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Transformation of a plasma boundary curvature
into electrical impulses moving along a plasma
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The self-consistent propagation of electrical impulses and of the accompanying distortions
of the electron surface in the framework of a cold plasma model with a sharp boundary
has been described with help of a derived system of two equations. The method of
‘shallow water theory’ has been applied for the case of bounded plasma and deriving
an equation with which to link the spatial and temporal structures and evolution of the
boundary curvature and the surface charge. Under certain conditions, such perturbations
can propagate along the boundary without changing their shape for a long distance. An
approximate analytical solution has been found, and numerical calculations have been
performed. Mutual connections between basic parameters of the considered perturbations
(velocity components, electrostatic field, etc.) have been presented.
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1. Introduction

Usually, waves on a plasma surface studied in the simplest model of plasma with a
sharp boundary are, as a rule, investigated to explain the behaviour of such quantities as
perturbation of the density, velocity of particles, as well as their temperature, interactions
of various types, etc. (see Boardman 1982; Stenflo 1996; Ma & Hirose 2009) in the
considered processes. Meanwhile, some motions of charged particles along the boundary
are connected with a change in the shape of the latter, also in a linear approximation.
Such phenomena correspond to the behaviour of the nonlinear surface charge (Gradov
2020, 2021) and reveal the influence of its motion on the shape of the plasma surface.
The equation describing such interaction was derived as a result of the generalization
of the ‘shallow water theory’ (Stoker 1957) for plasma conditions, and together with the
equation for the nonlinear surface charge parameters (Gradov 2020, 2021) on the curved
surface of electrons forms a closed system to describe the interrelated dynamics of these
processes. A detailed analysis makes it possible to identify the conditions and parameters
of the process when excitation of a nonlinear surface charge pulse takes place in the form
of an electrical signal, which is able to propagate along the boundary changing the shape
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of the latter. Thus, a local curvature of the plasma boundary can be created because of
an electrical pulse along this boundary. But for the appearance of such a phenomenon,
it is necessary that the velocity of electrons along the surface at some selected point of
the plasma boundary changes in time according to a law that corresponds to the system
of equations used in the present work. A similar pulse can be formed, for example, with
the help of a probe, applying a voltage that changes in time according to the required
law. The approximate analytical expressions are required to be formulated for the aim to
have an idea of the type of necessary behaviour in time of the process parameters at this
point in space. Simultaneously, there is the reverse form of this effect when an electrical
pulse is excited by forming a curvature of the plasma surface that can propagate along
this surface. To realize this phenomenon, it is necessary to accelerate the electrons at the
plasma boundary along its normal, which is changed in time at a chosen point in space
in accordance with the solutions of the system of equations presented in the work. Such a
possibility can be realized, for example, using a laser beam that propagates in a direction
perpendicular to the plasma boundary. But in this experiment, the electromagnetic front
of the beam should depend on the time according to the law described by the solutions
of the system of equations used in the work. Finally, each pulse of electromagnetic
radiation is able to create a localized curvature of the electron boundary, which will
propagate along the plasma boundary in the form of a solitary electrically charged signal.
Consequently, pulsed or appropriately modulated electromagnetic radiation in the case of
normal incidence on the flat boundary of the plasma is capable, under certain conditions,
of generating pulsed emission of an electrical signal along the plasma boundary. Both of
these phenomena can be of great practical importance for solving diagnostic problems as
for a variety of applications that use plasma phenomena in their workflow.

2. Basic equations and their solutions

The description of nonlinear waves of surface charge is given in Gradov (2020, 2021)
based on using the theory of the potential (Jeffreys & Swirles 1999) in a model of
cold plasma with a sharp boundary occupying the region x> 0 along the 0X axis, and
stationary ions with density N and charge e. The plane boundary placed at the point
x = 0 on the 0X axis can be distorted for electrons. Then their surface is described by the
equation x = x0(t, y, z). For the simple case of complete homogeneity along the 0Y axis,
the dependence of the parameters on the y coordinate can be excluded. The environment
surrounding the plasma can be characterized by a dielectric having permittivity εd.
Under these conditions, it is possible to consider the peculiarities of the occurrence of
various nonlinear phenomena on the plasma surface for the selected initial and boundary
conditions specified at the origin. The motion of electrons with density n, charge −e and
mass m is described by the equation for velocity v as a function of time t and coordinate z,
which is represented in dimensionless form in Gradov (2020, 2021, 2022) as the following
relation:

∂u0

∂τ
+ ∂

∂η

(
∂u0

∂η
· u

)
+ u = 0, (2.1)
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Transformation of a plasma boundary curvature 3

Here the dimensionless coordinates and variables Λ = k1x0; k1 = ωS/s; ωS =
ωL/(1 + εd)

−1/2; ωL = (Ne2/mε0)
1/2; η = zk1; s = const.; and τ = ωSt, u = v/s were

introduced with using ε0 as the notation of the vacuum permittivity. As shown in Gradov
(2020), the constant a1 arises when the value of the electrostatic potential near the
boundary is presented like an expansion on a small parameter (x − x0) as a result of the
integration in the corresponding term of this expansion determined by the potential theory
of Jeffreys & Swirles (1999). The use of the dimensional constant s is associated with
the conversion of all equations into a dimensionless form, and its value with the velocity
dimension is determined by the velocity at which the points of the profile of the nonlinear
wave under consideration move, as shown by the solutions obtained below.

During derivation of (1) in Gradov (2021), the velocity of electrons was presented in the
form v = ∇Ψ for the case when their transportation is driven by the potential 	, which
permits one to transform the equation of the motion and leads to the relation

∂Ψ0

∂t
+ a2 ∂Ψ0

∂z

2

= e
m
Φ(z, t); (2.3)

Ψ0(z,t) = Ψ (x = x0(z,t)+ 0, z,t). (2.4)

Equation (2.3) was derived with the help of the proposition that inside plasma x >
x0(z, t)+ 0 quasi-neutrality takes place, N = n, which provides the validity of the relation
�	 = 0 there in accordance with the equation of the continuity (see Gradov 2021).
Equation (2.1) can be used to find the velocity of nonlinear motion as well as the associated
density of the surface charge for a given form�=�(τ ,η) of the distortion of the boundary.
Examples of the solution obtained in this case for some special cases of physically justified
types of the function �(τ ,η) are given in Gradov (2020, 2021).

On the other hand, the nonlinear motion of electrons can also lead to distortion of
their equilibrium surface at the plasma boundary. In order to find an exact self-consistent
solution, it is necessary to obtain another new equation describing the relationship of the
nonlinear surface charge with the curvature of the plasma surface. Such an equation can
be obtained on the basis of a generalization of the nonlinear theory of ‘shallow water’ in
a liquid (see Stoker 1957) to a plasma. Using this approach, it is possible to derive this
equation by integrating the continuity equation

∂n
∂t

+ ∇ · (nv) = 0 (2.5)

over the region of homogeneous electron density of plasma in the range x0(t, z) < x < ∞.
It should be borne in mind that the change in the density of n(t,x,z) near the boundary
is associated with its movement along the axis 0X, when a jump in density from 0 to
N can occur at a fixed point, both over time and with a change of z in the surface of
the plasma. Therefore, the function ∂n/∂t,z behaves like a δ-function of the argument
x − x0(t, z)(n = Nδ[k1(x − x0)]) and can be written

∂n(t, z)
∂t, z

= lim
x→x0

{
∂x0(t, z)
∂t, z

∂ne(t, x, z)
∂x

}
. (2.6)

Given that for a nonlinear surface charge there is a relation of �ψ = 0 in the region
x0(t, z) < x < ∞ (see Gradov 2020, 2021, 2022), the second term in (2.5) can be
represented as ∇ · (nev) = ∇ne · ∇ψ . Using (2.6), after integrating the values in (2.5)
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over this region of the z coordinate, the following equation can be obtained:

∂x0

∂t
+

(
a1 + ∂x0

∂z

)
∂ψ0

∂z
= 0. (2.7)

The following formula is also used here:

∂ψ

∂x

∣∣∣∣
x=x0+0

= a1
∂ψ0

∂z
, (2.8)

As obtained and used in works (Gradov 2020, 2021, 2022) concerning nonlinear surface
charge. The relation (2.8) is a consequence of the potential theory (Jeffreys & Swirles
1999) used to describe the nonlinear surface charge.

As a result of performing the necessary calculations, the following differential equation
can be derived, which describes the connection between the distortion value of the
boundary �(τ ,η) and the velocity u(τ ,η) of electron motion:

∂Λ

∂τ
+

(
a1 + ∂Λ

∂η

)
u = 0. (2.9)

Equation (2.9) makes it possible to study the behaviour of the curvature of the surface
of electrons at the plasma boundary depending on the speed of their motion along this
boundary. At the same time, the system (2.1), (2.9) gives the possibility of searching
for such solutions that describe pulses of a certain shape, both boundary distortion and
nonlinear surface charge parameters, capable of propagating over long distances without
changing their properties. It also follows from (2.9) that the curvature of the surface�(τ ,η)
does not change in time if there is no movement of electrons along the boundary.

The obtained dependences on time and spatial coordinates for the velocities of electrons
and the shape of curvature of the boundary make it possible to determine the spatially
temporal structure of other characteristics of the process, such as, for example, the
electrostatic potential ϕe(ξ ) and the surface charge density nS(ξ ), which is determined
by the following formula (Gradov 2020, 2021):

nS(z, t) = lim
δ→0

∫ x0+δ

x0−δ
dxn(x, z, t). (2.10)

The connection between this density and magnitudes of the electrostatic potential at
the plasma boundary Φ(z, t) = ϕe(x = x0(z, t), z) is described by the following equation
(Gradov 2020) derived with help of the definition (2.10):

nS(z, t) = a1(1 + εd)ε0

e
dΦ
dz
. (2.11)

As follows from the theory of the potential (Jeffreys & Swirles 1999), the space
distribution of the electrostatic potential ϕe of the surface charge is defined in whole space
by its magnitude at the boundary �(z,t) for the case when the half-space plasma has a
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boundary in the form of the infinite surface x = x0(z) consistent with Gradov (2020):

ϕe(r, t) = ± 1
π

∫ ∞

−∞
dz′ [x − x0(z′, t)]θ(z′, t)Φ(z′, t)

(z − z′)2 + [x − x0(z′, t)]2 , (2.12)

θ(z, t) = 1 +
(
∂x0

∂z

)2

. (2.13)

Here the assumption was used that inside plasma x> x0(z,t) + 0 the quasi-neutrality
(N = n) is supported by an equilibrium of forces confining the plasma which transforms
the Poisson equation to a Laplace one. It gives the possibility of using the theory of the
potential for describing a space structure of a considered function as was done above
for the electrostatic potential. In (2.12) the sign ‘+’ should be taken for any point with
coordinates {x,z} inside the plasma (x> x0(z,t)) and the sign ‘−’ is used for points of
observations outside plasma (x< x0(z,t)). Therefore, the spatial distribution of the velocity
potential 	(z,t) is described by the formula of the potential theory in the same way as
was done using formula (2.12) for the electrostatic potential, i.e. through its own value at
the plasma boundary. The corresponding expression can be easily written by analogy with
(2.12).

The description of the function 	0(z,t) obtained as a result of the solution of the initial
system (2.1), (2.3), (2.9) makes it possible to establish the spatial–temporal behaviour
of the electrostatic potential at the plasma boundary �(z,t) with using (2.12). Formula
(2.11) provides the same possibility of obtaining similar information for the surface
charge density nS(z,t). Finally, with the help of expressions (2.11), (2.12), it is possible to
determine all the main characteristics of the process under consideration, if the functions
	0(z,t) and x0(z,t) are known, the description of which must be obtained as a result of
solving the original system of (2.1), (2.3), (2.9). The approximate expressions obtained
in this paper for these functions can be useful in estimating all the main parameters of
the process. It should be noted that the adopted simplifying assumptions significantly
narrow the range of conditions under which the phenomena under consideration may
occur. For example, the approach of a cold plasma imposes certain restrictions on the
temperature of electrons and the parameters of the wave process under study. This
means, first of all, a requirement for a relationship between the Debye radius of the
plasma and the characteristic size of the nonlinear wave. The smaller the ratio of these
quantities, the weaker the effect of the thermal motion of electrons on the phenomena
under consideration.

The study of the nonlinear wave process is based primarily on the assumption that
the desired values u(τ ,η) and �(τ ,η) depend on the variables τ and η in the form of a
combination of ξ = η −Ωτ (Ω = const.), that is, the solution has the form of a wave.
As can be seen from the definition of ξ , the velocity at which the profile points of the
nonlinear wave in question move is equal to the value �s. In this case, the original system
of (2.1), (2.3), (2.9) can be written in the following form:

Ω
du0

dξ
− d

dξ

(
du0

dξ
· u

)
+ u = 0; (2.14)

u0 = d
dξ

{
Ωu − a2u2 − a2u2

(
dΛ
dξ

)2
}

; dΛ
dξ

= a2
1u(ξ)

Ω − u(ξ)
. (2.15a,b)

The numerical solution (2.15) for some selected characteristics of the problem is shown
in figure 1. The impulse form of the desired quantities is provided by the selection of the
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6 O.M. Gradov

FIGURE 1. The spatial dependence of electron velocity and the boundary distortion caused by
the surface charge for some chosen set of parameters of nonlinear perturbations: b1 = 1, b2 = 0.5,
b3 = 0.5, b4 = 0.5; �= 2.2, u(ξ = 0) = 2; �(ξ = 0) = 2; u′(ξ = 0) = 0; u′′(ξ = 0) = 0.

values of the parameters of the initial conditions by their mutual agreement. In order to
have an approximate idea of the form of the solution in an analytical form and to obtain
comparative estimates, the following functions can be used, which are not an exact solution
of the system of (2.15) but sufficiently accurately convey the shape of solitary exact curves:

u1(ξ) = b1Sech(b2ξ
2); Λ1(ξ) = b3

1 + b4ξ 2
. (2.16a,b)

Functions (2.16) are represented in figure 1 by dotted curves.
From the nonlinear surface charge theory (Gradov 2020, 2021), it is known that the

velocity of electrons ux(τ, η) along the 0X axis at the boundary x = x0(τ, η) is associated
with a similar parameter of motion along the u(τ ,η) boundary by the ratio ux(τ, η) =
a1u(τ, η). Therefore, if at some selected point η= η0 the electrons are given the velocity
ux(τ, η = η0) = a1u(η0–Ωτ), then a nonlinear wave of curvature of the electron boundary
will begin to propagate along the boundary having the form �(ξ ) satisfying, like the
function �(ξ ), the system of (2.15). This wave is a moving electric charge and may be of
interest for solving some applied problems. It should be noted that the function u1(η0–Ωτ)
described by formula (2.16) can be used approximately as a boundary condition, which
greatly simplifies the problem.

Thus, by creating, for example, with the help of a modulated or impulse laser beam the
deviation of the surface of electrons from the original position, it is possible, under certain
conditions, to initiate solitary pulses of an electrical signal that are able to propagate along
the surface together with the curvature of the boundary. This allows one not only to redirect
the force effect to places inaccessible to direct impact, but also to send control signals and
information there. Such a scheme is especially relevant for plasma objects of an extended
shape such as an ellipsoid, in which large areas of the surface fully meet the conditions of
the problem presented in this paper.

The reverse process is also possible, when the curvature of the boundary is generated
by electrical impulses along the boundary. Here, pulsating electrostatic fields having,
according to (2.12), a large localization area near the boundary, which can not only
accelerate charged particles, but also create electromagnetic radiation due to their
nonlinear properties, may be of possible interest.
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3. Summary and conclusion

Within the framework of a simple model of cold plasma with a sharp boundary, a system
of two equations was obtained describing the self-consistent propagation of the distortion
of the electron surface at the plasma boundary together with electrical impulses along the
boundary. This self-consistent process is possible if certain conditions arising from the
solution of the system (2.5) are met when propagation along the boundary is carried out
over a long distance without distorting the waveform. Taking into account electromagnetic
effects, performed similarly to the calculations presented in Yu & Zhelyazkov (1978)
and Brodin & Stenflo (2014), can help to identify new aspects of this phenomenon,
for example, the description of radiation along the normal to the boundary in the form
of outflowing waves (Tamir & Oliner 1963). But this requires more research. A closed
system of equations derived in the present work includes a description of the shape of
the surface of electrons, which may help to study a wide range of phenomena associated
with the occurrence of a nonlinear surface charge. There is every reason to believe that its
widespread use will make it possible to discover and study many interesting and important
effects connected with plasma boundaries. For example, special features of the surface
charge could help in understanding many interesting nonlinear phenomena in the case
when this theory would be generalized in the future to use also phase-mixing (Karmakar
et al. 2018; Pramanik & Maity 2018), prospective numerical schemes (Verma 2018) as well
as quantum effects (Shahmansouri, Aboltaman & Misra 2018). The described approach
can be also useful for the design and production of new functional materials and processes
(Ye et al. 2013). Also, influences of transversal electromagnetic phenomena on nonlinear
surface waves have to be taken into account (Yu & Zhelyazkov 1978; Vladimirov, Yu &
Tsytovich 1994; Shukla 1999) in some cases of an essential practical interest. Moreover, as
was shown in Lee, Jung & Jung (2018) and Chandler-Wilde & Zhang (1998), they can play
sometimes a noticeable role in processes across the interface between various physical and
biological substances.
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