we can compute

900,001

[] =»=-0.003,718,27...

p=2
(We actually computed the result as a rational number, to avoid rounding errors in
the product; having the resulting fraction 776,263 figures, we content ourselves with
a decimal approximation.) Since 2|Z,%3|/900,001 = 0.000, 000, 009. .., the theorem
follows. [

Appendix. Numerical Notes

The family (1) was found by computing ), _r W(E,) for various families £; and T
large enough; the computations were made using the PARI implementations of the
Rohrlich-Halberstadt tables. In Figure 1 we see the graph of >, _, W(E,)/2 with T
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Figure 1. %Z‘,KT W(E,).

that varies between 0 and 839,447, and the line of slope 0.003,718,2; this ‘validates’
the proof of Theorem 2.
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