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Experimental investigation of flow-induced
vibration and flow field characteristics of a
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Flow-induced vibration (FIV) of a flexible cylinder with a triangular cross-section, allowed
to oscillate in the cross-flow, inline and torsional direction, is studied experimentally
through water tunnel tests. The dynamic response of the cylinder was studied for three
different angles of attack (0◦, 30◦, 60◦), at reduced velocities of 0.9–16.27, corresponding
to Reynolds numbers of 364–3600. At the angle of attack of 0◦, vortex-induced vibration
at low reduced velocity was observed, which transitioned to galloping at higher reduced
velocities. At the angles of attack of 30◦ and 60◦, galloping-type response was observed
over the range of the reduced velocities tested. Our results show that the cylinder’s
torsional oscillation breaks the system’s symmetry and affects the structural response at
higher reduced velocities regardless of the angle of attack. The FIV response of the flexible
triangular cylinder is distinct from that of a rigid flexibly mounted triangular cylinder
due to torsional oscillation, spanwise flexibility and the two fixed boundary conditions
limiting the amplitude of oscillation. Flow field analysis in the wake of the cylinder
was done qualitatively and quantitatively using hydrogen bubble flow visualisation
and time-resolved volumetric particle tracking velocimetry techniques, respectively. Our
results show the existence of highly three-dimensional vortex structures in the wake of
the cylinder. We studied the coupling between the vortex shedding modes in the wake of
the cylinder and the structural vibration modes through the spatiotemporal mode analysis
using the proper orthogonal decomposition technique to distinguish between different
types of the FIV response observed.
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1. Introduction

Flow-induced vibration (FIV) response of a non-circular bluff body is sensitive to its
geometry (Modir et al. 2021; Chen et al. 2022; Sharma, Garg & Bhardwaj 2022). Flow
around prisms with triangular cross-section have received considerable attention as a
typical non-circular geometry, representing structures in applications such as ice-covered
transmission lines or corroded offshore structures. Extensive investigations have explored
flow dynamics past cylinders with triangular cross-sections that have mainly focused on
the effects of flow direction as well as the cross-sectional geometry (Kumar De & Dalal
2006, 2007; Bao, Zhou & Zhao 2010). In a numerical study by Tu et al. (2014), the
two-dimensional (2-D) flow around a stationary cylinder was investigated for the range of
angles of attack of α = 0◦–60◦ and Reynolds-number range of Re = 50–160. The findings
of their research indicated that the location of the separation point varied depending on
the angle of attack. Specifically, for angles less than 30◦, the separation point was found
to shift with changes in the Reynolds number, whereas at higher angles, the separation
point consistently resided at the rear corner, irrespective of the Reynolds number. Later
comprehensive studies examined the dependency of the vortex shedding patterns on the
Reynolds number and angles of attack in the wake of the triangular cylinder through
numerical simulations (Chanthanasaro 2020; Chanthanasaro & Boonyasiriwat 2021). In
addition, vortex shedding pattern around and in the wake of the triangular cylinder was
analysed to understand the influence of the cylinder’s orientation on the precise position
of separation points, and the size of the recirculation region (Ng et al. 2016; Ng, Vo &
Sheard 2018).

It is well understood that the FIV response of a rigid triangle prism is significantly
influenced by its orientation with respect to the incoming flow (angle of attack) that
can also define the after-body geometry of the system (Seyed-Aghazadeh, Carlson &
Modarres-Sadeghi 2017; Chen et al. 2020; Liu et al. 2020). However, the available studies
on the FIV of non-circular geometries have mainly been performed on rigid structures, and
there is limited research on the FIV of flexible triangular cylinders. Therefore, the aim of
this study is to investigate the FIV response of a flexible triangular cylinder and to provide
a better understanding of the associated flow field characteristics. This knowledge can be
further extended to facilitate the development of novel design strategies for FIV control in
flexible triangular cylinder applications.

When a rigid triangular prism is flexibly mounted and allowed to oscillate in the
cross-flow direction, its FIV response can be classified as either vortex-induced vibration
(VIV) or galloping with a large amplitude and low oscillation frequency, depending on
the angle of attack and flow velocity (Seyed-Aghazadeh et al. 2017; Chen et al. 2020;
Liu et al. 2020). Both experimental and numerical investigations have been conducted on
such systems to highlight the effects of the angle of attack on the system’s FIV response
(Alonso, Meseguer & Pérez-Grande 2005; Alonso & Meseguer 2006; Alonso, Meseguer
& Pérez-Grande 2007; Alonso, Sanz-Lobera & Meseguer 2012). In a numerical study on
the FIV of an equilateral triangular prism (Chen et al. 2020), the effect of the angle of
attack on the response type has been studied at the Reynolds number of Re = 200 and the
mass ratio of m∗ = 2. The mass ratio was defined as the ratio between the mass of the
oscillating body to the mass of the displaced fluid. The study showed that based on the
prism’s angle of attack, the FIV response type could be categorised into three regimes of
VIV, galloping and the combined VIV and galloping. In another study, the FIV of a flexibly
mounted triangular prism with the mass ratio of m∗ = 9.24 has been studied through a
series of water tunnel experiments, covering the response in the Reynolds number range
of Re = 490–2700 (Seyed-Aghazadeh et al. 2017). The effect of the angle of attack and
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Flow-induced vibration of flexible triangular cylinder

flow velocity on the FIV response was studied through the structural response of the prism
together with the vortex dynamics and shedding patterns in the wake of the prism. The
results showed that for angles of attack smaller than 25◦ no oscillation was observed. At
the higher angles of attack in the range of 30◦–35◦, the FIV response was of the VIV-type
for the low flow velocity ranges and transitioned to galloping at higher flow velocities.
Beyond the angle of attack of 35◦, the FIV response observed was of the galloping type.
In a numerical simulation of the flow past a triangular cylinder (Liu et al. 2020), the flow
separation over the fixed triangular cylinder was categorised into three models according
to the flow state based on the angle of attack: the separation bubble model, the edge
separation model and the attached flow model. In this study, the effect of the angle of
attack on the lift, drag and Strouhal number was also investigated.

While the available studies on the FIV of flexibly mounted prisms are helpful for our
fundamental understanding of the FIV observed for such systems, most of the studies do
not take into account any possible spanwise flexibility of the structure that can potentially
affect the response of the system. FIV of flexible structures has been observed in many
real-world applications, in ocean industries such as those in marine risers and mooring
lines for floating offshore structures, and in engineering structures such as long-span
cable-stayed bridges. Among FIV response studies that have taken into consideration the
spanwise flexibility of the structure, a circular cross-section has been studied as a canonical
geometry. In these studies, the flexible circular cylinder is placed in uniform flow, free
to oscillate in the flow direction (inline [IL]) and perpendicular to the flow direction
(cross-flow [CF]). The complex dynamic response of the flexible circular cylinder coupled
with their surrounding flow has been investigated to characterise the fundamentals of
fluid–structure interaction response for such systems. The general response of the flexible
circular cylinder has been found to be of VIV type at which the vibration is induced by the
vortices shed behind the cylinder (Bearman 1984; Sarpkaya 1995; Khalak & Williamson
1999; Govardhan & Williamson 2002; Jauvtis & Williamson 2004; Sarpkaya 2004; Dahl,
Hover & Triantafyllou 2006; Dahl et al. 2007; Raghavan & Bernitsas 2011). Although VIV
studies of elastically mounted rigid cylinders with limited degrees of freedom in the CF
and IL directions have facilitated our understanding of VIV occurring in a more complex
case of flexible cylinders, the VIV response of a flexible cylinder can undergo complex
large amplitude oscillations at higher vibrational modes due to the additional variables
associated with the dynamics of flexible systems. Some of such complexities in the FIV
response of a flexible structure cannot be understood or predicted by rigid flexibly mounted
model studies. Through experimental (Chaplin et al. 2005; Trim et al. 2005; Vandiver
et al. 2005; Lie & Kaasen 2006; Huera-Huarte & Bearman 2009; Seyed-Aghazadeh,
Edraki & Modarres-Sadeghi 2019; Seyed-Aghazadeh et al. 2021b), and numerical studies
(Evangelinos, Lucor & Karniadakis 2000; Bourguet, Karniadakis & Triantafyllou 2011a;
Bourguet et al. 2011b; Bourguet, Karniadakis & Triantafyllou 2013; Zanganeh & Srinil
2016), excitation of mono- and multi-frequency modes and transition from lower-mode
to higher-mode excitation have been observed in the VIV response of such flexible
cylinders. In addition, the traveling wave observed in the VIV response of flexible cylinders
(Marcollo et al. 2011; Bourguet, Lucor & Triantafyllou 2012; Seyed-Aghazadeh et al.
2021b; Mousavisani, Castro & Seyed-Aghazadeh 2022a) adds to the complexity of the
response that cannot be characterised in simpler models of a flexible cylinder, i.e. flexibly
mounted cylinder studies with one or two degrees of freedom.

While the FIV of flexibly mounted prismatic structures and flexible circular cylinders
are relatively well studied, the FIV of a flexible cylinder with a triangular cross-section
is not well understood. The dynamic response of a flexible triangular cylinder has been
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investigated in a few works in this area, mainly numerically. The response of a triangular
flexible cylinder was analysed at fixed Reynolds numbers for low (Re = 100 and 200)
(Zhu et al. 2019) and high (Re = 3900) (Zhu et al. 2020) Reynolds numbers. For the
angle of attack of 60◦, the FIV response type was VIV for the Reynolds number of Re =
100, while at the Reynolds number of Re = 200, the response type was a combination of
strong VIV and weak galloping (Zhu et al. 2019). It was also found that the energy transfer
from the flow to the cylinder was higher for the flexible triangular cylinder compared
with the flexible circular cylinder with the same system parameters (Zhu et al. 2019). In
another study, the response of a flexible triangular cylinder was investigated numerically
at a subcritical Reynolds number of Re = 3900 (Zhu et al. 2020). The study showed that
the amplitude of oscillation for the triangular cylinder was significantly larger than that of
the circular cylinder with the same system parameters. The observed FIV response was
divided into two independent types, where the low-frequency response was related to the
galloping and the high-frequency response was related to the vortex shedding.

However, these studies have been limited to investigating the FIV at only limited angles
of attack and have only studied the response in the CF direction, without addressing the
oscillations occurring in the IL direction, as well as the cylinder’s possible rotational
response, as the flexible cylinder has a degree of freedom in the torsional direction. These
additional degrees of freedom can potentially play important roles in the FIV response
of the system, which are not well studied or understood at this point. Therefore, in this
study, we aim to investigate the FIV response of a flexible triangular cylinder by analysing
the structural response subjected to flow forces in the CF and IL directions, taking into
account the effects of the flexible cylinder’s capability to deform or oscillate in the IL
and torsional degrees of freedom. The response is studied for three angles of attack of
α = 0◦, 30◦ and 60◦. Due to the capability of the flexible cylinder to deform or oscillate
in the torsional degree of freedom, the ‘modified angle’ of attack during the oscillation
can vary both spatially (i.e. along the cylinder’s spanwise length at a specific time) and
temporally (i.e. over time at a specific location along the spanwise length of the cylinder).
This variation in the angle of attack throughout time and space can further complicate the
system’s FIV response. The fully coupled fluid–structure interaction response, that is the
interaction between the structural response and the flow field in the wake of the structure,
will be studied here through a series of water tunnel experiments. The results of this study
are expected to provide insights into the FIV response of flexible triangular cylinders and
the role of additional degrees of freedom such as torsional motion. These insights can
help improve the design and performance of structures subject to FIV, such as offshore
platforms, pipelines and wind turbines.

In what follows, we present the experimental set-up and methodology used to capture
the structural response and conduct flow field measurements in § 2. Section 3 provides a
detailed analysis of the structural response, with three subsections dedicated to discussing
the observed behaviour for each angle of attack. In § 4, we present the qualitative and
quantitative flow visualisation results obtained from the experiments. Finally, we draw our
conclusions in § 5, which summarises our findings and discusses their implications for
understanding the FIV of flexible triangular cylinders.

2. Experimental set-up and data collection

The experiments were conducted in a recirculating water tunnel, which had a test section
of 0.45 m(y) × 0.45 m(z) × 1.5 m(x) and a turbulence intensity of less than 1 % for up to
a velocity of 1 m s−1. A flexible cylinder with an equilateral triangular cross-section and a
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Flow-induced vibration of flexible triangular cylinder

(a) (b)
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Figure 1. Schematic of the (a) experimental set-up and (b) triangular cylinder indicating the angles of attack
(α) tested in this study.

side length of D = 0.01 m was tested. The cylinder had an aspect ratio of L/D = 30, where
L is the cylinder’s length. The cylinder was fully submerged and horizontally placed in the
test section of the water tunnel (figure 1). The cylinder was cast in-house using flexible
silicone rubber material (OOMOOTM 30, Smooth-on, Inc.), and the resulting low flexural
rigidity of the cylinder made it possible for high structural modes of oscillations to be
excited along the short spanwise length of the cylinder. The elasticity modulus of the cast
cylinder was E = 300 kPa, which was obtained experimentally following the technique by
Paidoussis (2014). The cylinder’s mass ratio was calculated as m∗ = 4m/

√
3ρD2L = 1.5,

where m is the mass of the cylinder and ρ is the fluid density.
The cylinder was fixed at one end and connected to the force sensor, to adjust the initial

tension through a pulley, at the other end. At each end, there is an endplate featuring a
smoothly curved profile designed to minimise the flow’s three-dimensionality, resulting
in a blockage ratio of 4 %. The system’s bending and torsional natural frequencies and
damping ratio were measured using free decay tests, employing a technique established
previously and discussed in the literature (Cen 2015; Seyed-Aghazadeh et al. 2021b). The
damping ratio of the system in the air, obtained using free decay tests, was calculated
to be ζ = 0.003. The non-dimensional flow velocity, known as the reduced velocity of
the incoming flow, is introduced to provide a normalised value that incorporates both
structural and fluid properties, enabling a unified parameter for analysing interactions
between flow and structural dynamics of the system. The reduced velocity is calculated
as U∗ = U/(D × f0), where U is the flow velocity and f0 is the system’s first bending
natural frequency in water. The natural frequency of the flexible cylinder placed in flow
can be calculated as (Obasaju, Ermshaus & Naudascher 1990)

fn =
√

Tn2

4ML2 + EIπ2n4

4ML4 . (2.1)

In this equation, T represents the tension acting along the length of the cylinder, whereas
M denotes the combined mass of the cylinder (m) and the added mass (ma) per unit length,
where M = m + ma. The variable fn represents the natural frequencies corresponding to
various modes of the system. In the context of the current experimental configuration,
where a pre-tension of T = 0.2 N is applied to the cylinder, the calculated values for the
first and second terms in (2.1) for the first mode yielded a ratio of 57. This ratio highlights
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a predominant influence of the first term, associated with tension, over the second
term, associated with flexural rigidity. Consequently, the second term can be considered
negligible, affirming that the cylinder operates primarily in a tension-dominated regime.

To measure the dynamic spanwise structural response of the flexible cylinder, the
cylinder was marked with uniformly distributed black dots at its two sides along the
length with 0.04 ± 0.001 m intervals. A total of seven points were marked along the
length of each side of the cylinder. These dots’ oscillations were captured in the CF
and IL directions using two synchronised high-speed cameras (Victorem 32B216MCX).
The captured videos were input to a dynamic tracking software (Cabrillo Tracker) that
created synchronised displacement time histories in the CF and IL directions at these
discrete points. With calculations based on the dimensions of black marked feature pixels,
the motion tracking software maintains an error margin of under 2 % in both the IL
and CF directions by utilising cross-correlation between consecutive images recorded
by high-speed cameras to precisely trace the positions of the cylinder markings. The
time-resolved displacements of these discrete data points were used to reconstruct the
cylinder’s spanwise continuous response. The reconstruction method used here was based
on the modal analysis technique by implementing the modal assurance criterion (MAC).
Determining the mode shapes through the finite-element analysis (Solidworks frequency
analysis) for the excited modes yields an approximate response reconstruction of the
cylinder’s oscillation. This response reconstruction technique can be defined in matrix
form as a linear combination of the cylinder’s mode shapes. For instance, the CF response
can be written in matrix form as

Y (z, t) = φ(z)Y M(t), (2.2)

where Y (z, t) = [y(z1, t), y(z2, t), . . .] is the matrix of measured displacements in the CF
direction at each point along the cylinder’s length. φ(z) = [φ1, φ2, . . .] is the displacement
modal shape matrix at which each column represent the mode shapes at each point along
the cylinder’s length. Here Y M = [yM1, yM2, . . .] is the modal contribution matrix, in
which each row shows the contribution of each mode to the overall response. At this
step, the MAC is applied to identify the dominant structural modes that contribute to
the response reconstruction using localised measurement points. The modal expansion
theorem is then employed in conjunction with MAC to obtain the response of the system at
any arbitrary point along the cylinder. This response reconstruction technique was recently
introduced in Seyed-Aghazadeh & Modarres-Sadeghi (2016) and has been demonstrated to
accurately reconstruct the FIV response of flexible circular cylinders. Further details of this
technique can be found in previous publications (Seyed-Aghazadeh & Modarres-Sadeghi
2016, 2018; Seyed-Aghazadeh et al. 2019; Seyed-Aghazadeh, Anderson & Dulac 2021a;
Mousavisani et al. 2022a). It is essential to highlight that the structural response,
denoted as the oscillation in the CF direction, results from a combination of two distinct
phenomena: first, the displacement of the cylinder along the y-axis (resulting in bending
within the yz plane) and, second, the torsion of the cylinder around its central axis,
projected onto the yz plane. In cases characterised by multi-frequency responses, where
both bending and torsional frequencies contribute to the CF oscillation, their distinction
can be established by examining their frequency components and comparing them to the
bending and torsional natural frequencies acquired through free decay tests.

Figure 2 shows the temporal evolution and corresponding frequency spectrum of each
mode that contributes to the system’s response in a sample case at U∗ = 11.88 for
the angle of attack of α = 60◦. These modal contributions are the row vectors, yM , as
introduced in (2.2). The first dominant mode, that is the cylinder’s first bending mode
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Figure 2. Contribution of the first bending (a,b), second bending (c,d), third bending (e, f ) and torsional
(g,h) modes to the system’s response for U∗ = 11.88 at the angle of attack of α = 60◦, along with their
corresponding frequency contents.

and its frequency content, is shown in figure 2(a,b). The second and third row shows
the very small contribution of the second and third bending modes of the cylinder,
respectively. The fourth row shows the contributions from the first torsional mode to
the response of the system, as shown in figure 2(g,h). The analysis shows that the
first bending mode is the dominant mode contributing to the response of the system in
comparison with the other modes. In addition, the torsional mode exhibits a contribution
to the response that is comparable in magnitude to the first bending mode’s contribution,
while the contributions of the second and third bending modes are notably weaker.
These observations are consistent with the findings derived from the analysis of spanwise
frequency and displacement for the cylinder within this specific sample case, as discussed
later in § 3.4 (figure 9b i–iii).

The FIV response of the triangular cylinder in both the CF and IL directions was
measured over a reduced velocity range of U∗ = 0.9–16.27, corresponding to a Reynolds
number range of Re = 364–3600. The effect of three different angles of attack (α =
0◦, 30◦ and 60◦) on the FIV response of the cylinder was studied. In addition to the
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structural measurements of the cylinder, the flow field around the cylinder was captured,
synchronised with the dynamic response of the structure’s oscillation, using qualitative
and quantitative flow visualisation techniques to study vortex dynamics in the wake of the
structure.

For qualitative flow visualisation, hydrogen bubbles (HB) were generated through the
electrolysis of water using a platinum wire with a diameter of 0.0508 mm strung across
the test section in the direction of the flow and perpendicular to the spanwise length of the
cylinder. The wire served as an anode, whereas a 50–100 V, 2 A power supply positively
charged a graphite plate to serve as a cathode. The potential between the two caused a
build-up of HB on the platinum wire, which separated from the wire once their diameter
exceeded the wire diameter to create a bubble film. The bubble film was used to view the
wake structure, which was recorded using a high-speed camera (Victorem 32B216MCX)
at a rate of 200 frames per second at a 2-D plane along the span of the cylinder. The bubble
sheet was illuminated using LED lighting mounted on each side of the test-section at an
angle to ensure uniform lighting conditions.

For quantitative flow measurement, volumetric particle tracking velocimetry (PTV)
was used to measure the flow field dynamics in the wake of the cylinder at sample
reduced velocities. The flow field dynamics were measured using a state-of-the-art
three-dimensional (3-D) Lagrangian PTV system (Shake-the-Box, LaVision Inc.,
Ypsilanti, MI, USA) in a time-resolved fashion. Seeding particles, which were polyamide
high-quality hollow glass spheres of 60 μm nominal diameter, were used with a
concentration of approximately 0.02 g L−1. The particles were illuminated by a 300 ×
100 mm2 LED (FLASHLIGHT 300 array, LaVision) with 72 high-power LEDs operated
above the nominal LED current to generate short pulses at very high light intensities.
The recording system included four pre-aligned digital cameras in the Minishaker box
equipped with 16 mm lenses, which were used to capture images at a 120 Hz trigger rate
at full resolution (1984 × 1264 pixels).

The captured volume had a dimension of 0.26 m × 0.17 m × 0.1 m (x, y, z), translating
to a volume of 26D × 17D × 10D, where D is the side length of the cylinder. Multiple
separate subsets of 1500 images, corresponding to approximately 12 s of measurement
(which cover the minimum of four cycles of cylinder oscillation), were acquired for
each sample reduced velocity. A LaVision programmable timing unit (PTU) controlled
by DaVis 10 acquisition software was used to trigger the flashlight and cameras
simultaneously. Further details regarding the calibration and the ‘shake the box’ algorithm
for the 3-D Lagrangian PTV can be found in Schanz, Gesemann & Schröder (2016), Chen,
Wu & Cheng (2019) and Mousavisani et al. (2022b).

3. Structural response of the system

3.1. Overview of the cylinder’s vibration response
This section investigates the FIV response of the triangular cylinder in terms of the
amplitude and frequency of oscillations. The spanwise displacements of the flexible
triangular cylinder were measured in the CF and IL directions at three different angles
of attack of α = 0◦, 30◦, and 60◦. At each angle of attack, the flow velocity was increased
from zero in small steps to cover the FIV response of the system in the reduced velocity
range of U∗ = 0.9–16.27. The spanwise oscillations of the cylinder in the CF and IL
directions were obtained using the method discussed in § 2.

Figure 3 compares the overall non-dimensional amplitude of oscillations in both the
CF (figure 3a) and IL (figure 3b) directions for each angle of attack of the cylinder.

979 A15-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1024


Flow-induced vibration of flexible triangular cylinder

0.2

0.4

0.6

0.8

0 5 10 15

U∗

y∗ rm
s 

0.2

0.4

0.6

0.8

0 5 10 15

α = 0°

α = 30°

α = 60°

U∗

x∗ rm
s 

Flow

(a) (b)

Figure 3. Non-dimensional amplitude (r.m.s.) of oscillation plotted against reduced velocity for different
angles of attack (α = 0◦, 30◦, 60◦) in the CF (a) and IL (b) directions.

The non-dimensional amplitude of oscillation is obtained by considering the root mean
square (r.m.s.) of the reconstructed data along the span, which is then normalised by the
cylinder’s side length. The results show that the non-dimensional amplitude of oscillation
in the CF direction for the cylinder at an angle of attack of α = 0◦, in which the sharp edge
of the cylinder faces the flow, is relatively smaller than those observed for higher angles of
attack of α = 30◦ and α = 60◦ over the entire range of the reduced velocities tested. This
behaviour can be attributed to the lack of vortex–after-body interaction when compared
with other angles of attack. While geometric symmetry and fixed separation points are
observed at both α = 0◦ and α = 60◦, the likelihood of vortex–after-body interaction
significantly increases at α = 60◦ due to the presence of a triangular side length extending
beyond the separation point. This phenomenon has been documented in prior studies on
FIV in prismatic structures, as noted in works such as Nemes et al. (2012) and Massai et al.
(2018). The amplitude of oscillation of the cylinder at the angles of attack of α = 30◦ and
60◦ shows that the amplitudes increase and reach a peak value at reduced velocity before
U∗ < 10 and then decrease. The amplitude of oscillation in the IL direction shows that it
increases by increasing the reduced velocity for all three angles of attack. At each angle
of attack, the amplitude of oscillations in the IL direction is smaller compared with those
in the CF direction, particularly at lower reduced velocity ranges, prior to the response
reaching its peak value in CF oscillations.

However, the overall trend in the amplitude of oscillation is very different from those
observed in the FIV studies of a rigid triangular cylinder, which is free to oscillate
in the CF direction (Seyed-Aghazadeh et al. 2017). For example, at the high angle of
attack of α = 60◦, while it has been shown that the rigid cylinder undergoes unbounded
large-amplitude galloping-type oscillations, here in our study of the flexible triangular
cylinder, the amplitude of oscillations is limited and does not exceed values larger than
approximately 0.7 times the side length of the triangular cross-section. Similarly, at the
low angle of attack of α = 0◦, while the rigid triangular cylinder results have shown that
the cylinder remains stable and no oscillation has been observed in the CF direction for a
flexibly mounted rigid cylinder, here in our study, the cylinder undergoes relatively large
amplitudes of oscillations at higher reduced velocities. Our understanding is that such
differences can be attributed to multiple factors, such as the spanwise flexibility of the
cylinder, the flexible cylinder’s boundary conditions, the mean displacement in the CF
and IL directions, and the multi-frequency nature of the FIV response that promotes the
excitation of higher modes of oscillations that are all unique and different from those of
previous studies.

For example, the fixed boundary conditions and the potential large spanwise bending
of the cylinder, due to the mean displacement in the CF and IL directions, can cause a
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breaking of the system’s symmetry and the flow around it. As a result, the modified angle
of attack of the cylinder and the after-body geometry can be altered, leading to oscillations
in the torsional degree of freedom, even for initially symmetric angles of attack, such
as α = 0◦ and α = 60◦. When the angle of attack is changed from its initial state, the
wake of the cylinder can display new forms of vortex shedding patterns, which may affect
the system’s response differently. Our study observes and discusses these effects in the
following sections. The excitation of higher modes and fixed boundary conditions at both
ends presumably is the reason for the smaller amplitude of oscillation, distinguishing the
FIV response of the flexible and rigid triangular cylinder from the unbounded increase
in amplitude previously observed in the galloping response of rigid, flexibly mounted
triangular prisms (Seyed-Aghazadeh et al. 2017).

In the following sections, we examine the FIV response of the flexible triangular cylinder
in more detail at each angle of attack over the tested reduced velocity range. In addition,
we select three response samples at different reduced velocities for each angle of attack to
analyse and highlight the characteristics of each response region in greater detail.

3.2. Response characteristics for the angle of attack of α = 0◦

This section investigates the CF and IL amplitude and frequency of the cylinder’s
oscillations at an angle of attack of α = 0◦. Figure 4 displays the FIV response of the
system at this angle of attack. The first row plots show the non-dimensional amplitude of
oscillations, the second row plots show the contour plot of the spanwise non-dimensional
frequency of oscillations and the third row plots show the non-dimensional mean
displacement vs the reduced velocity in the CF (left column) and IL (right column)
directions. To calculate the non-dimensional amplitude of oscillation, the r.m.s. of the
reconstructed data along the span is normalised by the cylinder’s side length. The
frequency of oscillation is obtained by applying the fast Fourier transform (FFT) to
the cylinder’s spanwise displacement and is normalised by the cylinder’s first bending
frequency in water. The frequency content of the response at each reduced velocity
is plotted for the modes contributing to at least 10 % of the maximum amplitude of
oscillations. The non-dimensional mean displacement is calculated by taking the r.m.s.
of the spanwise mean displacement of the cylinder at each reduced velocity, measured
from the neutral position of the cylinder when placed at still water, and is then normalised
by the cylinder’s side length.

Figure 4(a) demonstrates that the FIV response of the triangular cylinder at this
angle of attack can be categorised into two different types. In the first region, with a
limited reduced velocity range of U∗ = 4.73–10.77, small-amplitude oscillations occur.
The cylinder starts to oscillate in the CF direction at a reduced velocity of U∗ = 4.73
with very low amplitudes, and the non-dimensional amplitude of oscillations increases
with an increasing reduced velocity. It reaches its maximum value of y∗ = 0.05 at a
reduced velocity of U∗ = 9.60, then decreases to around y∗ = 0.02 at a reduced velocity of
U∗ = 10.77. These oscillations over a limited range of reduced velocities resemble those
of a VIV-type response. The FIV response observed in the second region resembles those
of a galloping-type response, where the amplitude of oscillations of the cylinder increases
as the reduced velocity values increase. In this region, the maximum non-dimensional
amplitude of oscillations reaches values of about y∗ = 0.22 at the maximum reduced
velocity tested of U∗ = 16.27.

The frequency content plot for the CF oscillations presented in figure 4(b) reveals
that when the oscillations begin at the reduced velocity of U∗ = 4.73, the frequency of
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Figure 4. Non-dimensional amplitude (r.m.s.), frequency and mean value of oscillation at the angle of attack
of α = 0◦ plotted vs the reduced velocity in the CF direction (a–c) and IL direction (d–f ).

oscillations is close to the natural frequency of the cylinder’s first bending mode. As the
amplitude of oscillations increases and reaches its maximum value at the reduced velocity
of U∗ = 9.68, the oscillation frequency takes values close to the natural frequency of the
cylinder’s second bending mode. In the entire range of reduced velocity for which the FIV
response follows a VIV-type response (U∗ = 4.73–10.77), the frequency content of the
response shows a mono-frequency oscillation. The frequency of oscillations follows the
Strouhal line, which was measured for a rigid stationary triangular cylinder at this angle of
attack (Seyed-Aghazadeh et al. 2017) and is shown with a dashed line in this figure. Unlike
the VIV response of a flexible circular cylinder, in which the non-dimensional frequency
of the oscillation locks into a specific frequency at each mode of oscillation (Mousavisani
et al. 2022a), the oscillation frequency of the triangular cylinder at α = 0◦ follows the
Strouhal line within the VIV-type response region. However, it might be expected that
no oscillations would occur at this angle of attack for a triangular cylinder, which has
two fixed separation points and a flat surface after-body in the downstream (figure 1b),
because of the lack of interaction between the after-body and vortex/shear layers in the
downstream of the cylinder. This expectation is consistent with the FIV response of rigid
triangular cylinders studied at high Reynolds numbers and mass ratios of m∗ = 9.24 and
2.7, respectively (Seyed-Aghazadeh et al. 2017; Tamimi et al. 2019). However, VIV-type
responses with amplitude of oscillation and a linear increase in oscillation frequency,
similar to those observed in the present study, have been reported in recent FIV studies
(Chen et al. 2020, 2022) of prisms with fixed separation points but without an after-body.
For instance, rigid triangular cylinders exhibit this type of response when the sharp edge
faces the incoming flow. It has been shown that the fixed separation points for the flow
around the cylinder at this angle of attack (α = 0◦) result in a constant location of the

979 A15-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
24

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1024


S. Mousavisani, H. Samandari and B. Seyed-Aghazadeh

separation point, even during cylinder oscillation. Thus, the shedding frequency during
oscillation (the same as the oscillation frequency in this VIV-type response) remains the
same as the Strouhal number at each reduced velocity, and linearly increases with the
reduced velocity. Similarly, studies on D-section prisms show this behaviour when the
curve side faces the incoming flow with a mass ratio of m∗ = 2 and 4, and Reynolds
numbers of Re = 200 and 100, respectively (Chen et al. 2022). In this study, the oscillation
frequency follows the Strouhal line, indicating that the frequency of oscillation is the same
as the shedding frequency of the rigid fixed cylinder at each reduced velocity. In § 4.2,
we present a sample case in this range of reduced velocity, where the vortex shedding
frequency is the same as the oscillation frequency, which follows the Strouhal line. This
observation confirms that the response type is VIV.

The present study and others (Chen et al. 2020, 2022) demonstrated that an after-body
is unnecessary for initiating the oscillation, which is also confirmed by Zhao, Hourigan
& Thompson (2018). Instead, similar to observations in Chen et al. (2022) for FIV of a
D-section prism at the angle of 0◦, where the curved side faces the flow with no after-body
in the downstream, for a triangular cylinder, the oscillation is likely initiated by viscous lift
on the fore-body. In the D-section prism study (Chen et al. 2022), the authors showed that
large-amplitude vibrations of the prism in low-Re flow are not related to the interaction of
the shear layer/vortex and after-body. They decomposed the lift in phase with the prism
velocity, which energises the VIV of the D-section prism into the pressure and viscous
components. They showed that, in each cycle, the viscous component promotes while the
pressure component dampens the prism vibration. They mentioned that the viscous lift,
which integrates the viscous shear stress on the prism surface induced by the vortical flow,
is the reason for the sustenance of the vibration. This finding is consistent with that of
Menon & Mittal (2021), which suggests that the vibration for a single cylinder is sustained
by the vorticity associated with the boundary layer over the surface. Thus, the viscous lift
on the fore-body is equally significant in exciting the vibrations of a D-section prism in
low-Re flow (Chen et al. 2022).

In the second reduced velocity region (U∗ = 11.33–16.27), the oscillations start from
the reduced velocity of U∗ = 11.33 and the amplitude of oscillation increases as the
flow velocity increases which resembles those of galloping-type oscillations. In addition,
figure 4(c) shows that right after the VIV-type response ends, at the reduced velocity of
U∗ = 11.33 the mean displacement of the cylinder also starts to increase. Our observations
have shown that at the reduced velocity range of U∗ = 11.33–13.52, the cylinder starts
to rotate along its central axis, so the angle of attack changes over time. This rotation
breaks the symmetry and increases the mean displacement. In the galloping-type response
region for a subrange of U∗ = 11.33–13.52, the cylinder experiences dominant torsional
oscillations at its first torsional mode. The frequency of oscillation increases linearly and
remains below the Strouhal line at this range. At a high reduced velocity range of U∗ =
14.07–16.27 the frequency content of the cylinder’s FIV response includes contributions
from both the first torsional mode frequency as well as the first and second bending mode
frequencies. The mean displacement in the CF direction remains constant for this range of
reduced velocity.

The observation of an unprecedented galloping-type response when the triangular
cylinder is at the angle of attack of α = 0◦ might raise the question of why it occurs.
We believe that the large-amplitude oscillation is likely due to the torsional oscillations of
the cylinder, which break the symmetry of the system and change the modified angle of
attack. The torsional mode of oscillation is excited when the linearly increasing frequency
of oscillation approaches the first torsional natural frequency (also shown with dashed lines
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Flow-induced vibration of flexible triangular cylinder

in figure 4b) at the reduced velocity close to U∗ = 11.33. Once the cylinder undergoes the
torsional oscillation, the modified angle of attack varies over time and is no longer the
same as the initially set value of α = 0◦. As a result, the location of the separation point
changes from the fixed separation points at α = 0◦ to moving separation points at each
modified angle of attack, which provides the after-body downstream of the separation
points. The moving separation points and the vortex–after-body interaction are likely
responsible for the increase in the amplitude of oscillation observed at the high reduced
velocity ranges (figure 4a,d). The variation in the modified angle of attack also increases
the mean displacement in both IL and CF directions (figure 4c, f ), which amplifies the
asymmetry of the system, leading to higher amplitudes of oscillation that resemble the
galloping-type behaviour.

The amplitude of oscillation in the IL direction exhibits a similar trend as those
observed in the CF direction, with values comparable to those observed in the CF
direction (figure 4d). The frequency content of oscillations exhibits low-frequency
oscillations at values close to the system’s first bending mode frequency at the VIV region
(U∗ = 4.73–10.77). As the response enters the galloping region, beyond the reduced
velocity of U∗ = 10.77, multi-frequency FIV response is observed (figure 4e). The mean
displacement in the IL direction increases monotonically at reduced velocities as low as
U∗ = 4.73, which is the onset of oscillations (figure 4f ). The mean displacements in both
the IL and CF directions reach large values close to twice the cylinder’s side length.

To gain further insight into the system’s behaviour, we studied three sample responses
at reduced velocities selected to cover both the VIV and galloping-type regions, as shown
in figure 5. The first sample reduced velocity is selected at the onset of the VIV-type
oscillation region at the reduced velocity of U∗ = 4.73. The second sample is selected
at a reduced velocity of U∗ = 8.58, at which the amplitude of oscillations reaches its
maximum value at the VIV region. The third sample is selected at a reduced velocity of
U∗ = 14.07, at which the FIV response is of galloping type. In figure 5, the plots in the
first column from the left show the normalised r.m.s. of the amplitude of oscillations (A∗

y )
along the non-dimensional spanwise length (z) in the CF direction. The r.m.s. values of
oscillation amplitudes measured from the experiments at discrete points are also plotted
as solid black circles on top of the reconstructed response (dashed lines), showing how the
experimentally measured data matches the reconstructed spanwise continuous response of
the system. The plots in the second column show the time histories of the non-dimensional
amplitude of oscillations along the non-dimensional spanwise length of the cylinder. The
plots in the third column show the frequency content of the structural response along the
cylinder’s length, which is normalised by the first bending mode natural frequency of the
system.

In the first row of figure 5, we see the results at a reduced velocity of U∗ = 4.73
where the amplitude of oscillation is very small. The spanwise r.m.s. plot shows that
the maximum r.m.s. value of the cylinder’s spanwise oscillation reaches a value of about
y∗ = 0.01 at a spanwise location close to the centre of the cylinder at z = 0.53 (figure 5a i).
At this reduced velocity, the cylinder is excited at its first structural bending mode, and
there is no zero-amplitude node of oscillation along the cylinder’s length other than
the two fixed boundaries. This low-amplitude, mono-frequency oscillation at the first
bending mode can also be seen in the spanwise time history contour plot in figure 5(a ii).
The frequency analysis shows that the system oscillates at the normalised frequency of
f ∗ = 1.1 (figure 5a iii), which is close to the system’s first bending mode natural frequency.

Moving on to the second row plots in figure 5, we see the results at a reduced velocity
of U∗ = 8.58. The maximum r.m.s. value of the cylinder’s oscillations reaches a value
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Figure 5. Comparison of the non-dimensional r.m.s. of amplitudes of oscillations (dashed line, reconstructed
response; circles, experimental measurements) in the first column, time histories of the amplitudes of
oscillations in the second column and the frequency contents of the structural response normalised by the
fundamental natural frequency in the third column. The results are shown for reduced velocities of U∗ = 4.73
(a i–a iii), U∗ = 8.58 (b i–b iii) and U∗ = 14.07 (c i–c iii) at an angle of attack of α = 0◦.

close to y∗ = 0.066 at the spanwise location of z = 0.53 (figure 5b i). Figure 5(b ii) shows
the spanwise time histories of the amplitude of oscillations at this reduced velocity. The
corresponding time history shows a single harmonic oscillation at this sample reduced
velocity selected at the VIV-type region response, where the frequency of oscillation
of f ∗ = 2.1 is close to the system’s second bending mode natural frequency. While the
frequency of oscillation is close to the second bending mode natural frequency, the excited
structural mode shape follows the first bending mode shape, where there is no spanwise
zero amplitude node of oscillation other than the two fixed boundaries.

In the third row plots of figure 5, we see the response of the cylinder in the galloping
region at the reduced velocity of U∗ = 14.07. The amplitude of oscillations is distinctly
increased from previous sample cases, and the maximum r.m.s. value reaches y∗ = 0.35
at the spanwise location of z = 0.52 (figure 5c i, ii). The frequency analysis shows that
the oscillation is dominated by a multi-frequency response at frequencies of f ∗ = 1.1 and
f ∗ = 2.9, which are the contributions from the first bending and first torsional frequencies,
respectively. The first bending mode and the first torsional mode have similar mode
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Figure 6. Non-dimensional amplitude (r.m.s.), frequency, and mean value of oscillation at the angle of attack
of α = 30◦ plotted vs the reduced velocity in the CF direction (a–c) and IL direction (d–f ).

shapes projected in the CF direction, where there is no spanwise zero-amplitude node
of oscillation other than the two fixed boundaries.

3.3. Response characteristics for the angle of attack of α = 30◦

In this section, we discuss the FIV response of the triangular cylinder at an angle of attack
of α = 30◦, focusing on the amplitude and frequency of oscillations. Figure 6 presents
the same plots as figure 4, but for the angle of attack of α = 30◦. The amplitude of
oscillations in the CF direction starts at very low levels for a reduced velocity of U∗ = 1.44
and gradually increases until reaching a maximum amplitude of y∗ = 0.74 at a reduced
velocity of U∗ = 10.77, beyond which the amplitude of oscillations decreases (figure 6a).
The amplitude of oscillations in the IL direction increases almost monotonically with
increasing flow velocity (figure 6d).

The frequency analysis of the response indicates a multi-frequency behaviour for
the reduced velocity range higher than U∗ = 9.13 in both the IL and CF directions
(figure 6b,e). While the time-averaged amplitudes of oscillation in the CF direction remain
relatively small (figure 6c), there is a considerable mean displacement in the IL direction,
with values increasing as the flow velocity increases, reaching amplitudes as high as four
times the cylinder’s side length (figure 6f ).

Figure 6(a) demonstrates that oscillations of the triangular cylinder in the CF direction
begin at a reduced velocity of U∗ = 1.44, and remain at low amplitudes (less than
y∗ = 0.1) until a reduced velocity of U∗ = 4.19 is reached. The frequency analysis in
this reduced velocity range (figure 6b) reveals that the dominant oscillation frequency is
close to the cylinder’s first bending mode frequency, and that the second bending mode
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frequency contributes to the reduced velocity range of U∗ = 3.64–4.19. Frequencies that
correspond to oscillations with the second structural bending mode shape are marked with
a red circle around them, along with the number 2 in figure 6(b).

Between the reduced velocity range of U∗ = 4.73–7.48, there is a sharp increase in
the amplitude of oscillations, reaching a maximum amplitude of y∗ = 0.46 at a reduced
velocity of U∗ = 7.48. At this reduced velocity range, the oscillation frequency is locked to
values close to f ∗ = 0.5. There is a transitional reduced velocity range of U∗ = 8–8.58 that
corresponds to a wide-banded frequency of oscillations before the response switches to
multi-frequency oscillations at a reduced velocity of U∗ = 9.13. A kink in the amplitude of
oscillations is observed at the beginning of this transitional range at the reduced velocity of
U∗ = 8. At this point, the mean displacement in the CF direction also reaches its maximum
value (figure 6c).

As the reduced velocity is further increased, in the range of U∗ = 9.13–10.77,
the amplitude of oscillations increases. Starting from this reduced velocity range, the
cylinder experiences a multi-frequency response that includes torsional oscillations at
the frequency of f ∗ = 3, which is close to the cylinder’s first torsional natural frequency
(shown with the dashed line in figure 6b). These torsional oscillations are combined with
contributions from the first and second bending mode frequencies. Similar to the angle of
attack of α = 0◦, once the torsional mode of the system is excited, the oscillation of the
cylinder leads to a dynamic change in the modified angle of attack. This variation in the
modified angle of attack occurs on a temporal and spatial scale, meaning that the angle
of attack changes over time at a specific point/plane along the cylinder’s length (temporal
scale), and at a specific instance of time, the variation of the angle of attack is not the
same along the span of the cylinder due to fixed boundary conditions (spatial scale). In
addition, multi-modal oscillation and excitation of mode shapes of the vibration other
than the torsional mode give rise to the variation of the modified angle of attack. These
temporal and spatial variations of the angle of attack lead to a complex multi-frequency
response with contributions from both the bending and torsional modes as observed at
higher reduced velocity ranges. Previous studies on flow-induced forces of the rotating
triangular cylinder have also mentioned similar variation of the angle of attack, leading to
changes in the separation points and pressure distribution on the windward and leeward
surfaces of the cylinder (Tu et al. 2014). Owing to the force of the fluid, the cylinder tends
to rotate to a configuration that balances the flow forces on both sides of the triangular
cylinder (Liu et al. 2020).

On this basis, the aforementioned changes result in an increase in the angle of
attack from α = 30◦ to α = 60◦, leading to an increased vortex–after-body interaction.
Consequently, the amplitude of oscillations increased in both the CF and IL directions
at the reduced velocity range of U∗ = 9.13–10.77, as shown in figure 6(a,d). However,
beyond the reduced velocity of U∗ = 10.77, although the cylinder still oscillates with
contributions from both torsional and bending modes, the amplitude of oscillation
decreases. The reduction in the amplitude of oscillations can be attributed to the
contributions from the second bending mode in the FIV response of the system. The
contributions from the second bending mode shape begin as the oscillation frequency gets
close to the second bending mode natural frequency of the system (as shown by the dashed
lines in figure 6b) at the reduced velocity of U∗ = 11.32, and become more dominant
when the frequency of oscillation surpasses the cylinder’s second bending mode natural
frequency at the reduced velocity of U∗ = 12.97. Contributions from the second bending
mode persist throughout the rest of the reduced velocity range tested here (U∗ = 16.27).
It is noteworthy that the modified angle of attack, which varies between α = 30◦ and
α = 60◦ in this configuration, can lead to an increase in the mean drag. The flat side of the
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Flow-induced vibration of flexible triangular cylinder
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Figure 7. (First column) Non-dimensional r.m.s. amplitudes of oscillations (dashed line, reconstructed
response; circles, experimental measurements). (Second column) Time histories of the amplitudes of
oscillations. (Third column) Frequency contents of the structural response, normalised by the fundamental
natural frequency. Results are shown for reduced velocities of U∗ = 6.38 (a i–a iii), U∗ = 10.77 (b i–b iii) and
U∗ = 14.07 (c i–c iii) at α = 30◦.

triangular cylinder facing the flow results in an increase in the mean displacement of the
cylinder in the IL direction, as shown in figure 6( f ). Similar behaviour has been reported
in the study of flow-induced forces on the rotating triangular cylinder, where the mean
drag increases when the angle of attack changes to configurations at which the flat side of
the triangular cylinder faces the flow (Tu et al. 2014).

Figure 7 shows the same plots as figure 5, but for a different set of sample reduced
velocities selected at an angle of attack of α = 30◦. The three sample reduced velocities
cover three different regions in the FIV response of the system. The first sample reduced
velocity is selected at U∗ = 6.38, at which the cylinder oscillates at its first bending mode.
The second sample reduced velocity is selected at U∗ = 10.77, where the first bending
and first torsional modes contribute to the response of the system, and the amplitude of
oscillations has reached its maximum. The third sample reduced velocity is selected at
U∗ = 14.07, at which the FIV response is a multi-frequency oscillation with contributions
from both the second bending and torsional modes.
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The first-row plots show the results for the sample reduced velocity of U∗ = 6.38
(figure 7a i–iii). The spanwise r.m.s. values of the amplitudes of oscillation (first column
plot) show that the maximum amplitude of oscillations reaches y∗ = 0.5 at the spanwise
location of z = 0.44 (figure 7a i). At this sample reduced velocity, the cylinder is excited
at its first structural mode, i.e. there is no zero-amplitude node of oscillation along the
cylinder’s length other than the two fixed boundaries. Figure 7(a ii) shows the spanwise
time history of the amplitude of oscillations, which also represents the single-mode
oscillatory response. The frequency content of the response shows a broad-banded
frequency of oscillations in the range of f ∗ = 0.5–1.1 along the length of the cylinder
(figure 7a iii).

The second-row plots show the results for the sample reduced velocity of U∗ = 10.77.
At this sample velocity, the cylinder is excited at its first structural bending mode, and the
maximum amplitude of oscillations reaches y∗ = 0.77 at the spanwise location of z = 0.52
(figure 7b i). The spanwise time history and frequency content of the FIV response also
show the system oscillates with contributions from the first structural bending mode shape
at the frequency of f ∗ = 1.3 together with small contributions from the torsional mode at
the frequency of f ∗ = 3 (figure 7b ii, iii).

The third-row plots show the results for the sample reduced velocity of U∗ = 14.07.
The maximum amplitude of oscillation reaches y∗ = 0.55 at the spanwise location of
z = 0.26. The amplitude of oscillation at the middle of the cylinder span (z = 0.5) is
low (figure 7c i, ii), which represents the dominance of the second structural bending
mode shape in the response of the system. The frequency contour plot at this reduced
velocity shows the dominant frequency of oscillation at f ∗ = 2.2, which has a node at
the spanwise location of z = 0.5, confirming that this excited frequency has the second
structural bending mode shape. Nominal contributions from other frequencies, such as
the first bending frequency at f ∗ = 1 and the first torsional frequency at f ∗ = 3.2, are
also observed in the multi-frequency response of the system. The general response type
observed over the entire range of tested reduced velocities (U∗ = 0.9–16.27) for the angle
of attack of α = 30◦ is the galloping-type response, which is further discussed in § 4.2.

3.4. Response characteristics for the angle of attack of α = 60◦

In this subsection, we investigate the amplitude and frequency of oscillations of the flexible
triangular cylinder in the CF and IL directions at an angle of attack of α = 60◦ over the
range of reduced velocity of U∗ = 0.9–16.27. Figure 8(a) shows that oscillations in the
CF direction start at a reduced velocity of U∗ = 2.54. As the flow velocity increases,
the amplitude of oscillations also increases until reaching a maximum value at a reduced
velocity of U∗ = 9.13. Beyond this point, the amplitude of oscillations attenuates. On
the other hand, the cylinder’s oscillation in the IL direction monotonically increases with
increasing reduced velocity, except for some fluctuations at U∗ = 8.58 and U∗ = 12.97
(figure 8d).

The frequency content of the oscillations in both the CF and IL directions are shown
in figure 8(b,e) and exhibit a dominant multi-frequency response. Figure 8(c) shows that
the mean displacement in the CF direction is non-zero for reduced velocities higher than
U∗ = 3. The mean displacement reaches its maximum value of 0.35 at a reduced velocity
of U∗ = 11.87, beyond which the mean displacement decreases and plateaus (figure 8c).
In contrast, the mean displacement in the IL direction monotonically increases with
increasing reduced velocity and reaches its maximum value of 3.6 at a reduced velocity of
U∗ = 16.27 (figure 8f ).
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Flow-induced vibration of flexible triangular cylinder
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Figure 8. Non-dimensional amplitude (r.m.s.), frequency, and mean value of oscillation at the angle of attack
of α = 60◦ plotted vs the reduced velocity in the CF direction (a–c) and IL direction (d–f ).

Oscillations in the CF direction begin at a reduced velocity of U∗ = 2.54 (figure 8a),
with a low amplitude of around y∗ = 0.05 that persists up to U∗ = 3.64. Beyond this
point, there is a sudden increase in the amplitude of oscillation at U∗ = 4.19, and the
amplitude reaches as high as y∗ = 0.28. As the reduced velocity is further increased, the
amplitude of oscillations continues to increase and reaches a maximum amplitude of y∗ =
0.68 at U∗ = 9.13. The frequency content of the response in the CF direction (figure 8b)
reveals the dominant oscillation frequency to be the first bending mode in the reduced
velocity range of U∗ = 0.9–9.13. While the frequency content of the CF response exhibits
a multi-frequency response at some reduced velocities in this range with contributions
from both torsional and bending modes, the dominant oscillation frequency follows the
Strouhal line in the reduced velocity range of U∗ = 0.9–9.13. Similar to the response
observed for the triangular cylinder at an angle of attack of α = 0◦ (discussed in § 3.2), the
match between the Strouhal frequency and oscillation frequency can be attributed to the
fixed separation points in the symmetric cross-section of the triangular cylinder at an angle
of attack of α = 60◦. Although contributions from torsional oscillations were observed in
the reduced velocity range of U∗ = 6.93–9.13, their contribution was not strong enough to
cause significant spanwise rotation and change the modified angle of attack and separation
points.

In the reduced velocity range of U∗ = 9.13–10.78, the cylinder experiences a
multi-frequency response in which the dominant frequency increases from the first towards
the second bending mode natural frequency, together with contributions from the first
torsional frequency. The amplitude of oscillations decreases in this range and reaches a
minimum of y∗ = 0.47 at U∗ = 10.78. This decrease in the amplitude of oscillations can
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be attributed to the change in the modified angle of attack as contributions from torsional
oscillations increase. In contrast to what was observed for the angle of attack of α = 0◦, the
increase in torsional oscillations at this configuration can cause a decrease in the modified
angle of attack, leading to attenuation of vortex–after-body interactions and a decrease in
the amplitude of oscillations.

Another sudden decrease in the CF amplitude of oscillations is observed in the reduced
velocity range of U∗ = 11.33–12.43. In this range, the bending and torsional modes
merge, and the cylinder oscillates at a merged frequency that is twice the system’s first
bending natural frequency. The decrease in the amplitude of oscillations in this range
can be attributed to the excitation of the second bending mode shape. Beyond this range,
the amplitude of oscillations stays around y∗ = 0.2 for the reduced velocity range of
U∗ = 12.98–16.27. The system experiences a multi-frequency oscillation response at this
range, where the dominant frequency of oscillations (i.e. the merged bending–torsional
frequency) decreases from 2 to 1.7 times the system’s first bending natural frequency.
In addition, there is a small contribution from a low-frequency oscillation close to the
system’s first bending mode natural frequency.

The amplitude and frequency analysis of the oscillations in the IL direction reveal
that the amplitude of oscillation increases with increasing reduced velocity, as shown in
figure 8(b). In addition, the frequency analysis of the IL oscillation shows a multi-modal
oscillation pattern, similar to that of the CF oscillation. However, higher-frequency
contributions are observed in the IL oscillation, as shown in figure 8(c).

Figure 9 shows sample responses at three selected reduced velocities that cover three
different regions of the response. The first row shows the mono-frequency response of
the system at the reduced velocity of U∗ = 4.73. At this reduced velocity, the maximum
amplitude of oscillation reaches the value of y∗ = 0.5 at the spanwise location of z =
0.47 (figure 9a i). The oscillation time history along the cylinder’s length shows the single
harmonic oscillations with non-dimensional frequency content at a frequency of f ∗ = 0.7
(figure 9a ii, iii).

The second sample reduced velocity at U∗ = 8.58 is selected at a point where the
maximum amplitude of oscillations occurs across the range of reduced velocities tested.
The maximum amplitude of oscillations at this reduced velocity reaches the value of
y∗ = 0.88 at the spanwise location of z = 0.47 (figure 9b i). Figure 9(b ii, iii) shows a
multi-frequency oscillation where the first bending mode is dominant with the frequency
of f ∗ = 1.2, and there is a small contribution from the torsional frequency at the frequency
of f ∗ = 2.4.

The third row shows the results at the reduced velocity of U∗ = 13.52, at which the
amplitude of oscillations decreases, and the maximum amplitude reaches the value of
y∗ = 0.25 at the spanwise location of z = 0.47 (figure 9c i). This sample reduced velocity
is selected from the reduced velocity region at which the bending frequency and torsional
frequency are merged towards each other. Due to the effect of the torsional oscillations,
there is no node at the midpoint of the cylinder, and the first bending mode shape is the
dominant structural mode shape excited in the system. The response for the entire range
of the tested reduced velocity at this angle of attack is of galloping type. The details of the
response type are discussed in § 4.2.

In this section, the structural response of the triangular cylinder was investigated at three
different angles of attack, and the results indicate that the response is highly sensitive to
the initial angle of attack. In addition, the cylinder’s rotation at certain reduced velocities,
which causes a change in the angle of attack, is shown to play a significant role in the
system response. For each angle of attack, three sample reduced velocities were chosen to
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Flow-induced vibration of flexible triangular cylinder
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Figure 9. (First column) Non-dimensional r.m.s. of amplitudes of oscillations (dashed line, reconstructed
response; circles, experimental measurements). (Second column) Time histories of the amplitudes of
oscillations. (Third column) Frequency contents of the structural response, normalised by the fundamental
natural frequency for reduced velocity of U∗ = 4.73 (a i–a iii), U∗ = 11.88 (b i–b iii) and U∗ = 14.07 (c i–c iii)
at α = 60◦.

showcase various features of the response, which vary with increasing reduced velocity.
The samples were chosen to cover a range of responses observed at different reduced
velocities. To better comprehend the FIV response of the triangular cylinder, we also
examine the corresponding flow field and wake of the structure in § 4.

3.5. Flow forces
In this section, flow forces acting along the length of the cylinder in the CF direction were
calculated using the equation of motion of a continuous beam in tension:

mÿ − (Ty′)′ + (EIy′′)′′ = fy(z, t) (3.1)

in which m is the mass per unit length of the cylinder, EI is the flexural rigidity, T is the
applied tension along the length, y is the measured displacement of the cylinder in the
CF direction and fy(z, t) represents all the flow forces that act on the cylinder. The dots
and primes represent derivatives with respect to time and space, respectively. A similar
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technique has been used previously to obtain the flow forces acting on a flexibly mounted
cylinder undergoing VIV in water tunnel experiments (Seyed-Aghazadeh et al. 2017) and
for FIV of flexible cylinders in tandem arrangements (Seyed-Aghazadeh et al. 2021a). In
addition, CF force coefficient, and its component in phase with the cylinder’s velocity
(Cyv) in the CF direction were calculated in accordance with the methodology outlined in
Fan et al. (2019) as

Cyv = 2
Ts

·

∫
Ts

(Cy(z, t)ẏ(z, t)) dt√
2
Ts

∫
Ts

(ẏ2(z, t)) dt

, (3.2)

where Cy is the instantaneous CF force coefficient and Ts is one vibration cycle.
Figure 10 shows the CF force coefficients plotted against the spanwise length of the

cylinder. In order to correlate the cylinder response and the forces coefficients, the
dimensionless r.m.s. of amplitudes of oscillation in the CF and IL directions are also
plotted in this figure. These force coefficients are plotted for the three sample cases at three
different angles of attack as those sample cases discussed in § 3. The spanwise distribution
of the CF force coefficient (Cy) and the CF force coefficient in-phase with velocity (Cyv)
across all nine samples (figure 10(a iv–a vi), (b iv–b vi) and (c iv–c vi)) shows a consistent
variation such that when the CF amplitude is smaller, these force coefficients obtain small
values too. For instance, at an angle of attack α = 0◦ and a reduced velocity of U∗ = 4.17,
corresponding to a low amplitude of oscillation (figure 10a i), the Cy and Cyv magnitude
is observed to be low across the span of the cylinder (figure 10a iv). By contrast, when
the reduced velocity and amplitude of oscillation are increased at an angle of attack of
α = 0◦ (figure 10a v, a vi), the magnitude of Cy and Cyv increases (figure 10a ii, a iii).
This observed trend persists across a range of angles of attack, including α = 30◦ and
α = 60◦ (figure 10b,c). The dependency of Cyv magnitude on the amplitude of oscillation
is consistent with findings reported in the study of VIV of a flexible cylinder (Fan et al.
2019; Seyed-Aghazadeh et al. 2021a).

Furthermore, it is evident that when Cy reaches its maximum/minimum values along
the cylinder length, the CF force in-phase with the velocity (Cyv) reaches zero value.
This behaviour aligns with previous observations in the context of VIV involving flexible
cylinders. Existing literature has consistently reported a strong correlation between regions
exhibiting an almost zero phase difference between the cylinder’s displacement and the CF
force and the occurrence of maximum amplitudes in the CF force coefficient (Evangelinos
& Karniadakis 1999). It should be noted that the Cyv can take both positive and negative
values. Positive values of Cyv represent regions where the energy is transferred from the
flow to the cylinder and the structure is excited by the surrounding flow. Conversely,
negative Cyv values represents scenarios where the fluid contributes to the dissipation
of energy from the structure. For all the sample cases studied here, we observe that when
the IL amplitudes of oscillations are relatively in the same order as those observed in the
CF direction, both positive and negative CLv values are observed along the length of the
cylinder. This observation is also inline with those reported for FIV of flexible cylinders
in tandem arrangements (Seyed-Aghazadeh et al. 2021a).

Finally it is important to acknowledge that our CF force reconstruction method is based
solely on the projected response of the system in the CF direction. This approach does
not account for the influence of mean IL displacement or any torsional oscillations, which
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Flow-induced vibration of flexible triangular cylinder
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Figure 10. Spanwise non-dimensional displacement (A∗) in the CF and IL directions, CF force coefficients of
Cy and Cyv along the cylinder span at three sample cases at three angles of attack. First box: α = 0◦, U∗ = 4.73
(a i, a iv), U∗ = 8.58 (a ii, a v), U∗ = 14.07 (a iii, a vi), second box: α = 30◦, U∗ = 6.38 (b i, b iv), U∗ = 10.77
(b ii, b v), U∗ = 14.07 (b iii, b vi), and third box: α = 60◦, U∗ = 4.73 (c i, c iv), U∗ = 8.58 (c ii, c v), U∗ =
13.52 (c iii, c vi).

may not reflect the complete system behaviour in a realistic sense. However, despite this
simplification, the general trends observed in our study, along with the corresponding
distribution of flow force coefficients across the spanwise length of the cylinder, appear
reasonable and align well with the observed dynamic behaviour of the system.

4. Flow field analysis using qualitative and quantitative methods

In the FIV problems, understanding the flow field is essential for identifying the cause
and the type of FIV response. In this section, we analyse the flow field using two different
methods of flow visualisation: HB imaging and time-resolved volumetric PTV, which are
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discussed in §§ 4.1 and 4.2. The HB flow visualisation allows us to qualitatively visualise
vortex shedding patterns in the vortex-dominated wake of the cylinder at a 2-D plane
along its span. On the other hand, PTV is a quantitative flow visualisation technique that
sheds light on the vortex dynamic features of the flow in the wake of the cylinder and
relates them to the observed structural response of the system. Moreover, the volumetric
PTV measurements enable us to obtain insights into the 3-D nature of the wake of the
cylinder. In this section, we present some sample cases from the HB flow visualisation and
PTV measurements to represent the vortex shedding pattern and the spanwise 3-D flow
field. By analysing the wake structure, we can distinguish between different types of FIV
responses observed and discussed in the previous section.

4.1. Wake structure
This section aims to investigate the flow features in the wake of the cylinder at different
reduced velocities and angles of attack. The goal is to analyse the various vortex shedding
patterns observed and demonstrate the three-dimensionality of the vortex shedding along
the span of the cylinder. To achieve this, we used the HB flow visualisation technique to
study different vortex shedding patterns in a 2-D plane in the wake of the cylinder at three
different angles of attack within a relatively low reduced velocity range. For higher flow
velocities, we employed the PTV analysis to obtain 3-D time-averaged and instantaneous
vorticity field information. This approach allowed us to study the three-dimensionality
of the flow field along the cylinder span and the surrounding flow field dynamics at a
sample case with an angle of attack of α = 30◦. Using both qualitative and quantitative
flow visualisation techniques enables us to understand and distinguish between different
types of FIV responses, such as VIV or galloping-type responses, as discussed in the
previous section. By examining these flow patterns, we can gain further insight into the
underlying physical mechanisms driving the system response.

Figure 11 shows the wake of the cylinder captured using the HB flow visualisation
technique at a plane located at mid-span of the cylinder (z = 0.5). The figure showcases
two different snapshots of vortex shedding patterns at low reduced velocities and three
different angles of attack. The selected reduced velocities for this analysis are the same
as those in figures 5, 7 and 9 in § 3, where we discussed the structural response of
the system. Figure 11 provides two snapshots of the vortices shed in the wake of the
cylinder, corresponding to the maximum (top row) and minimum (bottom row) amplitudes
of oscillations within one cycle of oscillation.

Figures 11(a i, ii) show the snapshots at an angle of attack of α = 0◦, where the
amplitude of oscillation is minimal, and the shedding pattern observed is 2S, where two
single vortices are shed at one cycle of oscillation, one from the top of the cylinder and one
from the bottom of the cylinder. This type of symmetric shedding pattern, that is similar
to those observed for a rigid flexibly mounted triangular cylinder (Seyed-Aghazadeh et al.
2017), is expected to occur at this angle of attack at low reduced velocity as the amplitude
of oscillation is small and the entire cylinder is excited at its first bending mode.

The second column in figure 11 shows the HB snapshots at an angle of attack of
α = 30◦, where the shedding pattern observed is non-symmetric 2S. This non-symmetric
shedding pattern is due to the asymmetry of the triangular cylinder’s geometry that faces
the flow at this angle of attack (figure 1b). At this angle of attack, the vortex size and the
separation point location from the top and bottom of the cylinder are different, leading
to an asymmetric 2S shedding pattern. One vortex that is shed from the top side of the
cylinder is larger than the other vortex shed from the bottom side of the cylinder.
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Flow-induced vibration of flexible triangular cylinder

(a)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(b) (c)

Figure 11. HB snapshots of the wake at the mid-span of the cylinder for different reduced velocities and angles
of attack: (a i–a ii) U∗ = 4.73 at α = 0◦, (b i–b ii) U∗ = 6.38 at α = 30◦, and (c i–c ii) U∗ = 4.73 at α = 60◦.
The flow direction is from left to right. The videos are provided as supplementary movies 1–3 available at
https://doi.org/10.1017/jfm.2023.1024.

The third column of figure 11 shows the wake of the cylinder at an angle of attack
of α = 60◦, where one single vortex is shed from the top while a pair of vortices are
shed from the bottom side of the cylinder over one cycle of oscillation (figure 11c i, ii).
This non-symmetric vortex shedding pattern for a triangular cylinder at α = 60◦ was not
observed for the rigid triangular prism since the vortices were shed symmetrically from
both sides of the rigid prism. Due to the mean displacement in the CF direction as shown
in figure 8(c), the neutral position’s location changes, leading to a change in the amplitude
of oscillation at each half cycle. By considering the neutral position of the cylinder in still
water, the amplitude of oscillation when the cylinder moves upward is higher than the
oscillation in the downward direction. Therefore, when the cylinder moves upward, a pair
of vortices can be shed, while only a single vortex is shed when it moves downward. This
multi-mode shedding pattern, known as the S + P pattern, has also been observed in the
quantitative flow visualisation and is discussed in § 4.2.

Although the qualitative flow visualisation technique used in this study provided
valuable insights into the instantaneous shedding patterns of the 2-D flow field, it has
its limitations, especially when it comes to generating high-quality HB at high reduced
velocities (U∗ > 5.28). To overcome this limitation and gain a deeper understanding of
the wake of the cylinder and its 3-D flow field at high flow velocities, we employed
a quantitative flow visualisation technique using our time-resolved PTV set-up. In this
section, we present the results of the PTV experiments carried out at a reduced velocity of
U∗ = 14.07 and an angle of attack of α = 30◦, which are shown in figures 12 and 13. We
discussed the structural response of this sample case in figure 7 of § 3.3.

The main objective of this section is to demonstrate the correlation between the 3-D flow
field along the cylinder span and the CF and IL oscillations of the cylinder. Figure 12(a)
shows the 3-D isosurface of the time-averaged vorticity field in the wake of the cylinder.
The spanwise frequency of oscillation in the CF direction is presented in figure 12(b).
The 2-D views of the isosurface in the XZ (IL) and YZ (CF) planes, along with the
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Figure 12. Time-averaged vorticity at the reduced velocity of U∗ = 14.07 and angle of attack α = 30◦, shown
in (a) 3-D view, (b) XZ plane with structural response in the IL direction and (c) YZ plane with structural
response in the CF direction.

cylinder’s displacement, are shown in figure 12(c,d), respectively. The isosurface of the
time-averaged vorticity field highlights the three-dimensionality of the spanwise vorticity
formed in the wake of the cylinder. The projected isosurfaces in the XZ plane reveal
that the formation of the vorticity along the cylinder length follows a similar trend as
the cylinder’s time-averaged IL displacement. Furthermore, at this reduced velocity, the
cylinder’s oscillation in the CF is dominated by the second structural bending mode
shape with a node at mid-span, and the observed time-averaged vorticity field represents a
bottleneck at the second bending mode oscillation nodal point (figure 12b). These figures
show the correlation between the spanwise structural response of the system and the
3-D flow field in the wake of the cylinder. The observed spanwise three-dimensionality
of the flow is influenced by multiple factors, including the spanwise flexibility of the
cylinder, which leads to mean displacement of the cylinder in the IL direction, as well
as multi-modal oscillations of the cylinder in both bending and torsional modes, and
excitation at higher modes of oscillation.

Figure 13 shows the instantaneous out-of-plane vorticity (ωy) at a sample reduced
velocity of U∗ = 14.07. Figure 13(a) displays the 3-D isosurface vorticity in the wake
of the cylinder, revealing the different shedding patterns along the cylinder’s length and
behind the cylinder. Two planes are chosen to provide a closer view of the shedding pattern
in a 2-D view in figures 13(b)–13(d). It is apparent that although the general shedding
pattern is non-symmetric 2S, the shedding pattern at different planes differs in terms of
vortex size, shape and location of the vortex formation.
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Figure 13. Instantaneous out-of-plane vorticity (ωy) at U∗ = 14.07 and α = 30◦: (a) 3-D view and (b–d) 2-D
plane views.

In this section, the impact of the angle of attack on the vortex shedding pattern was
investigated and presented in figure 11. Furthermore, the three-dimensionality of the
flow along the cylinder span due to the structural response was visualised in figures 12
and 13. However, fluid–structure interaction problems, such as that studied here, pose
challenges due to the complexity of the flow field variables caused by the structure’s
flexibility and the turbulent flow at high Reynolds numbers. To address this, a proper
orthogonal decomposition (POD) technique was applied to the flow field data to reduce
the complexity and decompose the vector field representing the turbulent flow motion into
a set of deterministic functions. The results of the POD analysis are discussed in detail in
the following § 4.2.

4.2. Proper orthogonal decomposition
POD, also known as principal component analysis (PCA), is a powerful mathematical
technique widely used in the field of fluid dynamics to analyse and reduce large datasets
obtained from simulations or experiments (Berkooz, Holmes & Lumley 1993; Holmes
et al. 2012). The goal of POD is to extract the dominant features or modes from a
high-dimensional dataset, which can be used to reconstruct the original data with a high
degree of accuracy using a smaller number of modes or basis functions. In fluid dynamics,
two types of modes can be extracted from a flow field using POD: temporal and spatial
modes.
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Temporal POD modes capture the time-dependent behaviour of the flow and represent
the dominant time-dependent features of the flow. These modes are obtained by computing
the singular value decomposition (SVD) of the time series data of the flow variables,
such as velocity, pressure or vorticity, and selecting a subset of the singular vectors with
the highest singular values. Spatial POD modes, on the other hand, capture the spatial
structure of the flow and represent the dominant spatial features of the flow. These modes
are obtained by computing the SVD of the spatial snapshot data of the flow variables, such
as a snapshot of the velocity field at a particular time, and selecting a subset of the singular
vectors with the highest singular values.

Both temporal and spatial POD modes can be used to reduce the dimension of the flow
data and to extract relevant information about the flow. Temporal POD modes can be used
to identify the dominant time scales of the flow, whereas spatial POD modes can be used
to identify the dominant spatial structures, such as vortices, wakes or boundary layers. The
combination of temporal and spatial POD modes can be used to analyse and understand
the complex dynamics of fluid flow.

Frequency analysis of the temporal POD mode involves analysing the frequency content
of the dominant temporal mode obtained from the POD of a fluid flow. This analysis
can provide insights into the dominant time scales and frequencies of the flow and can
be used for finding the vortex shedding frequency by applying the POD analysis on the
vorticity field (Taira et al. 2017; Riches, Martinuzzi & Morton 2018; Weiss 2019; Deep,
Sahasranaman & Senthilkumar 2022).

In this study, the flow field surrounding and in the wake of the triangular cylinder
extracted from the PTV analysis has been analysed using the POD technique to capture
the flow’s most energetic coherent structures. The POD analysis has been carried out
separately for the instantaneous and time-averaged flow field variables. The contribution
of the first 20 POD modes to the total turbulent kinetic energy (TKE) is shown in figure 14
for three sample reduced velocities and three different angles of attack considered in the
study. It can be observed that the first few modes contribute to the majority of the energy
of the system at the selected sample reduced velocities, while the energy proportion of
higher modes steadily drops to zero. The first four POD modes with the highest level of
energy (highlighted in red) have been selected for further investigation in the following
section. It is worth noting that the highest energy level of the POD mode decreases by
increasing the reduced velocity and Reynolds number in the turbulent flow field, especially
at this sample reduced velocity case at each angle of attack (third column from the left in
figure 14). Further details of the POD analysis based on the time-resolved volumetric PTV
data are discussed in Mousavisani et al. (2022b).

Figure 15 compares the first four temporal POD mode frequencies with the triangular
cylinder’s oscillation frequency at three sample reduced velocities for each angle of
attack studied in § 3. The sample reduced velocities are chosen to be the same as those
presented in § 3. In each plot, the horizontal axis shows the temporal POD mode number,
and the vertical axis shows the non-dimensional frequency, which is normalised by the
triangular cylinder’s first bending frequency in water. The black circle symbols represent
the non-dimensional frequency content of POD temporal modes ( f ∗

temporal) at each mode
number. The size of the circle symbols shows the magnitude of each frequency that
decreases with increasing mode numbers. In addition, for cases with a multi-frequency
response, the second dominant frequency is shown with grey circle symbols.

The dominant non-dimensional frequency of the temporal POD mode of the most
energetic modes represents the non-dimensional vortex shedding frequency ( f ∗

sh) (Deep
et al. 2022). Therefore, this plot compares the non-dimensional vortex shedding frequency
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Figure 14. Energy distribution of the first 20 POD modes for the flexible triangular cylinder at different
angles of attack: (a) α = 0◦, (b) α = 30◦ and (c) α = 60◦.
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with the non-dimensional oscillation frequency ( f ∗
os), which is shown in the orange lines

over the horizontal axis. The width of these lines show how wide-banded the oscillation
frequency is. In addition to the comparison between the oscillation frequency and the
shedding frequency (synchronised or non-synchronised), the vortex shedding pattern,
which can be found by combining the spatial structure of the dominant spatial POD modes,
helps identify the system’s FIV response type (VIV or galloping).

Figures 16, 17, and 18 show the spatial structures of the streamwise velocity for the
first four POD modes at each angle of attack and three sample reduced velocities. These
spatial POD modes represent the dominant structures in the flow field and are obtained by
decomposing the flow data into a series of orthogonal spatial modes that capture the most
significant features of the flow. This approach was used to identify the vortex shedding
pattern behind the cylinder by analysing the spatial structure of the streamwise velocity
at the dominant POD modes. Therefore, by combining the results of figure 15 (which
compares the vortex shedding frequency and oscillation frequency) and the dominant
spatial structures (figures 16, 17, 18), we can gain insight into the vortex shedding
frequency and pattern, which are necessary to determine the FIV response type of the
flexible triangular cylinder.

The first row of figure 15 shows the temporal POD mode frequencies for α = 0◦.
Figure 15(a i) shows that the frequencies of temporal modes (black circles) are identical to
the oscillation frequency (orange line) for all four temporal modes. The dominant temporal
POD mode frequency, which represents the vortex shedding frequency, is the same as the
oscillation frequency. Figure 16(a i–iv) illustrates the spatial structures of the streamwise
velocity for the first four POD modes at U∗ = 4.73. The dominant spatial structures (first
and second POD modes, figure 16a i, ii) represent the 2S vortex shedding pattern, which is
similar to the shedding pattern of the rigid triangular cylinder at the same angle of attack
(Seyed-Aghazadeh et al. 2017; Chen et al. 2020). This symmetric 2S shedding pattern
is also observed in the HB flow visualisation results (figure 11a i, ii). The synchronised
oscillation and shedding frequency, in addition to the symmetric 2S shedding pattern,
confirm the VIV-type response at this reduced velocity. At the second sample reduced
velocity U∗ = 8.58 (figure 15a ii), the frequency content of the temporal POD modes,
which represents the vortex shedding frequency, is close to the oscillation frequency
( f ∗

os = 1.78, which is identical to the shedding frequency as shown in § 3.2) for all four
temporal modes. The similarity between the oscillation frequency and shedding frequency
is attributed to the fixed separation point of the cylinder at this reduced velocity and angle
of attack (Chen et al. 2020). Figure 16(b i–iv) shows that the dominant spatial structure,
which represents the vortex shedding pattern, is 2S for all four spatial POD modes, and the
magnitude of the vorticity decreases as the energy level decreases at higher modes. The
synchronised oscillation and shedding frequency, in addition to the symmetric 2S shedding
pattern, confirm the VIV-type response at this reduced velocity.

At α = 0◦ and reduced velocity of U∗ = 14.73, the frequency content of the temporal
POD mode of the flow field (figure 15a iii) exhibits a multi-frequency response for the first
temporal mode. This is attributed to the combined oscillation of the cylinder in its first
bending and torsional modes (figure 5c iii). The spatial POD mode in figure 16(c i) shows
the first POD spatial mode with the highest energy level. The spatial POD mode pattern
follows the structural response of the cylinder’s surrounding flow, with the dominant mode
occurring in the near-wake region, whereas the magnitude of the vortices decreases in the
far wake. The second and third temporal POD modes represent only frequencies close to
the torsional frequency of the oscillation. This can also be seen in the spatial POD mode in
figure 16(c ii, iii), which exhibits an upward oblique pattern due to the upward rotation of
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Figure 16. Spatial structures of the streamwise velocity for the first four POD modes at reduced velocities of
U∗ = 4.73 (a i–a iv), U∗ = 8.58 (b i–b iv) and U∗ = 14.07 (c i–c iv) at an angle of attack of α = 0◦.

the cylinder. To better illustrate this upward pattern, a sample plane from figure 16(c ii, iii)
is plotted in figure 19. The dominant spatial structure indicates that the shedding pattern are
non-symmetric. Furthermore, the dominant temporal POD mode frequency, considered as
the vortex shedding frequency, is higher than the oscillation frequency in the CF direction
( f ∗

sh = 2.48 > f ∗
os = 0.97). This higher shedding frequency, along with the non-symmetric

shedding pattern, confirms the galloping-type response at this reduced velocity.
The frequency analysis of the temporal POD modes for an angle of attack of α = 30◦

is presented in figure 15(b i–iii). At the first sample reduced velocity of U∗ = 6.38
(figure 15b i), which exhibits a wide-banded frequency of oscillation (figure 7a iii), the
frequency content of the first and second temporal POD modes (black circle) is higher than
the oscillation frequency (orange line). The dominant temporal mode frequency, occurring
in the first two modes with the highest level of energy, is considered the vortex shedding
frequency. The spatial POD modes for these two first modes (figure 17a i, ii) reveal that
the dominant spatial structures are non-symmetric 2S patterns, which are considered
the dominant vortex shedding patterns. This pattern was also observed in the HB flow
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Figure 17. Spatial structures of the streamwise velocity for the first four POD modes at the reduced velocity
of U∗ = 6.38 (a i–a iv), U∗ = 10.77 (b i–b iv) and U∗ = 14.07 (c i–c iv) for an angle of attack of α = 30◦.

visualisation (figure 11b i, ii). The non-symmetric shedding pattern, along with the higher
shedding frequency than the oscillation frequency, confirms the galloping-type response
at this reduced velocity.

At α = 30◦, the second sample reduced velocity is U∗ = 10.77 as shown in
figure 15(b ii). The frequency analysis of the POD temporal modes indicates that the first
temporal mode with the highest energy level exhibits multi-frequency content, where the
first frequency matches the first oscillation frequency at the bending mode, whereas the
second frequency is higher and is close to the second oscillation frequency corresponding
to the torsional oscillation of the cylinder. The corresponding spatial POD mode, shown
in figure 17(b i), shows a pair of vortices shed from each side of the cylinder in the
near-wake region during one cycle of oscillation. These pairs are non-symmetric, and the
magnitude of the vorticity in the near wake is higher than that in the far wake, as shown in
figure 17(b i). The second temporal POD mode displays a single frequency corresponding
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Flow-induced vibration of flexible triangular cylinder

to the torsional frequency, as illustrated in figure 15(b ii). The spatial structure of this
POD mode displays an upward oblique 2S shedding pattern. A 2-D plane of the first and
second spatial POD modes is presented in figure 20(a,b) to exhibit the oblique pattern of
the flow field. Considering the dominant spatial structures with the highest energy level
at this reduced velocity (the first and second POD modes), the vortex shedding has a
non-symmetric pattern. Moreover, the frequency content of the dominant temporal POD
mode indicates that the vortex shedding frequency is higher than the dominant oscillation
frequency, which is the bending frequency at f ∗

os = 1.3. These observations confirm that
the FIV response at this reduced velocity is of galloping type.

At the angle of α = 30◦, the third sample is selected at the reduced velocity of
U∗ = 14.07 (figure 15b iii), and shows a multi-frequency oscillation with contributions
from the first bending mode ( f ∗

os = 1), the second bending mode ( f ∗
os = 2.2) and the

torsional frequency ( f ∗
os = 3.2), with the dominant mode being the second bending

mode (figure 7b iii). The temporal POD mode frequency analysis reveals that the first
mode, which has the highest level of energy, has two frequencies corresponding to the
bending and torsional frequencies at f ∗

temporal = 1.53 and 2.87, respectively. The first
spatial POD mode shows the complex spatial structures that occur in the near wake,
where the flow around the cylinder follows the cylinder’s complex multi-modal oscillation
(figure 17c i). The frequency analysis of the second and third temporal POD modes shows
a multi-frequency response. The dominant frequency content of the second and third POD
modes is f ∗

temporal = 1.53, and 2.87, respectively. The spatial POD mode for the second
mode shows non-symmetric 2P spatial structures, which is attributed to the dominant
frequency at this mode, corresponding to the first bending mode (figure 17c ii). The third
spatial POD mode, which is related to the torsional frequency (dominant frequency at
third temporal POD mode in figure 15b iii), shows an oblique irregular shedding pattern
(figure 17c iii). Mode four, with a lower energy level compared with the other POD modes,
has two frequencies and an irregular spatial structure (figure 17c iv). A 2-D plane of the
spatial mode of the second and third POD modes is shown in figure 20(c,d).

At an angle of attack of 60◦, the temporal POD mode frequency analysis for three sample
reduced velocities is shown in figure 15(c i–iii). The first sample is taken at a reduced
velocity of U∗ = 4.73 (figure 15c i), where the cylinder oscillates at the first bending mode
with a frequency of f ∗

os = 0.7. The first temporal mode has the highest level of energy, and
its frequency content is the same as the oscillation frequency ( f ∗

temporal = 0.7). The second
temporal POD mode shows a multi-frequency response, with contributions of both the
first frequency ( f ∗

temporal = 0.7) and the second frequency, which is twice the oscillation
frequency ( f ∗

temporal = 1.4). The spatial structure of the dominant POD modes (first and
second mode) shown in figure 18(a i, ii) indicates a pair of vortices shed from the top of
the cylinder and a single vortex shed from the bottom side of the cylinder, in agreement
with the vortex shedding pattern observed in the HB flow visualisation (figure 11c i, ii).
The third and fourth POD modes with low energy levels exhibit an irregular shedding
pattern (figure 18a iii, iv), indicating a galloping-type response. The shedding frequency is
a combination of the first ( f ∗

temporal = 0.7) and the second ( f ∗
temporal = 1.4) temporal POD

mode frequencies, which are equal to and two times the oscillation frequency ( f ∗
os = 0.7).

The observation of a higher shedding frequency than the oscillation frequency, combined
with the presence of a non-symmetric shedding pattern, confirms the occurrence of a
galloping-type response at this sample reduced velocity.

The frequency analysis of the temporal POD mode at the second sample reduced
velocity at U∗ = 8.58 is shown in figure 15(c ii). The first and second temporal
modes have the dominant temporal frequency at f ∗

temporal = 1.35, which is close to the
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Figure 18. Spatial structures of the streamwise velocity for the first four POD modes at the reduced velocity
of U∗ = 4.73 (a i–a iv), U∗ = 8.58 (b i–b iv) and U∗ = 13.52 (c i–c iv) at an angle of attack of α = 60◦.

dominant frequency of oscillation at f ∗
os = 1.3. The first temporal POD mode also has a

contribution at the frequency of f ∗
temporal = 2.7, which is twice the oscillation frequency

and corresponds to the torsional frequency of the structure. The dominant spatial structures
of the POD modes are 2P with an upside oblique due to the torsion of the cylinder
(figure 18b i, ii). The third and fourth POD modes have a lower level of energy and exhibit
an irregular shedding pattern (figure 18b iii, iv). A 2-D plane of the spatial structure is
shown in figure 21(a,b) for the first and second POD modes, demonstrating the oblique
2P shedding. The shedding frequency, which is the combination of the dominant temporal
POD mode frequencies (modes one and two), is higher than the oscillation frequency,
confirming the galloping-type response at this reduced velocity.
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14.07 at an angle of attack of α = 30◦.

The third sample reduced velocity is selected at U∗ = 13.52, at which the oscillation
frequency corresponds to the merged bending and torsion frequency of the cylinder,
with the first bending mode contributing to an oscillation frequency of f ∗

os = 1.1 and a
merged frequency of f ∗

os = 2.2. The temporal POD mode frequency analysis shows that
the dominant temporal frequency is f ∗

temporal = 2.2 for the first and second POD modes,
which is equal to and two times the oscillation frequencies that contribute to the structural
response. The spatial structure of the first two POD modes shows an oblique 2P shedding
pattern, in which the 2P pattern is related to the temporal shedding frequency, which is two
times the first bending frequency ( f ∗

os = 0.5–1.1). The observed oblique pattern is due to
the torsional oscillations of the cylinder (see figure 18c i, ii). Higher POD modes with low
levels of energy show small-scale turbulence structures (see figure 18c iii, iv). A 2-D plane
of the first two spatial POD modes is shown in figure 21(c,d). The shedding frequency,
which is equal to the dominant temporal POD mode frequency ( f ∗

temporal = 2.2), is higher
than the dominant oscillation frequency. This confirms that the flexible triangular cylinder
exhibits a galloping-type response at this sample reduced velocity.
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Figure 21. 2-D spatial structures of the streamwise velocity for the first and second POD modes at the
reduced velocity of U∗ = 8.58 (a,b) and U∗ = 13.52 (c,d) at an angle of attack of α = 60◦.

In summary, the temporal and spatial analysis of the flow field features using the
POD technique has revealed the strong correlation between the vortex dynamics and the
structural response of the cylinder. By comparing the shedding and oscillation frequencies,
we have successfully categorised the FIV response of the system into VIV (synchronised
frequencies) and galloping-type (non-synchronised frequencies) responses. Comparison
of our results with previous FIV studies of elastically mounted rigid triangular cylinders
(Seyed-Aghazadeh et al. 2017) shows that at low reduced velocities, such as U∗ = 4.73 at
the angle of attack of α = 0◦, the shedding pattern and frequency for the flexible triangular
cylinder are the same as those of the rigid cylinder. This is before the contribution of higher
bending modes and torsional mode to the structural response occurs. However, during the
galloping-type response for the rigid cylinder (Seyed-Aghazadeh et al. 2017; Chen et al.
2020), the number of shed vortices at each cycle of oscillation is higher compared with the
relatively high-frequency and low-amplitude oscillation of the flexible cylinder observed
in our study. We observed that the flexible cylinder’s oscillation has a high frequency and
low amplitude due to the boundary condition that does not allow the oscillation to increase
unboundedly. Another factor was also the excitation of higher modes (such as the second
bending mode) at higher reduced velocities due to the cylinder’s flexibility.

5. Conclusion

In this study, the FIV response of a fully submerged flexible triangular cylinder in a
recirculating water tunnel has been investigated. The flexible triangular cylinder had a
mass ratio of 0.8 and an aspect ratio of 30, and it was placed horizontally at three different
angles of attack. The experiments were performed over a range of reduced velocities
corresponding to a Reynolds number range of 364–3600. It was found that the FIV
response of the flexible cylinder strongly depended on the angle of attack, and the response
type varied with the reduced velocity and angle of attack. The results showed that for an
angle of attack of α = 0◦, the amplitude of oscillations in the CF and IL directions was
relatively smaller than those observed for higher angles of attack of α = 30◦ and 60◦ over
the entire range of reduced velocities tested. At an angle of attack of 0◦, the response
type was of VIV type in the range of reduced velocities of 4.73–10.77, whereas it was
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Flow-induced vibration of flexible triangular cylinder

Flexible cylinder material Silicon rubber
Cylinder side length D = 0.008 m
Aspect ratio L/D = 30
Modulus of elasticity E = 0.3 MPa
Damping ratio in air ζ = 0.003
Mass ratio m∗ = 0.8
First, second bending and torsional frequency f1 = 3, f2 = 6, ft = 9 Hz
Reynolds number Re = 364–3600
Reduced velocity U∗ = 0.9–16.27
Angles of attack (α) 0◦, 30◦, 60◦

Table 1. Experimental parameters and structural characteristics of test cylinder.

of galloping type in the range of reduced velocities of 11.33–16.27. On the other hand,
the response type for angles of attack of 30◦ and 60◦ was of galloping type for the entire
range of reduced velocity tested due to non-synchronised vortex shedding and oscillation
frequency of the cylinder at these angles of attack.

The flow field analysis, which included both qualitative and quantitative flow
visualisation methods, confirmed the three-dimensionality of the flow field. It was
observed that the vortex shedding pattern in the wake of the triangular cylinder was
sensitive to the angle of attack using the HB flow visualisation technique. The 3-D
quantitative flow field measurement was done using the time-resolved volumetric PTV
techniques. POD was applied to the flow field results captured from the PTV analysis
to extract the dominant modes of the flow field data in terms of the level of their energy
contributing to the TKE. The temporal and spatial modes of the dominant POD mode were
extracted and used to find the system response. The frequency analysis of the temporal
POD mode was used to find the vortex shedding frequency. The dominant spatial POD
modes were used to find the vortex shedding pattern in the wake of the cylinder. The
comparison of the structural and shedding frequency beside the vortex shedding pattern,
which were obtained from temporal and spatial POD mode analysis, were used to find the
response type (VIV or galloping).

Our study showed that the main difference between the galloping-type response of this
flexible cylinder and those rigid cylinders in the literature was the amplitude of oscillation
resulting from the difference in the experimental set-up, which affected the boundary
conditions and mode shapes. The boundary condition and the IL displacement, along with
the flexibility of the cylinder, led to an unbalanced moment on the triangular cylinder,
which caused it to rotate. The rotation of the cylinder played an important role in the
system response, as it led to a temporal and spatial change in the modified angle of attack,
resulting in a change in the separation point and the interaction of the after-body and
vortex/shear layers downstream of the cylinder. The findings of this study may be useful
for researchers and engineers working in the field of fluid–structure interaction to help
improve the designs of structures in fluid flow environments

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1024.
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