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Abstract

We study a delayed fuzzy H∞ control problem for an offshore platform under external
wave forces. First, by considering perturbations of the masses of the platform and an
active mass damper, a Takagi–Sugeno fuzzy model is established. Then, by introducing
time delays into the control channel, a delayed fuzzy state feedback H∞ controller is
designed. Simulation results show that the delayed fuzzy state feedback H∞ controller
can reduce vibration amplitudes of the offshore platform and can save control cost
significantly.
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1. Introduction

Excessive environmental loadings including waves, ice, and earthquakes acting on
offshore platforms may lead to large vibrations and thereby affect structural safety and
reliability [2, 9]. In the last few decades, in order to mitigate vibration of the offshore
platform, active control has been paid considerable attention and a large number of
control strategies, such as optimal control [5, 13], robust control [14, 17], sliding mode
control [11, 14], and network-based control [10], have been reported. More recently,
delayed feedback control schemes have been developed to suppress vibration of the
offshore platform [12]. It is known that the aforesaid methods are effective to mitigate
vibration of the platform. However, most of the results are based on the fact that
system models are almost exactly known. Specifically, from the real application point
of view, the masses of the offshore structure are not always invariant.
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Figure 1. An offshore platform with an AMD mechanism [2].

As an effective method dealing with nonlinear, complex dynamic uncertain systems,
fuzzy control has been extensively investigated [3, 4, 6–8, 15, 16]. In this paper,
by taking into account perturbations of masses of the offshore platform and active
mass damper mechanisms, we intend to establish a Takagi–Sugeno fuzzy model of
the offshore platform. Then, by artificially introducing a time delay into the control
channel, we address the delayed fuzzy state feedback H∞ control problem of the
offshore platform, and investigate the design approaches and effectiveness of the
delayed fuzzy control scheme. Our simulation results show that the proposed fuzzy
control scheme is better than the traditional fuzzy control scheme.

2. Problem formulation

An offshore steel jacket platform subject to wave forces is presented in Figure 1 [2],
where only the most dominant vibration modes of the platform and an active mass
damper (AMD) mechanism are considered. Taking perturbations of masses of the first
vibration mode and the AMD into account yields the motion equation of the system as

m̄1(t)z̈1(t) = −[m̄1(t)ω2
1 + m̄2(t)ω2

2]z1(t) + m̄2(t)ω2
2z2(t)

− 2[m̄1(t)ξ1ω1 + m̄2(t)ξ2ω2]ż1(t)

+ 2m̄2(t)ξ2ω2ż2(t) − u(t) + f (t),

m̄2(t)z̈2(t) = m̄2(t)ω2
2z1(t) + 2m̄2(t)ξ2ω2ż1(t) + u(t)

− m̄2(t)ω2
2z2(t) − 2m̄2(t)ξ2ω2ż2(t),

(2.1)

where ξ1 and ω1 are the damping ratio and frequency of the offshore platform,
respectively; ξ2 and ω2 are the damping ratio and frequency of the AMD, respectively;
z1 and z2 denote displacements of the platform and the AMD, respectively; f (t) is the
external wave force, and u(t) denotes the active control. The time-varying masses of
the platform and the AMD are denoted by m̄1(t) and m̄2(t), respectively.
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Let x1 = z1, x2 = z2, x3 = ż1, x4 = ż2, xT =
[
x1 x2 x3 x4

]
, and

a31(t) = −ω2
1 − ω

2
2m̄2(t)/m̄1(t),

a32(t) = ω2
2m̄2(t)/m̄1(t),

a33(t) = −2ξ1ω1 − 2ξ2ω2m̄2(t)/m̄1(t),
a34(t) = 2ξ2ω2m̄2(t)/m̄1(t).

Then, from (2.1),

ẋ(t) = A(t)x(t) + B(t)u(t) + D(t) f (t), x(0) = x0, (2.2)

where

A(t) =


0 0 1 0
0 0 0 1

a31(t) a32(t) a33(t) a34(t)

ω2
2 −ω2

2 2ξ2ω2 −2ξ2ω2

 ,
B(t) =

[
0 0 −1/m̄1(t) 1/m̄2(t)

]T
,

D(t) =
[
0 0 1/m̄1(t) 0

]T
.

We assume that the time-varying mass m̄i(t) satisfies 0 < mi ≤ m̄i(t) ≤ Mi, i = 1, 2. We
denote the membership functions asφm

i (m̄i(t)) = [Mi − m̄i(t)]/(Mi − mi),

φM
i (m̄i(t)) = [m̄i(t) − mi]/(Mi − mi), i = 1, 2.

It is clear that φM
i (m̄i(t)) + φm

i (m̄i(t)) = 1, i = 1, 2. Then

m̄i(t) = φm
i (m̄i(t))mi + φM

i (m̄i(t))Mi, i = 1, 2.

Suppose that the fuzzy sets of m̄i(t), i = 1,2, are set as ‘S ’ and ‘B’. Then one can define
fuzzy variables as

Case 1: m̄1(t) ∈ B, m̄2(t) ∈ B; Case 2: m̄1(t) ∈ B, m̄2(t) ∈ S ;
Case 3: m̄1(t) ∈ S , m̄2(t) ∈ B; Case 4: m̄1(t) ∈ S , m̄2(t) ∈ S .

Then the dynamic model (2.2) can be represented by the following Takagi–Sugeno
fuzzy model rules.

Model rule k: If case k, then

ẋ(t) = Ak x(t) + Bku(t) + Dk f (t), (2.3)

where matrices Ak, Bk, and Dk (k = 1, 2, 3, 4) can be obtained by replacing the pair
(m̄1(t), m̄2(t)) in time-varying matrices A(t), B(t), and D(t) with the constant matrix
pairs (M1,M2), (M1,m2), (m1,M2), and (m1,m2), respectively.
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Using a defuzzifier method yields an overall fuzzy model of the system as

ẋ(t) =

4∑
k=1

hk(m(t))[Ak x(t) + Bku(t) + Dk f (t)], (2.4)

where m(t) =
[
m̄1(t) m̄2(t)

]T and

h1(m(t)) = φM
1 (m̄1(t))φM

2 (m̄2(t)), h2(m(t)) = φM
1 (m̄1(t))φm

2 (m̄2(t)),
h3(m(t)) = φm

1 (m̄1(t))φM
2 (m̄2(t)), h4(m(t)) = φm

1 (m̄1(t))φm
2 (m̄2(t)).

It is clear that hk(m(t)) ≥ 0 and
∑4

k=1 hk(m(t)) = 1.
The output equation of the system is given as

y(t) = C1x(t) + E1 f (t), (2.5)

where

C1 =

[
1 0 0 0
0 0 1 0

]
, E1 =

[
0.1
0.1

]
.

The fuzzy control rules are given as follows.
Control rule l: If case l, then

u(t) = Klx(t − τ), l = 1, 2, 3, 4,

where τ > 0 is the artificially introduced delay to be determined. The overall fuzzy
control law of the system can be designed as

u(t) =

4∑
l=1

hl(m(t))Klx(t − τ). (2.6)

The aim of this paper is to design the control law (2.6), such that (i) under
this law, the system (2.4) is asymptotically stable; and (ii) under the zero initial
condition, the H∞ performance ||y(t)|| < γ|| f (t)|| of the system is guaranteed for nonzero
f (t) ∈ L2[0,∞) and a prescribed γ > 0.

3. Controller design

To obtain the main results, the following lemma is needed.

Lemma 3.1 (Schur complement [1]). For a given symmetric matrix

Υ = ΥT =

[
Υ11 Υ12
∗ Υ22

]
,

where Υ11 ∈ R
r×r, the following conditions are equivalent:

(1) Υ < 0;
(2) Υ11 < 0, Υ22 − ΥT

12Υ−1
11 Υ12 < 0; and

(3) Υ22 < 0, Υ11 − Υ12Υ−1
22 ΥT

12 < 0.
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Substituting (2.6) into (2.4) yields the closed-loop system

ẋ(t) =

4∑
k=1

4∑
l=1

hkl(t)[Ak x(t) + BkKlx(t − τ) + Dk f (t)], (3.1)

where hkl(t) = hk(m(t))hl(m(t)).

Proposition 3.2. For given scalars γ > 0, τ > 0, assume that there exist 4 × 4 matrices
P̄ > 0, Q̄ > 0, R̄ > 0, and matrices M̄1, M̄2, M̄3 with appropriate dimensions, and
1 × 4 matrices K̄l such that the following matrix inequalities simultaneously hold for
k, l = 1, 2, 3, 4: 

Λ̄11 Λ̄12 Λ̄13
√
τP̄AT

k P̄CT
1

√
τM̄1

∗ Λ̄22 −M̄T
3
√
τK̄T

l BT
k 0

√
τM̄2

∗ ∗ −γ2I
√
τDT

k ET
1

√
τM̄3

∗ ∗ ∗ −R̄ 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −P̄R̄−1P̄


< 0, (3.2)

where

Λ̄11 = AkP̄ + P̄AT
k + Q̄ + M̄1 + M̄T

1 ,

Λ̄12 = BkK̄l + M̄T
2 − M̄1,

Λ̄22 = −Q̄ − M̄2 − M̄T
2 , and

Λ̄13 = Dk + M̄T
3 .

Then the system (3.1) is asymptotically stable, and the H∞ performance is guaranteed;
the controller gain matrix is given by Kl = K̄lP̄−1, l = 1, 2, 3, 4.

Proof. Choose a Lyapunov–Krasovskii functional candidate [12] as

V(t) = xT(t)Px(t) +

∫ t

t−τ
xT (s)Qx(s) ds +

∫ 0

−τ

∫ t

t+θ
ẋT (s)Rẋ(s) ds dθ,

where P > 0, Q > 0, R > 0.
Let

ξT (t) :=
[
xT (t) xT (t − τ) f T (t)

]
, MT :=

[
MT

1 MT
2 MT

3

]
,

where M1,M2 ∈ R
4×4,M3 ∈ R

1×4.
Taking the derivative of V(t, xt) along the trajectory of (3.1) yields

V̇(t) = 2ẋT (t)Px(t) + xT (t)Qx(t) − xT (t − τ)Qx(t − τ)

+ τẋT (t)Rẋ(t) −
∫ t

t−τ
ẋT (s)Rẋ(s) ds

+ 2ξT (t)M
[
x(t) − x(t − τ) −

∫ t

t−τ
ẋ(s) ds

]
. (3.3)
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Denote

Λ11 = PAk + AT
k P + Q + M1 + MT

1 ,

Λ12 = PBkKl + MT
2 − M1, Λ22 = −Q − M2 − MT

2 ,

∆T
1 =

[
Ak BkKl Dk

]
, α(t) = Rẋ(t) + MTξ(t).

Then, from (3.1) and (3.3),

V̇(t) ≤
4∑

k=1

4∑
l=1

hkl(t)
[
xT (t)Λ11x(t) + 2xT (t)Λ12x(t − τ)

+ 2xT (t)(PDk + MT
3 ) f (t) + xT (t − τ)Λ22x(t − τ)

+ ξT (t)(τ∆1R∆T
1 + τMR−1MT )ξ(t) −

∫ t

t−τ
αT (s)R−1α(s) ds

]
. (3.4)

First, let f (t) = 0; we consider asymptotic stability of the system (3.1). From (3.4),

V̇(t) ≤
4∑

k=1

4∑
l=1

hkl(t)υT (t)[Ω̃ + τ∆̃1R∆̃T
1 + τM̃R−1M̃T ]υ(t), (3.5)

where υT (t) =
[
xT (t) xT (t − τ)

]
and

Ω̃ =

[
Λ11 Λ12
∗ Λ22

]
, ∆̃T

1 =
[
Ak BkKl

]
, M̃ =

[
M1
M2

]
.

Note the fact that pre- and post-multiplying the matrix on the left-hand side of the
inequality (3.2) by a matrix diag{P̄−1, P̄−1, I, R̄−1, I, P̄−1} and its transpose, respectively,
and setting P = P̄−1,Q = P̄−1QP̄−1,R = R̄−1,Kl = K̄lP−1,

Λ11 Λ12 PDk + MT
3

√
τAT

k R CT
1
√
τM1

∗ Λ22 −MT
3

√
τKT

l BT
k R 0

√
τM2

∗ ∗ −γ2I
√
τDT

k R ET
1
√
τM3

∗ ∗ ∗ −R 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −R


< 0, (3.6)

which indicates that 
Λ11 Λ12

√
τAT

k R
√
τM1

∗ Λ22
√
τKT

l BT
k R

√
τM2

∗ ∗ −R 0
∗ ∗ ∗ −R

 < 0. (3.7)

By Schur complement [1], (3.7) means that

Ω̃ + τ∆̃1R∆̃T
1 + τM̃R−1M̃T < 0. (3.8)
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From (3.5), if inequality (3.8) holds for k, l = 1, 2, 3, 4, then V̇(t) ≤ λxT (t)x(t) for a
scalar λ > 0. Therefore, the system (3.1) is asymptotically stable.

Let

Ω =

Λ11 Λ12 Λ13
∗ Λ22 −MT

3
∗ ∗ −γ2I

 and ∆2 =
[
C1 0 E1

]
.

Then, from (2.5), (3.1), and (3.4),

V̇(t) + yT (t)y(t) − γ2 f T (t) f (t) ≤
4∑

k=1

4∑
l=1

hklξ
T (t)Πξ(t),

where Π = Ω + τ∆1R∆T
1 + ∆T

2 ∆2 + τMR−1MT .
By Schur complement, (3.6) guarantees that Π < 0, which leads to

V̇(t) + yT (t)y(t) − γ2 f T (t) f (t) < 0. (3.9)

Integrating both sides of (3.9) from 0 to ∞, and noting the zero initial condition,
‖y(t)‖ < γ‖ f (t)‖ holds for nonzero f (t) ∈ L2[0,∞). This completes the proof. �

Remark 3.3. Note that (3.2) is not a linear matrix inequality; one cannot solve it
directly by using Matlab LMI Toolbox. In this case, to compute controller gain
matrices Kl, l = 1, 2, 3, 4, we can transform it into a linear matrix inequality by using
−P̄R̄−1P̄ ≤ R̄ − 2P̄.

4. Simulation results

A simulation example is given in this section to show the effectiveness of the
delayed fuzzy state feedback H∞ control scheme. In system (2.1), let ω1 = 2.0466
revolutions per second (rps), ξ1 = 2%, ω2 = 2.0074 rps, and ξ2 = 20%. The masses of
platform and AMD are set as m̄1(t) = 7825 307 + 500 sin(t) kg and m̄2(t) = 78 253 +

50 cos(t) kg. The wave force f (t) acting on the offshore structure can be computed as
in the work of Zhang et al. [13]. Let γ = 15 and τ = 0.002 s. Then, by numerically
solving the matrix inequality (3.2), we obtain the gain matrices of a delayed fuzzy state
feedback H∞ controller (DFSFHC) as

Kl = 107 ×
[
−0.4313 0.0175 2.1324 0.0015

]
, l = 1, 2, 3, 4.

Under the control of DFSFHC, the responses of displacement, velocity, and
acceleration of the platform and the control force are depicted in Figure 2, which
show that the designed delayed fuzzy controller can reduce vibrations of the platform
significantly.

To further demonstrate the superiority of DFSFHC over the traditional fuzzy state
feedback H∞ controller (FSFHC), the peak to peak amplitudes of displacement,
velocity, and acceleration of the platform and control force with DFSFHC and FSFHC
are computed and listed in Table 1. From the table, it is evident that both control force
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Figure 2. Responses of offshore platform and control force. (Colour available online).

Table 1. Vibration amplitudes of the offshore platform and control force.

Controller x1 (m) ẋ1 (m s−1) ẍ1 (m s−2) u (106 N)
No control 0.1998 0.3743 0.7384 –
FSFHC 0.1063 0.1042 0.1249 1.3031
DFSFHC 0.0963 0.0936 0.1179 1.2150

and oscillation amplitudes of displacement, velocity, and acceleration of the system
with DFSFHC are smaller than the ones with FSFHC. It indicates that by artificially
introducing a proper time delay into the control channel, both vibration amplitudes of
the offshore platform and control force can be reduced.

5. Conclusions

A Takagi–Sugeno fuzzy dynamical model has been established for an offshore
steel jacket platform under wave forces. By artificially introducing time delays into
the control channel, a delayed fuzzy state feedback H∞ control scheme has been
developed. Simulation results show that compared to the traditional fuzzy state
feedback H∞ control scheme, the delayed fuzzy state feedback H∞ control scheme
is more effective in improving the control performance of the offshore platform.
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